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Learning reservoir dynamics with temporal
self-modulation
Yusuke Sakemi 1,2✉, Sou Nobukawa1,3,4, Toshitaka Matsuki5, Takashi Morie 6 & Kazuyuki Aihara1,2

Reservoir computing (RC) can efficiently process time-series data by mapping the input

signal into a high-dimensional space via randomly connected recurrent neural networks

(RNNs), which are referred to as a reservoir. The high-dimensional representation of time-

series data in the reservoir simplifies subsequent learning tasks. Although this simple

architecture allows fast learning and facile physical implementation, the learning performance

is inferior to that of other state-of-the-art RNN models. In this study, to improve the learning

ability of RC, we propose self-modulated RC (SM-RC) that extends RC by adding a self-

modulation mechanism. SM-RC can perform attention tasks where input information is

retained or discarded depending on the input signal. We find that a chaotic state can emerge

as a result of learning in SM-RC. Furthermore, we demonstrate that SM-RC outperforms RC

in NARMA and Lorenz model tasks. Because the SM-RC architecture only requires two

additional gates, it is physically implementable as RC, thereby providing a direction for

realizing edge artificial intelligence.
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Vast amounts of data are generated and observed in the
form of time series in the real world. Efficiently processing
these time-series data is important in real-world applica-

tions such as forecasting the renewable energy supply and
monitoring sensor data in factories. In the past decade, data-
driven methods based on deep learning have progressed
significantly and have successfully linked data prediction and
analysis to social values, and they are becoming increasingly
important1,2. However, the computational load of data-driven
methods results in considerable energy consumption, thus lim-
iting their applicability3,4. In particular, to perform prediction
and analysis near the location where the data are generated,
which is called edge artificial intelligence (AI), high energy effi-
ciency is required5.

Reservoir computing (RC) is attracting attention as a candidate
for edge AI because it achieves high prediction performance and
high energy efficiency. The RC model consists of an input layer, a
reservoir layer, and an output layer6,7. The reservoir layer is
typically a recurrent neural network (RNN) with fixed random
weights. Because only the output layer is usually trained in RC,
the training process is faster than those of other RNN models
such as long short-term memory (LSTM)8 and gated recurrent
units (GRUs)9. In addition, because the reservoir layer can be
configured with various dynamical systems10, its high energy
efficiency has been demonstrated through physical
implementations11,12.

The computational power of RC increases upon using larger-
sized reservoirs13. However, the reservoir size is often limited by
the size of physical systems11,12. Furthermore, as only the output
layer is trained in RC, it is unclear whether it can achieve com-
parable prediction accuracy for real-world applications to other
state-of-the-art approaches, given the same energy
consumption14. To improve the computational efficiency of RC,
various RC architectures and methods have been proposed15.
Recent proposals include structures that combine convolutional
neural networks16, parallel reservoirs17–19, multilayer (deep)
RC20, methods that use information from past reservoir layers21,
and regularization methods that combine autoencoders22. These
studies indicated that the performance can be improved by using
an appropriate reservoir structure. However, because only the
output layer is trained in these methods, the performance
improvement is limited.

One promising approach for improving the flexibility of
information processing in RC is to temporally vary the dynamical
properties of the reservoir layer to adapt to the input signal. An
architecture that feeds the output back to the reservoir can realize
this23,24. Sussilo and Abbott proposed the FORCE learning
method for stably training an RC model with a feedback archi-
tecture and reported that the network can learn various types of
autonomous dynamics23. This architecture has been extended to
spiking neural networks25 and applied to reinforcement-learning
tasks26. However, although these feedback connections are
thought to control the dynamics according to tasks24, their
control is limited because the connections are random.

Research has also been conducted to acquire task-dependent
dynamics in the reservoir layer by training not only the output
layer but also the reservoir layer. Intrinsic plasticity27 is a method
for making the outputs of neurons closer to a desired distribution,
and a Hebbian rule or anti-Hebbian rule28 allows control of
correlations between neurons. These methods increased the
prediction accuracy and memory capacity29. Lage and Buono-
mano proposed innate training, which realizes a long-term
memory function by training some connections in the reservoir
layer to construct an attractor that is stable for a certain period of
time30. Inoue et al. used this method to construct chaotic
itinerancy31. The aforementioned studies demonstrated that it is

possible to perform tasks that are difficult to achieve with con-
ventional RC models by training the reservoir layer. However, in
all the methods used, the properties of the trained reservoir layer
were static (e.g., fixed network connections in time), thus limiting
the diversity of the dynamics.

Recently, the attention mechanism has been considered as an
effective method for realizing information processing adapted to
the input signal. In deep learning, the introduction of the atten-
tion mechanism was one of the breakthrough techniques pro-
posed in recent years32,33. The introduction of this mechanism
allows efficient learning through the selection and processing of
important information, and it has impacted various research
fields such as natural language processing34,35. In neuroscience,
attention is considered an important factor for realizing cognitive
functions, and neuromodulation is known as a neural mechanism
that is closely related to attention36. Neuromodulation is caused
by neurons in brain areas such as the basal forebrain releasing
neuromodulators such as acetylcholine into various brain areas to
modulate the activity of neurons therein36–38. The attention
mechanism can increase the efficiency of information processing.
However, in RC, the input signal is uniformly transferred to the
reservoir layer and converted into high-dimensional features;
thus, there is no attention mechanism.

In this study, we propose the self-modulated RC (SM-RC)
architecture that incorporates the advantages of the aforemen-
tioned feedback structure, reservoir-layer learning, and attention
mechanism. SM-RC has trainable gates that can dynamically
modulate the strength of input signals and the dynamical prop-
erties of the reservoir layer. Thus, it is possible to learn the
reservoir dynamics adapted to the input signal, thereby enabling
information processing such as attention and improving the
learning performance for a wide range of tasks. Importantly, the
gate structure has at most two variables and is controlled by
feedback from the reservoir layer; thus, we expect SM-RC to be
highly hardware-implementable, similar to conventional RC. The
SM-RC architecture provides another option for improving the
learning performance of physical RC systems without increasing
the size of the reservoir. Below, to promote a new direction of
physical reservoir computing research, we investigate the learning
performance and model characteristics of SM-RC. In particular,
we compare the prediction performance with that of conventional
RC through simple attention, NARMA, and Lorenz model tasks.
We also discuss prospects for hardware implementation.

Results
Figure 1 shows the SM-RC architecture. In addition to the input
layer, reservoir layer, and output layer, the proposed architecture
has an input gate gin that modulates the input signal and a
reservoir gate gres that changes the dynamical properties of the
reservoir layer, both of which are controlled by feedback from
the reservoir layer.

These properties extend the functionality of conventional RC,
wherein input information is “uniformly” transferred to the
reservoir layer. In addition, the information of an input signal
stored in the reservoir layer tends to decay over time, which is
related to the echo-state property and fading memory10,39. These
properties of conventional RC do not pose a significant problem
for relatively simple tasks; however, they severely limit the
regression performance for tasks that involve capturing long or
complex temporal dependencies21. SM-RC overcomes the
shortcomings of conventional RC by introducing the self-
modulation mechanism.

In this study, for simplicity, we construct SM-RC on the basis
of the echo-state network (ESN)6,13, which is the most commonly
used form of RC. The ESN is a discrete-time dynamical system,
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and the reservoir layer consists of an RNN with fixed weights. In
addition, we consider an input gate that dynamically changes the
input strength and a reservoir gate that dynamically changes the
internal connection strength in the reservoir layer. In this case,
the input ures to the reservoir layer and the spectral radius ρres of
the reservoir layer are time-modulated as follows:

uresðtÞ ¼ g inðt � 1ÞuðtÞ; ð1Þ

ρresðtÞ ¼ gresðt � 1Þρ̂res; ð2Þ
where u(t) is the original input vector and ρ̂res is the spectral
radius of the inner connection matrix of the unmodulated
reservoir layer. Note that gin and gres are scalar gates trained by
nonlinear optimization. From the function of these gates, we can
intuitively understand how SM-RC extends RC. For example, the
input gate can realize attention by sending important input sig-
nals to the reservoir layer and discarding other information, and
the reservoir gate can change the memory retention character-
istics depending on the input signal.

To evaluate the learning performance of SM-RC from various
viewpoints, we compared it with that of conventional RC for
three tasks with different characteristics: simple attention,
NARMA, and Lorenz model tasks. In all the experiments, the
number of neurons in the SM-RC reservoir layer Nres was set as
100, and the hyperparameters were fixed to the same values for
SM-RC. In contrast, conventional RC used reservoir layers with
various numbers of neurons, and the hyperparameters were
optimized. The details of the models and their learning procedure
are presented in Methods.

Simple attention tasks. To investigate the self-modulation
mechanism of SM-RC, we evaluated the learning performance
for a simple attention task. In this task, the input signal was
u(t)= 1 in the time interval of [250, 259], and Gaussian noise
with a mean of 0 and standard deviation of σin was added at
other timesteps. The model was trained to output 1 in the time
interval of [290, 291] and output 0 at other timesteps. To cancel
the effect of initial values of xi(0)= 0, the first 200 steps were
discarded (free run), and common jitter noise was added to
the input and output time windows (see Methods for details).
This task required a memory retention function that retained

the input signal for a long time while reducing the influence of
Gaussian noise when no informative input signals were
provided.

Figure 2 shows the learning results for the simple attention
task. In the case of conventional RC (Fig. 2a), for σin= 0.1,
the regression of the output pulse was poor. Although it has been
reported that RC has a long-term memory function40, memory
retention is difficult when noise is continuously added to
the reservoir layer. In contrast, for SM-RC (Fig. 2b), even when
the noise was intensified (i.e., σin= 0.3), the regression of the
output pulse was performed accurately. Figure 2c presents a
comparison of the regression performance between conventional
RC and SM-RC. SM-RC outperformed conventional RC for
various input noise intensities σin. For the same input noise
intensity, SM-RC with Nres ¼ 100 outperformed conventional RC
with a reservoir at least 10 times larger.

By examining the time evolution of the input gate gin(t) and the
reservoir gate gresðtÞ (the figure shows the modulated spectral
radius ρresðtÞ) (Fig. 2b), we can intuitively understand the factors
contributing to successful regression in the case of SM-RC. The
input gate autonomously takes large values during the time
period when the input pulse arrives, thus efficiently feeding
information into the reservoir layer. After the input pulse
disappears, the input gate takes small values to prevent the input
noise from corrupting the information stored in the reservoir
layer. In contrast, the modulated spectral radius ρresðtÞ takes large
values after the input pulse disappears. Because the fading
memory condition is not met when the spectral radius is
sufficiently large10,13, the reservoir layer can retain the informa-
tion for a long period.

To further study the dynamics of SM-RC, we performed a
sensitivity analysis of the reservoir layer. This was done by adding
perturbation to the reservoir states and examining the evolution
of the perturbation two steps forward (tp= 2). The results for
other values of tp are presented in Supplementary Note 1. When
the perturbation increases after tp steps, the sensitivity has a
positive value; otherwise, it has a negative value (see Methods for
details). In Fig. 2a, the sensitivity of the conventional RC model
exhibits only negative values during the simulation period. This
indicates that the reservoir was in stable states, which is consistent
with the fading memory condition that usually holds for

Fig. 1 Comparison of the conventional reservoir computing (RC) and self-modulated RC (SM-RC) architectures. In conventional RC, the input signal is
directly transferred to the reservoir layer, and the output is obtained from the reservoir layer. The reservoir layer is typically constructed with a recurrent
neural network (RNN) having fixed weights; however, various dynamical systems can be used as reservoirs, and they can be implemented with electronic
circuits, optical systems, and other physical systems. SM-RC inherits the basic architecture of conventional RC, including the reservoir layer and output
layer. However, the input signal is modulated by the input gate gin before being transferred to the reservoir. Additionally, the reservoir dynamics are
modulated with the reservoir gate gres. Both gates are controlled by the feedback from the reservoir layer. The black solid arrows and green dotted arrows
represent the randomly initialized fixed connections and trainable connections, respectively. The red gradient arrow represents the function that changes
the dynamical properties of the reservoir.
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conventional RC10. In contrast, for SM-RC (Fig. 2b), the
sensitivity changed significantly over time and occasionally
exhibited positive values. The positive sensitivity indicated that
the reservoir was in chaotic states. Usually, chaotic states make
regression difficult because the input–output relationship
becomes sensitive to the initial conditions. However, in the case
of SM-RC, by shutting the input gate, the problem related to the
initial conditions was avoided for this attention task. We
confirmed that the effects of Gaussian noise were negligible in
the reservoir states after the input pulse and before the output
pulse. The fact that the positive sensitivity only appeared after the
input pulse and before the output pulse indicated that SM-RC
successfully learned the complex reservoir dynamics adapted to
the input signal.

To investigate the independent characteristics of the gates, we
evaluated the regression performance when one or both gates did
not evolve over time (see Methods for details). Figure 2d shows
the results. For all input noise intensities, the performance was
the best when both gates were time-evolved (dynamic gates),
followed by the case where the reservoir gate was modulated
(static input gate) and then the case where the input gate was
modulated (static reservoir gate). The performance was the worst
when both gates were static (static gates). This indicated that the
observed performance improvement was caused not by the
optimization of the spectral radius and input intensity but by
their temporal modulation. In addition, the fact that the
performance was the best when both gates were time-
modulated indicated that the input gate and reservoir gate were
cooperatively modulated, as intuitively explained above (see
Supplementary Note 2 for a detailed discussion).

Time-series prediction: NARMA and Lorenz model. SM-RC
improves the prediction performance even when there is no
apparently salient time series to which attention should be paid,
as in the case of simple attention tasks. To demonstrate this, we
evaluated the performance of time-series prediction using
NARMA and the Lorenz model. The NARMA time series is
obtained with a nonlinear autoregressive moving average, which
is often used to evaluate the learning performance of RC21,41,42.
In particular, we use the NARMA5 and NARMA10 time series,
which have different internal dynamics. The Lorenz model is a
chaotic dynamical system that is also used for RC performance
evaluation owing to its difficulty of prediction14,22,43–45. For the
Lorenz model tasks, Gaussian noise with different standard
deviations σin was added to the input to approximate the situation
of real-world data. The models are trained to predict Nforward

steps forward of the Lorenz model. The aforementioned tasks
involved input signals with different characteristics: a uniform
random number for the NARMA tasks and a chaotic time series
for the Lorenz model tasks (see Methods).

Figure 3a–b shows the time evolution of the conventional RC
and SM-RC models after they were trained on the NARMA10
task. Because the input signal for the task was uniform noise, the
reservoir states evolved accordingly in the conventional RC and
SM-RC models. In contrast to the case of the simple attention
task, the gates in the SM-RC model did not change significantly
over time, which reflected the characteristics of the input signal.
The prediction performance of SM-RC was better than that of
conventional RC, indicating that the self-modulation mechanism
is effective even for uniform input signals. Figure 3c–d shows
the time evolution of the conventional RC and SM-RC models

Fig. 2 Simulation results for simple attention tasks. a Dynamics of a conventional reservoir computing (RC) model after training with the reservoir size
Nres of 100 and the input noise intensity σin of 0.1. From the top, the time evolution of the input signal, reservoir states, output, and sensitivity are shown.
b Dynamics of the self-modulated RC (SM-RC) model after training with Nres ¼ 100 and σin= 0.3. From the top, the time evolution of the input signal,
reservoir states, outputs, gates, and sensitivity are shown. In the gate panel, the blue solid line represents the input gate, and the orange dashed line
represents the spectral radius. The standard deviations of these gate values were obtained using 100 different input signals without jitter noise. We show
the modulated spectral radius ρresðtÞ obtained using Eq. (2). In a and b, in the sensitivity panel, the blue solid line indicates the mean sensitivity of the
reservoir layer, and the orange dashed line indicates the maximum sensitivity of the reservoir layer. The standard deviations of the sensitivity values were
obtained using 100 different input signals without jitter noise. For the output layer, the blue solid line indicates the predicted output, and the orange dashed
line indicates the teacher signal. In the panels displaying the reservoir states, only 20 reservoir neurons are shown. c Comparison of regression errors
between conventional RC models and SM-RC models. The regression errors for the conventional RC models are plotted as a function of the reservoir size
for different input noise intensities (σin). The regression errors for the SM-RC models are represented by blue dashed horizontal lines for the input noise
intensity of 0.1. For the SM-RC models, the reservoir size was fixed to 100. We present the lowest mean squared errors (MSEs) from 50 random weight
initializations as the regression errors for both models. d Regression errors for the SM-RC models when one or both gates are made static.
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after they were trained on the Lorenz model task. For both
models, the time evolution of the reservoir states reflected the
input chaotic time series. Although it was not apparent in the
time evolution of the reservoir states, we observed that the gates
of the SM-RC model evolved by adapting to the input chaotic
time series. The dynamics of SM-RC for various task conditions,
such as σin and Nforward, are presented in Supplementary Note 5.
Because of the dynamic behavior of the gates, the prediction
performance of SM-RC was better than that of conventional RC.

Figure 4 shows a comparison of the prediction performance of
conventional RC and SM-RC for NARMA (Fig. 4a–b) and Lorenz
model tasks (Fig. 4c–d). In Fig. 4a, c, the prediction error of
conventional RC is plotted as a function of the reservoir size. The
horizontal lines indicate the SM-RC prediction error. The
number of neurons in the reservoir layer of the SM-RC models
were all fixed to 100. For the Lorenz model tasks (Fig. 4c), we
present the results for different values of the following two
parameters: input noise σin and prediction steps Nforward. In both
tasks, the best results among 50 random weight initializations for
the conventional RC and SM-RC models are shown. For the
conventional RC models, the mean and the standard deviation
are evaluated in Supplementary Note 6. As shown, SM-RC
achieved better prediction performance than conventional RC.
For the NARMA tasks, SM-RC exhibited comparable prediction
performance to conventional RC with a two times larger
reservoir. In contrast, for the Lorenz model tasks, SM-RC
exhibited prediction performance comparable to conventional
RC with a 10 times larger reservoir.

In Fig. 4b, d, the prediction performance of SM-RC when one
or both gates do not evolve over time is shown. For the NARMA
and Lorenz model tasks, the performance was the best when both
gates evolved, followed by the case where the reservoir gate was
modulated and then the case where the input gate was modulated.
The performance was the worst when both gates were static.
These results are similar to those for the simple attention task. As
before, they indicate that the observed performance improvement
was caused not by the optimization of the spectral radius and
input intensity but by their temporal modulation.

Finally, we compared the learning performance of SM-RC with
that of other state-of-the-art RNN models, namely Elman RNNs
(also known as vanilla RNNs), LSTM, and GRUs. Figure 5 shows
the learning results for the Lorenz model tasks (Nforward= 20 and
30). In the upper panels (Fig. 5a–f.1), MSEs of SM-RC, Elman
RNN, LSTM, and GRU models are plotted with different RNN
sizes. The RNN size represents the reservoir size Nres for the case
of SM-RC and the number of output units for the cases of Elman
RNNs, LSTM, and GRUs. Although the learning performance of
SM-RC was higher than that of the conventional RC models, as
seen in Fig. 4, it is worse than that of Elman RNNs, LSTM, and
GRUs. For example, when σin= 0.01 and Nforward= 30, an Elman
RNN model and an LSTM model, both with an RNN size of 100,
performed as well as the SM-RC model with an RNN size of 400.
Similarly, a GRU model with an RNN size of 30 performed as
well as the SM-RC model with an RNN size of 400. The
performance of the Elman RNNs declined when the RNN size
exceeded 200 or 300. This degradation was due to the instability
in the learning process of the Elman RNNs46,47. The performance
difference among various RNN models is primarily attributed to
the number of trainable parameters. In the lower panels
(Fig. 5a–f.2), we compared the MSEs of those RNN models as a
function of the number of trainable parameters. We also included
the results of the conventional RC models in the comparison. We
found that the SM-RC models showed smaller MSEs than the
conventional RC models for the same number of trainable
parameters. Furthermore, the SM-RC showed MSEs comparable
to LSTM and GRUs for the same number of trainable parameters.
These results indicate that the learning ability of RC can reach
that of state-of-the-art RNN models by employing a temporal
self-modulation mechanism.

Discussion
We propose SM-RC that can alter the dynamical properties of the
reservoir layer by introducing gate structures. We found that the
SM-RC architecture achieved better learning performance than
that of conventional RC for NARMA, and especially for the
simple attention and Lorenz model tasks. In the cases of

Fig. 3 Reservoir dynamics for NARMA10 and Lorenz model tasks. a, b Simulation results for NARMA10 tasks with the reservoir size Nres of 100.
c, d Simulation results for Lorenz model tasks with Nres ¼ 100, the input noise intensity σin of 0.03, and the prediction steps Nforward of 20. In a and c, the
figures show the inputs, reservoir states, and outputs (from top to bottom) for the conventional reservoir computing (RC) models. In b and d the figures
show the inputs, reservoir states, outputs, and gates (from top to bottom) for the self-modulated RC (SM-RC) models. For the gates, the solid blue lines
represent the input gates, and the dashed orange lines indicate the modulated spectral radius. For the output layer, the solid blue line indicates the
predicted output, and the dashed orange line indicates the teacher signal. In the panels displaying the reservoir states, only 20 reservoir neurons are shown.
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nonuniform input signals, such as those found in simple attention
and Lorenz model tasks, the mechanism that adapts the way of
information is processed according to the input signal is con-
sidered effective. Because most real-world time-series data are
nonuniform, the proposed architecture is expected to be effective
for real-world data. In the simple attention task, we observed local
chaotic dynamics in SM-RC. Chaotic dynamics are of interest in
deep-learning research because they increase the expressiveness
of learning models48,49. Recently, Inoue et al. observed transient
chaos in transformer models50. It is expected that SM-RC utilized
the high expressivity of chaotic dynamics for encoding the input

signal and outputting the pulse. However, the underlying learning
mechanism requires further investigation. We expect that detailed
analysis of dynamical systems10,24,51,52 will produce ideas for
improving SM-RC.

SM-RC provides insights into the mechanism of the nervous
system. Neural networks with random connections, as used in
RC, are attracting attention as models of the brain7,51,53,54. The
proposed SM-RC model can be thought of as incorporating the
mechanism of neuromodulation into RC. This is because both
systems globally and temporally modulate the activity levels of
neurons36–38. For example, the neuromodulator acetylcholine is

Fig. 4 Performance evaluation for the NARMA and Lorenz model tasks. a, b The performance results for the NARMA5 and NARMA10 tasks are shown.
a The figure shows comparisons of the lowest mean squared errors (MSEs) for the conventional reservoir computing (RC) and self-modulated RC (SM-
RC) models among 50 random weight initializations. The horizontal axis indicates the reservoir size of the conventional RC model. The reservoir size of the
SM-RC models was fixed to 100. The MSEs for the conventional RC models are plotted, whereas the horizontal lines indicate the MSEs for the SM-RC
models. b The figure shows comparisons of the MSEs for the SM-RC models when some gates were temporally fixed. c, d The performance results for the
Lorenz model task are shown. c The results for the cases of the prediction steps Nforward of 10, 20, and 30 are presented in the left, center, and right figures,
respectively. In addition, the results for different values of the input noise intensity σin are presented. The panels show comparisons of the lowest MSEs for
the conventional RC and SM-RC models among 50 random weight initializations. The horizontal axis indicates the reservoir size of the conventional RC
model. The reservoir size of the SM-RC models was fixed to 100. In each figure, the MSEs for the conventional RC models are plotted, whereas the
horizontal lines indicate the MSEs for the SM-RC models. d The figures show comparisons of the MSEs for the SM-RC models when some gates were
temporally fixed. Various cases for the values of Nforward and σin are shown as in c.
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delivered from the basal forebrain to brain areas, thus increasing
the neuronal activity therein36. SM-RC realizes an attention
mechanism that can be related to neuromodulation36. We expect
that the resemblance between SM-RC and the neuromodulation
mechanism can be studied by adopting biologically plausible
characteristics such as spike-based communications, synaptic
weights and time constants, and neural geometries.

Efficient hardware implementation is important for the real-
world application of SM-RC11,12. Because the input gate gin only
directly modulates the input intensity, it is not difficult to
implement. Additionally, we believe that the reservoir gate gres

can be implemented according to the hardware mechanism. For
example, in analog circuit implementations, connections between
neurons are represented by current magnitudes55,56. If the

Fig. 5 Performance comparison of RNN models for the Lorenz model tasks. a–c and d–f represent the results for the cases of prediction steps Nforward of
20 and 30, respectively. The results for the cases of input noise intensity σin of 0.01 (a and d), 0.03 (b and e), and 0.1 (c and f) are presented. In the upper
panels (a-f.1), mean squared errors (MSEs) of self-modulated reservoir computing (SM-RC), Elman recurrent neural network (RNN), long short-term
memory (LSTM), and gated recurrent unit (GRU) models are plotted with different RNN sizes. In the lower panels (a-f.2), MSEs are plotted as a function of
the number of trainable parameters, where the results of conventional reservoir computing (RC) models are also plotted. Each panel presents the lowest
MSEs among 50 random weight initializations for SM-RC, Elman RNNs, LSTM, GRU, and conventional RC models.
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connection weights are implemented with digital memory, it is
sufficient to provide a mechanism for modulating the digital
values. In the case of analog memory, if it is implemented with
three-terminal memory devices such as floating-gate devices, by
modulating the gate voltage of all or part of the field-effect
transistor of the memory, modulation of reservoir-layer dynamics
can be achieved. In addition, delay feedback systems57 can build a
reservoir layer using a single nonlinear node, which is often used
in photonic systems58 and electronic integrated circuits59. In
these systems, the entire reservoir system can be modulated
simply by changing the single node; thus, it is relatively easy to
implement the reservoir gate. This hardware-friendly aspect of
SM-RC is what motivates us to use SM-RC for edge AI rather
than other state-of-the-art RNN models, such as LSTM8 and
GRUs9. Because the RNN connections in LSTM and GRUs must
be trained, it is difficult to implement these models with physical
systems where the internal connections are not finely tunable.
Such physical systems include spintronics systems60 and photonic
systems61. We note that the gate structure of SM-RC is simpler
than those of LSTM and GRUs. In LSTM and GRUs, the
dimension of the gate is the same as that of the output units. In
other words, RNN neurons are modulated differently. By con-
trast, in SM-RC, the gates are scalar (one-dimensional). There-
fore, RNN neurons (reservoir in this case) are modulated as a
whole. This simple structure enables physical systems whose
dynamic properties can only be globally modulated to be used as
reservoirs.

We believe that it is possible to train SM-RC implemented in
physical systems by using various learning techniques. In this
study, we trained the SM-RC model via backpropagation through
time (BPTT)62. In BPTT, detailed information regarding the
reservoir-layer dynamics is required; however, in physical and
analog systems, it is often difficult to capture the internal
dynamics in detail. Efforts to train such hardware have pro-
gressed in recent years. For example, Wright et al. successfully
trained a black-boxed system by capturing the internal dynamics
using deep learning63. In addition, error backpropagation
approximations, such as feedback alignment64 and its
variants65–68, are suitable for training models implemented in
physical systems. It has been reported that BPTT can be
approximated so that RNNs can be trained in a biologically
plausible manner67,69. Nakajima et al. extended these methods
and successfully trained multilayer physical RC70. By applying
these methods to SM-RC, it is expected that SM-RC can be
trained in analog and physical systems. We believe that SM-RC
broadens the design space of physical RC.

Methods
Model. The time evolution of the ESN-type SM-RC model can be
expressed as

xðtÞ ¼ 1� αð Þxðt � 1Þ þ α tanh gresðt � 1ÞWresxðt � 1Þ�
þ g inðt � 1ÞW inuðtÞ þ ξ1

�
;

ð3Þ

gresðtÞ ¼ f Wres
fb xðtÞ þ bresfb

� �
; ð4Þ

g inðtÞ ¼ f W in
fbxðtÞ þ binfb

� �
; ð5Þ

yðtÞ ¼ WoutxðtÞ þ bout; ð6Þ
where xðtÞ 2 RNres

, uðtÞ 2 RN in

, and yðtÞ 2 R represent the
internal state, input signal, and output of the reservoir layer,
respectively. α is the leakage constant. For simplicity, α is set to 1

as in21,43,45. W in 2 RNres ´N in

and Wres 2 RNres ´Nres

are matrices
representing the connection weights from the input to the
reservoir and the inner connection weights of the reservoir,

respectively. Nin and Nres represent the input dimension and
reservoir dimension, respectively. Each element of Win is initi-
alized by randomly sampling from the uniform distribution of
[− ρin, ρin]. Each element of Wres is randomly sampled from the
uniform distribution of [− 1, 1]; then, it is multiplied by a con-
stant so that the “initial” spectral radius becomes ρ̂res. 1 is a vector
of 1s, and ξ 2 R controls the magnitude of the bias term of
neurons in the reservoir layer43. g inðtÞ 2 R is the input gate that
modulates the input intensity and is controlled by feedback from
the reservoir layer via weights W in

fb. Similarly, gresðtÞ 2 R is the
reservoir gate that modulates the connection strength of the
reservoir and is controlled by feedback from the reservoir layer
via weights Wres

fb . The output function f of the gate is a non-
negative function. In this study, the output value was limited to
(0, 2) to stabilize the learning process:

f ðxÞ ¼ 2
1þ e�x

: ð7Þ

The input gate temporally modulates the intensity of the input by
multiplying it by a value within the range of (0, 2), thus allowing
the selection of useful input signals. In contrast, the reservoir gate
temporally modulates the spectral radius ρres within ð0; 2ρ̂resÞ,
thus allowing the information stored in the reservoir layer to be
retained or discarded. The time evolution of conventional RC is
obtained by replacing both gin and gres with 1. Specifically, the
time evolution of the conventional RC model is expressed as

xðtÞ ¼ 1� αð Þxðt � 1Þ þ α tanh Wresxðt � 1Þ þW inuðtÞ þ ξ1
� �

ð8Þ

yðtÞ ¼ WoutxðtÞ þ bout: ð9Þ
Win and Wres are fixed weights, as in the conventional RC fra-
mework. In SM-RC, in addition to the output weights (Wout,
bout), feedback weights (W in

fb; b
res
fb ;W

res
fb ; b

res
fb ) are trained. In this

study, the output weights were trained using the pseudo-inverse
method, and the feedback weights were trained using BPTT62 (see
below).

Learning procedure. All the tasks performed in this study
involved predicting the target signal yt(t) using the input time
series {u(0), u(1),…u(t)} obtained by time t. RC usually inputs
only u(t) to the reservoir layer at time t (Eq. (3)). In the case of
conventional RC, the output weights were trained using the
pseudo-inverse method to minimize the squared error between
the output and the target signal13:

∑
T

t¼1
k yðtÞ � ytðtÞk2; ð10Þ

where T represents the number of timesteps of the training data.
When multiple training data exist, T is the product of the number
of timesteps of the training data and the number of training data.
To avoid the influence of the initial state, the first 200 steps in the
simulation were excluded from the training data (free run). In
this study, adding the regularization term ∥Wout∥ (ridge regres-
sion) did not improve the performance.

For SM-RC, Elman RNNs, LSTM, and GRUs, we used the
same loss function (Eq. (10)) and trained weights via the gradient
descent method. In each epoch, the weights were updated once
using the whole training dataset (full-batch training), and this was
repeated for 104 epochs. We found that while LSTM and GRUs
perform well, the learning process of SM-RC using BPTT tends to
be unstable. To address this, we adopted the following strategy.
During each full-batch training session, we first trained the
output layer using the pseudo-inverse method, similar to
conventional RC techniques. Subsequently, the gates were trained
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using BPTT. By learning the output layer in advance, the
backpropagating error signals are reduced, which may lead to
stable learning (see Supplementary Note 4). In BPTT, the weights
were updated using the Adam optimizer with a learning rate of
10−3 71. All implementations and simulations were performed
using the PyTorch framework72.

The hyperparameters of the conventional RC model (ρin; ρres,
and ξ) were optimized via Bayesian optimization73,74. We set
ξ= 0 for the simple attention tasks and NARMA tasks. The
hyperparameters of the SM-RC model were set as
ρin ¼ 0:12; ρ̂res ¼ 0:9. The bias term was set as ξ= 0 for the
simple attention tasks and NARMA tasks and ξ= 0.2 for the
Lorenz model tasks. We observed that SM-RC training was
somewhat unstable (see Supplementary Note 4). Therefore, in the
performance evaluation of SM-RC and other models, we
considered the best results for training with 50 different initial
weights.

In this study, we investigated the case where a single gate or both
gates did not change over time. This was done by fixing all the weight
elements (W in ðresÞ

fb ) to 0 and training only the bias term bin ðresÞfb .

Datasets. In the simple attention task, the ith input training
datum had a value of 1 in the input time interval ½250þ
tjitteri ; 259þ tjitteri � and a value sampled from a Gaussian dis-
tribution with a mean of 0 and a standard deviation of
σin∈ {0.1, 0.2, 0.3} at other timesteps. The ith output training
datum had a value of 1 in the time interval of ½290þ tjitteri ; 291þ
tjitteri � and 0 at other timesteps. tjitteri represents the jitter noise; one
of {− 2,− 1, 0, 1, 2}∈ Z was randomly sampled uniformly. The
jitter noise was introduced to prevent the learning models from
generating output pulses using the initial value (xi(0)= 0) instead
of using the input signal (see Supplementary Note 3). We used
100 data obtained as described above as training data and 100
other data as test data.

NARMA is a nonlinear autoregressive moving average model
given by

ytcðtÞ ¼ 0:3ytcðt � 1Þ þ 0:05ytcðt � 1Þ ∑
m

i¼1
ytcðt � iÞ

þ 1:5sðt �mþ 1ÞsðtÞ þ 0:1;
ð11Þ

where sðtÞ 2 R is uniformly sampled from the interval [0, 0.5].
The NARMA5 and NARMA10 time series were obtained with
m= 5 and m= 10, respectively. The task was to predict ytc(t)
using s(t) as the input. To eliminate the influence of the initial
value, the first 200 steps were discarded, and 2000 steps were
generated as training data. We also generated test data for
2000 steps using the same method. We only used a single data for
the training dataset and a single data for the test dataset.

The Lorenz model evolves over time according to the following
differential equation:

dx
dt

¼ 10ðy � xÞ; dy
dt

¼ xð28� zÞ � y;
dz
dt

¼ xy � 8
3
z: ð12Þ

Discrete time-series data were obtained from the above
differential equation by using the Euler method with a timestep
of Δt= 0.01. To eliminate the influence of the initial value, the
first 1000 steps were discarded, and the time series of the
subsequent 2000 steps was obtained. Further, 100 training data
and 100 different test data were generated in the same way from
different initial values. The task was to predict z(t+NforwardΔt)
with x(t) as the input. Nforward∈ {10, 20, 30} represents the
number of steps forward to predict. x(t) and z(t) were normalized
to a mean of 0 and variance of 1 for the training and test data,
respectively. We also added Gaussian noise with a mean of 0 and

variance of σin ∈ {0.01, 0.03, 0.1} to the input x(t) in the training
data. Note that the noise was not updated in the training epoch.

Sensitivity analysis. We evaluated the sensitivity of the learning
models in the simple attention task. The sensitivity indicates
how a perturbation to the reservoir state is magnified in tp
timesteps. For the input data without jitter noise, SM-RC was
operated, and the states of the reservoir layer are taken as the
reference states {xbase(0), xbase(1),…, xbase(t),… }. Then, a per-
turbation pj 2 RNres ðj ¼ 1; 2; ¼ ;NpÞ is applied to the reservoir

state xbaseðtÞ 2 RNres

at time t, and the perturbed reservoir state
xptbj ðt þ tpÞ 2 RNres

at time t+ tp is obtained using Eq. (3). The
perturbation vector pj was obtained by sampling a vector con-
tained in the unit circle using the Metropolis–Hastings algo-
rithm, followed by rescaling so that the obtained vector satisfied
∥pj∥= ϵ. We estimated the sensitivity using the reference and
perturbed states as follows:

λðtÞ ¼ 1
tpNp

∑
Np

j¼1
ln

k xbaseðt þ tpÞ � xptbj ðt þ tpÞ k
ϵ

 !
; ð13Þ

Similarly, we estimated the maximum sensitivity:

λmaxðtÞ ¼
1
tp
maxj ln

k xbaseðt þ tpÞ � xptbj ðt þ tpÞ k
ϵ

 !" #
: ð14Þ

In the simulation, we used tp= 2, ϵ= 10−8, and Np= 200. The
simulation results when other values of tp were used are pre-
sented elsewhere (see Supplementary Note 1). The perturbation
to the gates gres; g in was applied indirectly in accordance with
Eq. (4) because they are not independent (state) variables. The
gates gres; g in are dependent variables because they are deter-
mined by the state of the reservoir layer. Therefore, in the case
of SM-RC, the perturbation is applied only to the state of the
neurons in the reservoir layer. Note that the maximum sensi-
tivity is also known as the maximum local Lyapunov exponent.

Data availability
All data used in the paper are numerically reproducible according to the procedures
described in Methods.

Code availability
Computer codes are available from the authors upon request.
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