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Three-path quantum Cheshire cat observed in
neutron interferometry
Armin Danner 1✉, Niels Geerits 1, Hartmut Lemmel1,2, Richard Wagner1, Stephan Sponar 1 &

Yuji Hasegawa1,3✉

Although our every-day experience rejects it, the quantum Cheshire Cat suggests a potential

spatial separation between different properties of a single particle in an interferometer. The

first experiment with neutrons confirmed the quantum Cheshire Cat effect by using the path

and spin degrees of freedom. The locations of each property are determined qualitatively

through reactions to locally applied perturbations. Yet, no consensus on the interpretation

has been reached. To clarify the origin of the effect, in the present experiment the energy

degree of freedom is used as the third property; the three properties of neutrons appear to be

separated in different paths in the interferometer. The analysis of the experiment suggests

the strong involvement of the inner product between the state vectors, one evolved from the

initial state through the perturbation and the other being the final state. The inner product

results in amplitudes from two sub-beams which contribute to the intensity. The cross-term

between amplitudes gives rise to the quantum Cheshire Cat.
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S ince the introduction of quantum mechanics, its theoretical
framework has suggested counter-intuitive and paradoxical
phenomena: entanglement1,2, Schrödinger’s cat3,4, and

wave-particle duality5 are only three of the most popular ones.
Their study provides us with a deeper understanding of nature
and opportunities for new technology6–9. All the mentioned
effects contradict our every-day ideas of physical reality. Although
the different interpretations of quantum mechanics are equivalent
in predicting measurement outcomes, their conflicting assump-
tions of the fundamental mechanisms vary greatly.

Another such effect concerns the location of a particle and its
properties in an interferometer. Usually, a particle and its prop-
erties are considered as inseparable. In contrast, Aharonov et al.10

described intriguing interferometer experiments in which differ-
ent properties of a physical entity appear to be spatially separated
—localised in different paths/sub-beams of an interferometer.
Aharonov et al. coined the term quantum Cheshire Cat (qCC) in
tribute to the similar behaviour of the so-called Cheshire Cat in
Lewis Carroll’s “Alice’s Adventures in Wonderland”11. In the
novel, different parts of the Cheshire Cat can appear indepen-
dently of each other.

Reference10 suggests applying an interaction in a particular
sub-beam of an interferometer. If this generates conspicuous
reactions of the detected intensity, the authors of Reference10

propose that the property associated with the interaction is
localised in the manipulated sub-beam. The apparent separation
of properties emerges in a pre- and post-selection procedure. In
the interpretation of ref. 10, by applying an interaction in a path, a
statement about the location of a property is deduced. To com-
bine all deduced statements, the disturbance of the interactions
needs to be small. This is achieved by choosing small interaction
strengths such that the interactions are weak. Due to the small
disturbances, the locations of the properties cannot be determined
for a single neutron but only with the statistics of an ensemble.
From the appearance of conspicuous reactions to each weak
interaction when applied in a different path, the separation of
properties is concluded. A possible combination of fundamental
assumptions for this interpretation are the realistic separability of
properties of a physical entity10 and a strictly linear reaction of
the intensity to the interaction strengths12.

The first experimental realisation of a qCC was reported by
Denkmayr et al.13 in a two-path neutron interferometer with the
properties of particle and spin. While a particle is affected by an
absorber, a neutron-spin interacts with magnetic fields. Imple-
menting the absorption in one path affected the detected mean
intensity and implementing a magnetic field in the other path
affected the interference contrast, giving rise to the perception of
a spatial separation between particle and spin.

A selection of other implementations of the Cheshire Cat effect
and some discussions can be found in refs. 14–22. Possible
experimental improvements were suggested, such as the simul-
taneous realisation of all weak measurements10, further con-
sideration of not only the first-order but the second-order
reactions to the midway interaction12, and the implementation of
additional degrees of freedom as pointer systems17. The critique
was expressed, for instance, questioning whether the observed
effect is purely quantum mechanical14 and concerning the mid-
way interaction strength20.

A generalised form of the qCC with arbitrarily many degrees of
freedom and properties was proposed by Pan23. Here, we report
on a three-path quantum Cheshire Cat in a neutron interfero-
metric experiment24–26 by additionally using the energy as third
property. The schematic of the three-path qCC is illustrated in
Fig. 1. Each part of the cat corresponds to a property of the
neutron. When directly attributing the location of properties to
reactions to local manipulations, the associations are as follows: a
direct-current (DC) spin rotation affects the spin, a radio-
frequency (RF) rotation the energy, and absorption the particle.
The reactions to the weak interactions are observed and weak
values are determined for quantification. By means of this
extended version we seek to demonstrate how the qCC emerges
through the inner product of the involved state vectors and the
cross-term of amplitudes from different interferometer paths.
This will make the essence of the qCC evident.

Results
Scheme and theory. The experiment was carried out on the
neutron interferometry station S18 at the high-flux reactor of the
Institut Laue–Langevin (ILL) in Grenoble, France. The neutrons
are monochromatised with a silicon perfect-crystal to a wave-
length distribution peaked at λ0= 1.92 Å and a relative wave-
length uncertainty δλ/λ0 ≈ 2% equivalent to a relative energy
uncertainty of δE/E0 ≈ 4%. Subsequently, magnetic prisms27

polarise the neutron’s spin to the upward +z-direction which
defines the quantisation axis. We will use the symbols ↑ and ↓ to
refer to up and down spin states, respectively, which correspond
to the ± z-directions. The setup downstream of monochromator
and polarisers is depicted in Fig. 2. The beam is split by the first
two of four plates of a silicon perfect-crystal interferometer into
the three separated sub-beams indexed by j∈ {I, II, III}. Through
recombination of all sub-beams, the O-beam in forward direction
and the H-beam in the diffracted direction are produced. The
phase drift between the sub-beam is limited to about 1 degree/
hour through thermal isolation and air conditioning. A spin
analysis is implemented in the O-beam by a polarising CoTi
multilayer array, henceforth referred to as a supermirror. The
intensity of the O-beam is recorded by a 3He counting tube.
Inside the interferometer, two phase shifters (PS1 and PS2)
control the phase relations between the three paths. Furthermore,
if necessary, a weak spin or energy manipulation or a weak beam
attenuation is applied in the interferometer.

The experimental procedure is divided into the three stages of
pre-selection, weak interaction, and post-selection. The pre-
selection is realised by monochromator, polarising magnetic
prisms, the beam splitters of the interferometer and two spin
flippers in paths I and III. The spin flipper in path I induces a
static DC spin flip and the one in path III an RF spin flip, where
the frequency f of the oscillating field is 60 kHz (see the section
“Adjustment Procedure for details of adjustment). The RF spin
flip also changes the energy by ΔE= hf ≈ 0.25 neV, shifting the
initial kinetic energy peaked at E0 ≈ 25 meV of the thermal
neutrons to the new energy E0 ¼ E0 � ΔE, with ΔE/E0 ≈ 10−8.
The combined effect of the aforementioned neutron optical

Fig. 1 Schematic of the paradoxical effect of the three-path quantum
Cheshire Cat. The cat is separated into three different parts inside the
interferometer. This is analogous to how the neutrons and their properties
behave in the present experiment. The parts of the cat correspond to the
neutron properties of spin (grin), particle (body) and energy (eyes). The
reactions to the weak interactions applied during the experiment may lead
to the perception that the properties of the neutron are separated.
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components makes the separated sub-beams pairwise orthogonal
when recombined: while the spin orientation is up in path II and
down in paths I and III, the latter two are in different energy
states. The two energy states exhibit time-dependent interference
on the microsecond scale28. However, the detected counts are
time-integrated and the given intensities are regarded as time
averaged intensities such that the time-dependent interference is
not observable. Time-independent, static interference is only
observable if sub-beams with the same energy state are
recombined29. Our model only needs to describe the observable
effects and we assume the two energy states to be orthogonal to
each other. Therefore, the two occupied energy levels and their
respective two-level system behave like a pseudeospin system as
applied earlier29–32. We will use the braket notation as an
abbreviation to refer to the energy vectors as well as the path and
spin vectors. The according triply entangled pre-selected initial
state ij i is then written as

ij i ¼ 1ffiffiffi
3

p I;#;E0

�� �þ II;";E0

�� �þ III;#;E0�� �� �
: ð1Þ

Therein, all states from different Hilbert spaces associated with
a sub-beam are written together in a single ket for each path. The
post-selection consists of PS1 and PS2 with their induced relative
phases χ1 and χ2, the analysing crystal plates and the supermirror
in the O-beam. The post-selection is represented by the inner
product with the state fj i given by

fj i ¼ f ðχ1; χ2Þ
�� � ¼ 1ffiffiffi

3
p "
�� � eiðχ2�χ1Þ Ij i þ eiðχ1þχ2Þ IIj i þ eiðχ1�χ2Þ IIIj i� �

;

ð2Þ
which does not contain any energy terms, meaning no energy
selection is employed in the post-selection. Therefore, all

neutrons with up-spins and specific phase relations between the
paths and arbitrary energy are selected to propagate towards the
detector. We choose to attribute both phase shifts to the post-
selection rather than the preparation; both approaches are
equivalent. The post-selected intensity f jih ij j2 only has a single
non-zero contribution, coming from path II, while the compo-
nents from the other paths in the initial state ij i are orthogonal to
fj i such that their contributions to the post-selected intensity are
zero. Consequently, given the pre-selection, only the component
of the sub-beam through path II is post-selected. We will
therefore refer to path II as the reference beam in our experiment.
The other paths I and III can contribute to the post-selected
intensity, however, when additional weak interactions are applied
as described in the next paragraph. In contrast to the generalised
proposal by Pan23 (see the section ”Discussion”), our post-
selection is not energy selective. Nonetheless, our setup exhibits
the same effects in the limit of small interaction strengths as
clarified in the section “Discussion”.

In the weak interaction stage between pre- and post-selection,
we apply a weak DC or RF spin rotation, or a beam attenuation.
(For the reference measurements, all weak interactions are turned
off.) The interaction strengths are tuned by the DC/RF spin
rotation angles αrot ¼ π=9 ¼̂ 20�, and the absorption coefficient
A ¼ 0:1 as realised by an Indium foil of 0.125 mm thickness. The
absorption differs from the cases of DC/RF spin manipulations as
it is not a unitary operation; the conceptual implications will be
explained throughout the article. We apply only one interaction
in one beam at a time. Any of the three interactions can be
applied to any of the three paths, obtaining nine different
situations. All interactions are weak and create only small
disturbances on the initial state. By combining the results of each
single situation, one can infer the locations of each property of the
detected neutrons between pre- and post-selection in a realistic
interpretation.

The relevant matrices for the spin and energy flips in the DC
and RF cases are given by

σ̂DCx ¼ "
�� � #� ��þ #

�� � "� �� ¼ 0 1

1 0

� 	
spin

ð3Þ

and

σ̂RFx ¼ σ̂DCx � E0�� � E0

� ��þ E0

�� �
E0� ��� �

¼ 0 1

1 0

� 	
spin

� 0 1

1 0

� 	
energy

;
ð4Þ

respectively. The path projectors Π̂j ¼ j
�� � j
� �� indicate in which

path an operation or manipulation is conducted. Then the unitary

operators for spin and energy rotations Û
DC
j and Û

RF
j , with the

rotation angle αrot around the x-axis in path j, while leaving the
states in the other paths unchanged, can be expressed as (detailed
calculation in Supplementary Note 1)

Û
DC
j ðαrotÞ ¼ exp �i

αrot
2

σ̂DCx Π̂j


 �
¼1� 1� cos

αrot
2


 �
 �
Π̂j � i sin

αrot
2


 �
σ̂DCx Π̂j and

Û
RF
j ðαrotÞ ¼ exp �i

αrot
2

σ̂RFx Π̂j


 �
¼1� 1� cos

αrot
2


 �
 �
Π̂j � i sin

αrot
2


 �
σ̂RFx Π̂j:

ð5Þ
The x-direction is always defined by the beam direction in the
respective section of the setup (see the section “Adjustment
Procedure” for further explanation). Equation (5) indicates that
the DC (RF) spin rotation reduces the amplitude of the original

I II

III

Pre-selection Weak interaction Post-selection

PS1

Supermirror

Detector

O-beam

H-beam

z
PS2

  DC         Abs       RF

Fig. 2 Setup of the neutron interferometer experiment downstream of
monochromator and polariser. An incoming neutron beam which is
polarised in +z-direction (red arrows) is split into three paths inside a
perfect-crystal interferometer. All sub-beams are recombined and the
neutrons in the outgoing O-beam are detected. The experiment consists of
three stages: first, the pre-selection or preparation stage (turquoise) where
direct-current (DC) and radio-frequency (RF) spin manipulators flip the
local spin vectors to the downward orientation (blue arrows) and produce
three pairwise orthogonal sub-beams, cf. Section “Scheme and Theory” and
Eq. (1). Second, the weak interaction stage (green) where one of three
interactions, i.e. beam attenuation/absorption (abs) as well as DC and RF
spin rotations, can be applied weakly in one of the three paths. Finally, the
analysis or post-selection (orange) where the phase shifters (PS) 1 and 2
determine the phases χ1, χ2, cf. Eq. (2). At the recombination of the sub-
beams and at the supermirror, respectively, the post-selection projects the
incoming state onto a specific phase relation between the sub-beams in the
O-beam and onto the up spin state. Since for the given pre- and post-
selection of Eqs. (1) and (2) only the amplitude through path II is accepted
by the post-selection, path II is referred to as the reference beam.
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spin component (spin/energy component) in the corresponding
path j from 1 to cosðαrot=2Þ and creates a spin-flipped (spin/
energy-flipped) component of amplitude �i sinðαrot=2Þ. In the
limit of small αrot; sinðαrot=2Þ is linear in αrot/2, while the change
of the original component, 1� cosðαrot=2Þ, is smaller, propor-
tional to α2rot=8.

The operator Â
Abs
j ðAÞ for a weak absorption is written as

Â
Abs
j ðAÞ ¼ 1� ð1�

ffiffiffiffiffiffiffiffiffiffiffiffi
1�A

p
ÞΠ̂j: ð6Þ

It simply describes an attenuation in path j while all other paths
are undisturbed.

To define post-selected states which are discriminated in their
energy degrees of freedom, we introduce two ancillary states

f0
�� � ¼ fj i E0

�� �
and f 0

�� � ¼ fj i E0�� � ð7Þ
and define the weak value33–37 for the hypothetical energy
selection of E0

�� �
as

Ô
� �E0

w ¼ f 0
� ��Ô ij i
f 0ji
� � : ð8Þ

As we will see shortly, the weak values of the operators
σ̂DCx Π̂j; Π̂j and σ̂RFx Π̂j, where j denotes the path, describe our

results. The operator σ̂DCx Π̂j represents the x-component of the

spin in path j, while the operator σ̂RFx Π̂j is the x-component of the
energy observable in path j which is associated with flipping in
the energy system. The calculation of their weak values is
straightforward for the initial and final states given in Eqs. (1) and
(2) and yields

σ̂DCx Π̂j

D EE0
w

¼δj;Ie
2iχ1 ;

Π̂j

D EE0
w

¼δj;II; and

σ̂RFx Π̂j

D EE0
w

¼δj;IIIe
2iχ2 :

ð9Þ

The Kronecker delta δi,j yields the modulus of the respective
weak value. Quantifying the location of properties in the realistic
interpretation through the weak values, a modulus of an
operator’s weak value of 1, which is one of the operator’s
eigenvalues, is attributed to finding the corresponding property in
the considered path. A modulus of the weak value of zero
excludes finding the property in that path.

With these expressions, the time-averaged intensity I in the
post-selected output port of the interferometer, with a weak DC
spin rotation applied (DC case) in path j, is written as (details in
Supplementary Note 1)

IDCj ðχ1Þ ¼ f jÛDC
j ðαrotÞji

D E��� ���2
¼ f jih ij j2 1þ αrotIm σ̂DCx Π̂j

D EE0
w

� �

þ α2rot
4

f 0
� ��σ̂DCx Π̂j ij i
��� ���2

f jih ij j2 þ
f 0
� ��σ̂DCx Π̂j ij i
��� ���2

f jih ij j2

0
B@

1
CA

� α2rot
4

Re Π̂j

D EE0
w

� 
þOðα3rotÞ

�

¼ 1
9

1þ αrotδj;I sinð2χ1Þ þ
α2rot
4

δj;I � δj;II þ δj;III


 �� �
þOðα3rotÞ:

ð10Þ
The second and third lines describe the intensity in terms of weak
values and terms closely resembling them. The last line gives the
expected intensity in terms of phase shifter orientation and
chosen path number. An intensity oscillation with an amplitude

of order αrot emerges under the condition of the Kronecker delta
δj,I, which still gives the modulus of the respective weak value.
This condition is met when the weak DC spin rotation is applied
in path I. Then, part of the prepared down spin state, which is
orthogonal to the reference state, is inverted to the up spin state,
which is parallel to the reference state. The down-component is
filtered out by the supermirror of the post-selection and the up-
component is transmitted to the detector. Simultaneous to the
emergence of the intensity oscillation, the mean intensity is
increased by the additional parallel component with order α2rot as
also pointed out in12. The same mean intensity increase is
expected from a weak DC spin rotation in the RF-flipped path III
because the same up spin component is created which is
transmitted through the supermirror. No intensity oscillation
due to the differing energies is observable, though, in our time-
integrating detection mode. In contrast, by applying the weak DC
spin rotation in path II, the portion of the reference beam
accepted by the supermirror is decreased with order α2rot. For
small αrot, the first order term is dominant and the reactions to a
weak DC spin rotation on the intensity in path I are conspicuous.

A similar result can be derived assuming a weak RF spin
rotation (RF case) applied in path j:

IRFj ðχ2Þ ¼ f jÛRF
j ðαrotÞji

D E��� ���2
¼ f jih ij j2 1þ αrotIm σ̂RFx Π̂j

D EE0
w

� �

þ α2rot
4

f 0
� ��σ̂RFx Π̂j ij i
��� ���2

f jih ij j2 þ
f 0
� ��σ̂RFx Π̂j ij i
��� ���2

f jih ij j2

0
B@

1
CA

� α2rot
4

Re Π̂j

D EE0
w

� 
þO α3rot

� ��

¼ 1
9

1þ αrotδj;III sinð2χ2Þ þ
α2rot
4

δj;I � δj;II þ δj;III


 �� �
þOðα3rotÞ:

ð11Þ
The results in the DC and RF cases are similar up to the exchange
of δj,I, δj,III, and χ1 in the DC case, respectively, for δj,III, δj,I, and χ2
in the RF case.

In the third case of an added weak absorber (absorber case), the
intensity I is described as (details in Supplementary Note 1)

IAbsj ¼ f jÂAbs
j ðAÞji

D E��� ���2
¼ f jih ij j2 1�A Π̂j

D EE0
w

� �
¼ 1
9

1�A δj;II

h i
:

ð12Þ

As a result, only an attenuation of the sub-beam in path II with
its prepared up spin state will be registered after the post-selection
at the detector in the O-beam.

Experimental data. The preparation is implemented by a DC flip
in path I and an RF flip in path III. The measured interferograms
(IFGs), depicted in Fig. 3, will be called preparational IFGs. The
fit function for the time-averaged intensity of all IFGs is of the
form

IðχÞ ¼ I0 þ B sinðωχ þ φÞ; ð13Þ
with the mean intensity offset I0 and an intensity oscillation with
amplitude B, angular velocity ω, the phase shifter orientation χ,
and the phase offset φ. The preparational IFGs characterise the
orthogonality of the initial sub-states and are a reference for the
quantitative data analysis. Phase shifts are implemented in all
three paths, resulting in the three columns of Fig. 3. In addition,
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three different experimental settings for the initial state, used for
different reference measurements as described in the section
“Adjustment Procedure”, were realised, giving rise to the three
rows in Fig. 3. The obtained contrast values, specified in Table 1,
quantify the quality of the preparation. We will refer to the fol-
lowing 3 × 3 arrays of IFGs or numbers as matrices and to their
diagonal, off-diagonal, and anti-diagonal elements as in a normal
square matrix.

Finally, when separately applying one of the three weak
interactions in one of the three sub-beams, the nine IFGs
presented in Fig. 4 were recorded, which will be called weak-
interaction IFGs. When comparing the weak-interaction IFGs of
Fig. 4 with the preparational IFGs of Fig. 3, conspicuous reactions
appear in the coloured diagonal elements of Fig. 4 where either
significant intensity oscillations or a significant drop in count rate
is produced. Weak values are extracted for all nine situations by
comparing the measured IFGs of Figs. 3 and 4 with the

predictions from Eqs. (10), (11), and (12) in the limit of small
interaction strengths. The detailed data analysis is given in the
section “Extraction of Weak Values”. The results are presented in
Fig. 5 and Table 2 and approximate the ideal identity matrix given
by Eq. (9).

Discussion. To analyse the emergence of the qCC mathemati-
cally, we compare our experiment with the generalized N-path
qCC described by Pan23. The generalised case considers N paths
(indexed as j) and N− 1 properties of two level systems (indexed
as p). The two basis vectors in each Hilbert space of a property
will be denoted as 1 and 0. The state vector entering the inter-
ferometer is assumed as 1; 1; 1; :::j i. The sub-states in each path
are prepared to be mutually orthogonal by flipping the respective
state vector of property p in path j= p+ 1. (Roman numerals
indicating paths will henceforth appear in equations together with
Arabic numerals indicating properties.) The according pre-
selection iN

�� � is denoted as

iN
�� � ¼ 1ffiffiffiffi

N
p Ij i 1; 1; 1; :::j i þ IIj i 0; 1; 1; :::j i þ :::þ Nj i 1; :::1; 0j i½ �:

ð14Þ
The according post-selected state fN

�� �
which is dependent on

the phases χj of the phase shifters in path j is chosen as

fN
�� � ¼ 1ffiffiffiffi

N
p eiχ1 Ij i þ eiχ2 IIj i þ :::þ eiχN Nj i� �

1; 1; 1; :::j i: ð15Þ

Please note that there is an analysis in the post-selection for each
property p realised by a respective inner product with the post-
selected state fN

�� �
. Similarly to the previous three-path

consideration, the post-selected intensity fNjiN
� ��� ��2 between

pre- and post-selection has only a single non-zero contribution,
coming from the component of path I, while the components
from the other paths in the initial state iN

�� � are orthogonal to
fN
�� �

such that their contributions to the post-selected intensity
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Fig. 3 Interferograms and their fits with preparation applied. The blue dots indicate the intensities detected in the O-beam normalised by mean
intensities plotted against phase shifts induced in the path specified at the bottom. The integration time per point is 90 s with a mean count rate of about
15/s. The blue statistical error bars indicate one standard deviation. The three rows of interferograms in the figure are obtained with different
configurations for the preparation (prep) for the direct-current (DC), absorber (abs), and radio-frequency (RF) case as written to the left, which are used
for different further reference measurements (see the section “Adjustment Procedure”for further explanation). Contrasts are extracted from sinusoidal fits
plotted as solid blue lines. The low contrasts ≤4%, given in Table 1, imply a good preparational quality, i.e. a high degree of orthogonality between the sub-
beams.

Table 1 Contrasts of fitted interferograms in Fig. 3 with
preparations applied for the three different weak
interactions but without the weak interactions themselves.

Contrasts with preparation

Preparation for
weak
interaction

Phase shift in path

I II III

DC 1:7%±0:9% stat
±4% sys 2.8%±0:9% stat

±4% sys 1.3%± 1:1% stat
±4% sys

Abs 0.8%±0:7% stat
±4% sys 2.7%±0:9% stat

±4% sys 0.3%±0:6% stat
±4% sys

RF 3.8%± 1:1% stat
±4% sys 2.3%±0:6% stat

±4% sys 4.0%±0:6% stat
±4% sys

The statistical errors (stat) given indicate one standard deviation. The systematic errors (sys)
are estimated in the section “Extraction of Weak Values”. The three rows are obtained with
different configurations for the preparation as written to the left which are used for different
further reference measurements (see the section “Adjustment Procedure”). The values in
contrast quantify the quality of the preparation.
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are zero. This means that, given the pre-selection, only the
component of the sub-beam through path I is post-selected. We
will therefore refer to path I as the reference beam and all others
as non-reference beams in the generalised case. The operator for a

manipulation of property p in path j, while leaving the states in all
other sub-beams unchanged, is given by (detailed calculation in
Supplementary Note 1)

Ô
p
j ðαÞ ¼ exp �i

α

2
σ̂pxΠ̂j


 �
¼1� 1� cos

α

2


 �
Π̂j � i sin

α

2


 �
σ̂pxΠ̂j:

ð16Þ

The weak values of the operators σ̂pxΠ̂j are written as

σ̂pxΠ̂j

D E
w
¼ δj;pþ1e

iðχ1�χjÞ; ð17Þ

and the path weak values are written as

Π̂j

D E
w
¼ δj;1: ð18Þ

In addition to the N− 1 properties indexed as p, the “zeroth”
property of the generalised case would be the particle behaviour
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Fig. 4 Interferograms and their fits with preparation and weak interactions applied. In each row, a different weak interactions is applied, i.e., the direct-
current (DC), absorber, and radio-frequency (RF) cases as labelled to the left. The blue dots indicate the intensities recorded in the O-beam, normalised by
mean intensities of corresponding preparational interferograms of Fig. 3, plotted against phase shifts induced in the path specified at the bottom. The blue
statistical error bars indicate one standard deviation, solid blue curves are fits. The most noticeable reactions compared to the preparational interferograms
of Fig. 3 are found in the diagonal elements, coloured in light red. The off-diagonal elements (shown with white background) exhibit only inconspicuous
reactions. The symbols in the upper right corners indicate different kinds of situations described in the section “Discussion”.
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Fig. 5 Weak values presented graphically. Graphical presentation of the
weak values of the x spin component, path operator, and energy transition
operator of each path as presented numerically in Table 2. The light red
bars give the moduli of the relevant weak values extracted from
interferograms in Figs. 3 and 4 for each path j. The black statistical error
bars indicate one standard deviation. The green systematic error bars are
estimated in the section “Extraction of Weak Values”. For the path weak
values Π̂j

� �E0
w

of the absorber measurements, not the modulus but the weak
value itself is given. Blue crosses indicate the ideal theoretical moduli of
weak values which compose an identity matrix.

Table 2 Numerical presentation of the weak values of the x
spin component, path operator, and energy transition
operator of each path as presented graphically in Fig. 5.

Weak values

Path

Weak
value

I II III ∑I,II,III

σ̂DCx Π̂j

� �E0
w

��� ��� 0.90±0:10 stat
±0:04 sys 0.17±0:07 stat

±0:04 sys 0.00±0:08 stat
±0:04 sys 1.07±0:15 stat

±0:07 sys

Π̂j

� �E0
w

0.07±0:08 stat
±0:04 sys 0.85±0:12 stat

±0:04 sys 0.09±0:07 stat
±0:04 sys 1.01±0:16 stat±0:07 sys

σ̂RFx Π̂j

� �E0
w

��� ��� 0.09±0:07 stat
±0:04 sys 0.03±0:05 stat

±0:04 sys 0.75±0:07 stat
±0:20 sys 0.87±0:11 stat

±0:20 sys

∑DC,Abs,RF 1.06±0:15 stat
±0:04 sys 1.05±0:15 stat

±0:07 sys 0.84±0:13 stat
±0:20 sys –

The statistical errors (stat) given indicate one standard deviation. The systematic errors (sys)
are estimated in the section “Extraction of Weak Values”. While the modulus of the weak values
is extracted for the spin and energy observables, the path weak values are extracted directly.
The sums of the weak values in each row and column are given at the bottom and right,
respectively.
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in path I such that a beam attenuation only causes a linear
reaction of the mean intensity in path I. This is analogous to Eq.
(12) of the three-path consideration.

It follows in an exact calculation (details in Supplementary
Note 1), without regarding the limit of small α, that the time-
independent intensity behaves as

Ipj ðαÞ ¼
���DfN���Ôp

j ðαÞ
���iNE���2

¼
���DfNjiNE���2h1þ 2 sin


 α
2

�
Im
nD

σ̂pxΠ̂j

E
w

o
þ sin2


 α
2

����Dσ̂pxΠ̂j

E
w

���2 � sin2

 α
2

�D
Π̂j

E
w

i

¼
��� 1
N

e�iχ1
zffl}|ffl{phase of path I;

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
term 1

� 1� cos
α

2


 � 1
N

e�iχ1
zffl}|ffl{path I;

δj;1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
term 2

� i sin

 α
2

� 1
N
e�iχj
z}|{path j

δj;pþ1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
term 3

���2

¼ 1
N2 1þ 2δj;pþ1sin

α
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 �
sin χ1 � χj


 �
þ δj;pþ1sin

2 α

2


 �
� δj;1sin

2 α
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 �h i
:

ð19Þ
This expresses the intensity through the related measures of weak
values, amplitudes, and experimental parameters. The first line
states that the intensity is determined by the inner product
between the post-selected state fN

�� �
and the state unitarily rotated

by Ô
p
j ðαÞ from the initial state iN

�� �. The second line gives the
intensity in terms of weak values for given interaction strength α.
The weak values are multiplied with sine functions which depend
on α. It follows by expanding the intensity for small α that the
weak values appear in every order of α. Even though weak values
were introduced as low order approximations33, they are the
expansion coefficients in the Taylor series38,39 and describe the
intensity for arbitrary interaction strengths α. In the third line, the
intensity is expressed as the absolute squared of amplitudes from
different paths; term 1 is the amplitude from the reference state in
path I which is reduced by term 2 if the condition δj,1= 1, or
j= 1, is met. This means any weak interaction implemented in
the reference beam will reduce its post-selected component
through the inner product in the first line. Term 3 is the
amplitude of a non-reference beam in path j which is produced if
δj,p+1= 1, or j= p+ 1. The last line gives the intensity dependent
on the experimental parameters of the interaction strength α and
the phases χ1, χj. The intensity oscillation proportional to sinðχ1 �
χjÞ is the cross-term between the amplitudes of terms 1 and 3 in
the third line. The third and fourth terms in the last line are mean
intensity changes which are conditioned through the Kronecker
deltas δj,p+1 and δj,1. The data is analysed for second-order
intensity changes in the section “Experimental Resources”.

We will go into detail now regarding the first line of Eq. (19)
where the intensity is obtained by considering a rotation of the
initial state iN

�� � and the inner product with the final state fN
�� �

.
Therefore, the inner product in Hilbert space between the vectors
of the post-selected state and the intermediate state before post-
selection is essential. Any changes in the intensity compared to
the preparational IFGs are a reaction to a weak interaction. As the
weak interactions are unitary and the calculated intensity involves
the inner product with fN

�� �
, the reactions are expressed by

sinusoidal functions in the last line of Eq. (19). By regarding the
parallel and orthogonal components to the post-selected state, we
can identify three different kinds of situations:

The first kind of situation arises when a weak interaction is applied
to a non-reference beam. Let us consider a perturbation rotating the
sub-state of a non-reference beam and thereby generating a state
component that is parallel to the post-selected state. This is equivalent
to inverting a fraction of the sub-state from the orthogonal to the
parallel component. Due to the behaviour given in Eqs. (5) and (16),

in the limits of αrot and α becoming zero, the magnitude of the
following reaction of the intensity is linear in the interaction strength
α. We denote these situations where the intensity has a linear
dependence on the interaction strength as sensitive. The large
reaction is identified with the behaviour proportional to 2 sinðα=2Þ
given in Eq. (19) for the exact calculation and, in the limit of αrot
becoming zero, with the term proportional to αrot in Eqs. (10) and
(11). At the same time, the parallel component causes an increased
intensity proportional to þsin2ðα=2Þ in Eq. (19) and proportional to
þα2rot in Eqs. (10) and (11).

The second kind of situation arises if any rotation is applied to
the reference beam. Then the amplitude of the post-selected
component is reduced. However, in comparison to the first kind
of situation, it is only a small reaction proportional to �sin2ðα=2Þ
in Eq. (19) and proportional to �α2rot in Eqs. (10) and (11). We
denote these situations with a dependence of the intensity to the
interaction strength of only quadratic of higher order as robust.

The third kind of situation concerns the states of the non-
reference beams again, now in combination with unitary rotations
which do not produce a post-selected component. Any reaction of
the intensity is excluded by the Kronecker deltas and we conclude
that in these situations the intensity is independent of the
interaction strength. We denote these situations as indifferent to
the respective unitary rotations.

To first order, the intensity dependencies on the weak
interaction strengths are the same in the generalised and our
experimental case. The large first order reactions are seen in the
diagonal elements in the weak-interaction IFGs of Fig. 4, which
are marked with asterisks (*) in the upper right corners of the
graphs. In the same figure, second order reductions in the mean
intensities compared to the preparational IFGs are expected to
appear in the upper and lower IFGs of the middle column. The
small reactions are due to the robustness of the reference beam
with respect to rotations which is indicated with crosses ( × ). The
differences between the general and our three-path case can be
seen in the corner elements of the anti-diagonal in Fig. 4: in the
generalised case, these elements should behave indifferently.
However, without energy projection in our post-selection, we
expect an increase in intensity proportional to þα2rot. This is
caused by the up spin components created by the weak
interactions that produce additional counts without time-
independent interference (explained in second paragraph of the
section “Results”). Additionally, the left and right IFGs in the
absorber case in Fig. 4 are indifferent in accordance with Eq. (12),
as indicated with dashes (–). These situations do not involve
rotations, however, and concern the location of the particle which
is not explicitly regarded as a property by Pan.

Finally, we consider the weak values again. According to the
considerations on the inner product between the state vectors, if
the modulus of a weak value is zero, the intensity does not have a
linear dependence on the interaction strength α. Then, the
intensity is either robust or indifferent to the weak interaction in
the considered path. If the modulus of a weak value is 1, it
identifies a combination of path and weak interaction in which
the intensity is sensitive to the weak interaction.

The sensitive behaviour is an interference effect emerging
through the cross-term of amplitudes between the sub-beams I
and j proportional to sinðχ1 � χjÞ, cf. Eqs. (19) and (S.6) in
Supplementary Note 1. The magnitude of the cross-term is linear
in α for small interaction strengths. Therefore, the cross-term
describes the conspicuous reactions of the intensity. Because the
cross-term involves two paths, it offers an interpretation of
delocalisation of properties in the interferometer40.

An alternative interpretation proposed by Aharonov et al.10 is
inspired by realism and quantifies the location of a property in a
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path through the weak values. A weak value of 1 is attributed to
finding the property in that path; a value of zero excludes finding
the property in that path. We identify these values with the
modulus of the weak values in the present experiment which is
equivalent for phase shifter positions χ1= χ2= 0. According to
the latter interpretation, with the present results of Fig. 5 and
Table 2, the neutron’s x spin component is in path I, the particle
in path II, and a third degree of freedom in path III which only
reacts to a coupled spin-energy manipulation. This third degree
of freedom is strongly connected to the neutron’s x component of
the energy qubit in path III and we identify this as the energy
degree of freedom; a spatial separation of the neutron’s properties
inside the interferometer is observed.

But how is the interpretation of separated properties
compatible with the pre-selected state ij i of Eq. (1) where a
specific value for spin and energy is attributed to each sub-state?
Initially, the neutron is distributed equally over all three paths,
indicated by the expectation value

�
ijΠ̂jji

� ¼ 1=3 for all paths.
While we have so far considered only one particular final state,
one could in principle also monitor all possible final states
denoted by fm

�� �
, where m is an index over all combinations of

exit beam, spin state and energy state. This set of states is
orthonormal and complete and we can express any expectation
value as a weighted average over the weak values41,42. The
expectation value of the path projector then reads

ijΠ̂jji
D E

¼∑
m

ijfm
� �

fmjΠ̂jji
D E

¼∑
m
pm fmjΠ̂jji
D E

= fmji
� �

¼∑
m
pm Π̂j

D E
w;m

ð20Þ

where pm denotes the probability for a given ij i of reaching the
final state fm

�� �
. Therefore, if we do not observe any intensity

change when applying a weak beam attenuation in path I, it
doesn’t exclude a non-zero component to the state vector in that
path. But it means that the component only contributes to
intensities in other exit channels. However, for all neutrons that
did reach our final state we can retrospectively say that these
neutrons never were in path I.

As for the spin degree of freedom (likewise for the energy), the
expectation value of the joint operator σ̂DCx Π̂j yields the
x-component of the spin in path j. For our initial state, this

value becomes zero in all paths, ijσ̂DCx Π̂jji
D E

¼ 0, because the

spin in each path is prepared in the ± z directions and therefore
has equal probabilities in ± x directions12. Nevertheless, the weak
value associated with our post-selected final state σ̂DCx Π̂I

� �
w ¼

e2iχ1 does not become zero, cf. Eq. (9). The expectation value of
zero results from the compensation by a similar weak value with
opposite sign in another output port of the interferometer, which
is in our setup the down spin component in the side exit of the
front loop. (The front loop is encircled by sub-beams I and II.)
The opposite sign results from the phase shift of π which always
appears between the two output ports of an interferometer loop.

Only for weak beam attenuations, both considered interpreta-
tions agree that the weak values give the locations in the
interferometer of the neutrons found in our output port fj i. For
the weak interactions with spin and energy, the interference effect
allows for the conservative interpretation of a delocalisation of
properties.

All weak interactions applied in our experiment cause similar
reactions locally – in the respective path. But it is the inner
product of the weakly manipulated state with the post-selected
state which can generate a post-selected amplitude. In turn, this

amplitude constitutes a cross-term in the intensity linear to the
interaction strength. Only for distinct pairs of paths and weak
interactions, the reactions are conspicious for a particular final
state. We suggest to regard the conspicious reactions to give the
effective locations. In context of the qCC, where each property is
effectively located in a different path we suggest the term effective
separation of properties. The further reaching interpretation of a
physical separation of properties is not required to describe all
observed phenomena. While we cannot decide between effective
and physical separation with the present experiment, the
realistically inspired interpretation of physically separated proper-
ties would need extraordinary evidence as verification. Therefore,
at the present moment, we do not attribute physical reality to the
interpretation of separated properties, neither for an ensemble of
nor for single neutrons themselves.

Conclusion
A three-path quantum Cheshire Cat is demonstrated in neutron
interferometry; the neutron, its spin and its energy appear to be in
different paths of the interferometer. In the experiment, a state
preparation (pre-selection) as well as a state filtration (post-
selection) are implemented. Even though the post-selection is
without energy discrimination, the quantum Cheshire Cat in the
three-path interferometer emerges as predicted by the theory. The
conspicuous reactions to the local weak interactions are used to
infer the locations of the properties of the neutron. Intensity
oscillations emerge when a weak spin or energy manipulation is
applied, while the intensity is reduced for the weak beam
attenuation applied. These reactions are observed only for a
particular interaction for each path. Taking a realistic viewpoint,
one may conclude that the neutrons propagate through the
interferometer, with the particle, energy, and the spin’s
x-component taking different paths.

However, the intensity is calculated through the inner product
of the weakly manipulated state with the post-selected state and
its absolute value squared. Only for distinct pairs of weak
interactions and paths they are applied in, a certain component
parallel to the reference state, i.e., the component originally
remaining through the post-selection, is generated. The respec-
tive generated amplitude constitutes a cross-term between the
amplitude of the weakly evolved sub-beam and the reference
state. The cross-term gives rise to a conspicuous interference
effect which in turn suggests the delocalisation of properties.
This suggests the possible explanation of the effect not as phy-
sical but as effective separation of properties in the
interferometer.

Methods
Adjustment Procedure. We defined the z-axis vertically and the
x-axis by the local beam direction in each section of the inter-
ferometer. Alternatively, one could differentiate between the
orientations of the coils by explicitly defining global x- and y-axes.
This would add a phase shift to certain spin components. But
since our analysis of the data does not require a detailed justifi-
cation of the phase shift between preparational and weak inter-
action IFGs, we simply determined the phase shift from the fitting
parameters (see the section “Extraction of Weak Values”).

Each pair of sub-beams constitutes an interference loop. They
are referred to as front, rear and outer loop which are composed,
respectively, of beams I and II, beams II and III, and beams I and
III. To confirm the initial coherence of the sub-beams in the
interferometer, IFGs of the interferometer empty of any local
fields or absorbers were recorded which are depicted in Fig. 6. In
the left case of Fig. 6 only PS1 was rotated and PS2 was oriented
such that the rear loop passes on a maximum intensity in
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O-direction (see Fig. 2). Likewise, in the right case only PS2 was
rotated and PS1 was oriented such that the front loop passes on a
maximum intensity towards the last interferometer plate. In the
middle case, both PS1 and PS2 are initially oriented such that a
maximum intensity is acquired in O-direction. The IFG is then
recorded by simultaneously rotating both PS1 and PS2 to induce
a relative phase between the reference beam II and the other two
sub-beams. Contrasts ≥ 50 % were reached which indicate the
moderate level of coherence achievable with our interferometer in
the respective loops. The specific values, given in the caption of
Fig. 6, are used in the data analysis of the section “Extraction of
Weak Values” to compare the observed contrasts when applying
weak interactions.

For both DC and RF coils, the currents for a spin flip have to
be adjusted. These currents regulate the magnetic fields in x-
and z-direction of each coil. The frequency for the RF coils was
chosen to be 60 kHz. This corresponds to a resonant field of
about 20 G = 2 mT local guide field strength. A global guide
field of about 10 G was applied to allow for both RF and DC
spin rotations: while this field was compensated to a net zero z-
field in coils when applying DC rotations, it was approximately
doubled to meet the flip condition for RF rotations. This
combination minimises inhomogeneities in the fields of the
miniature spin rotators43,44. To roughly adjust and determine
the flip currents in both the DC as well as RF coils, only the
respective sub-beam was used, while all others were blocked by
beam stoppers. This composes a polarimetric setup and the
intensity was measured with varied z-field and rotation

currents. Estimates for guide field compensation (DC case)
and amplification (RF case) were determined as well as for the
currents/amplitudes Iflip for the x-fields of DC and RF flips.
After that an interferometric method was used to ensure low
initial contrasts: as spin flips produce an orthogonal state
compared to the reference beam of path II, interferograms have
minimal contrast at the flip conditions. When recording several
interferograms with slightly varied currents I applied as
described in the polarimetric case above, the resulting contrasts
should have a sharper minimum due to the behaviour
proportional to j sinðI � IflipÞj which is locally proportional to
I− Iflip. This has to be compared to the direct polarimetric
approach with its cosine behaviour of the intensity which is
locally proportional to ðI � IflipÞ2 at its differentiable minimum.

A typical adjustment scan is depicted in Fig. 7 where the
contrast is found the lowest at 1.5 A. To both sides of that value,
the contrast is increasing at the lowest order linearly. A residual
contrast of about 3% remains which is dominant in a small
current interval at the minimum and which quantifies the
overall spin manipulation efficiency of the setup. A principal
source for reduced spin manipulation efficiencies ϵI, ϵIII in
paths I and III are the field inhomogeneities over the beam
cross-section. The systematic errors of the preparational
contrast are estimated in the section “Extraction of Weak
Values”.

The efficiencies can be estimated by assuming a pure state
but with components unaffected by the preparing DC and RF
flippers. The component ϵI is spin flipped by the DC flipper in
path I, while the remaining component stays in the reference
state. Similarly, the component ϵIII is spin-energy flipped by the
RF flipper in path III, while the remaining component stays in
the reference state. The unaffected components are still
coherent and interfere at recombination with the reference
state from path II; a residual final contrast is observed. This
reasoning can be extended to the weak measurement IFGs
where the weak interactions modify the spin manipulation
efficiencies to the values ϵ0I; ϵ

0
III and according contrast values

for the off-diagonal elements of Fig. 4.
To meet the resonance condition for spin rotations, the

external guide field is locally suppressed by a compensation field
for the weak DC rotations, while it is locally increased for the
weak RF rotations. All local fields create stray fields and switching
them on and off induces field offsets and inhomogeneities in the
adjacent coils which lower the efficiency of their spin manipula-
tions. The offsets can be compensated with our devices but the
inhomogeneities cannot.

Therefore, in the weak RF measurements, we chose to leave the
local guide field amplification permanently turned on and
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Fig. 6 Interferograms and their fits for the empty interferometer. The blue dots indicate the intensity detected in the O-beam normalised by mean
intensity plotted against phase shift induced in the path specified at the bottom. The integration time per point is 30 s with a mean count rate of about 50/
s. The blue statistical error bars indicate one standard deviation. Contrasts are extracted from the respective sinusoidal fits plotted as solid blue lines. The
contrasts from left to right of 57(1) %, 53(3) %, and 50(2) % indicate the achievable level of coherence.

Fig. 7 Coil adjustment through contrast measurements. The blue dots
indicate the contrasts recorded with a radio-frequency (RF) spin flipper in
operation and the current I for its local guide field amplification varied. The
blue statistical error bars indicate one standard deviation, solid blue curve is
the fit. Around the minimum at Iflip, the contrast has a local behaviour
proportional to ∣I− Iflip∣ and therefore a sharper minimum than with a
polarimetric approach via the intensity.
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compensate the field offset in the adjacent coils. Then only the
RF-field is turned on and off rather than both the RF and z-fields.
This technique lowers the efficiency of the manipulations through
the inhomogeneities in the preparational cases but increases the
overall efficiency when the weak interactions are applied. The
technique cannot be applied in the DC case because it would
create a zero-field region which induces depolarisation. Conse-
quently, there are different preparational adjustments applied
which ought to produce the same pre-selected state. This is the
reason why there are multiple rows of preparational IFGs and
their contrasts in Fig. 3 and Table 1.

The weak interaction IFGs were recorded in combination with
the preparational IFGs in an alternating “on”/"off” scheme, i.e. by
turning the weak interaction on and off, before moving the phase
shifter to the next orientation. This measurement protocol
ensures the comparability of phase and contrast of the “on”
and “off” IFGs which is needed in the data analysis. The IFGs
with absorbers were not recorded in an ‘on”/"off” scheme but
right after each other while ensuring stable phase relations via the
thermal control system.

Experimental Resources. For the given pre- and post-selection
of Eqs. (1) and (2), the contrast of IFGs is ideally zero. As can
be seen from Fig. 3 and Table 1, lower contrasts were achieved
in the DC and absorber cases compared to the RF case. This is
expected when implementing the technique described in the
section “Adjustment Procedure”. On the other hand, the
technique should increase the quality of the weak RF spin
rotations. However, the weak value deviating the most from the
theory is in the case of a weak RF interaction in path III where
it is obtained as 0.75 compared to the prediction of 1, cf. Fig. 5,
Table 2, and Eq. (9). As the coil for the preparational RF spin
flip in path III is close to the coil inducing the weak RF rotation
(see Fig. 2), their interaction in terms of electrical oscillating
circuits could have induced unintended additional spin
manipulations.

Again, the weak value for the RF case in path III deviates from
the theory. The deviations of all the other weak values from their
expectations are of the magnitude of their statistical errors. The
errors are of the same magnitude for all elements as the decreased
error of the amplitude for IFGs with low contrast is partly
compensated by the increased error of the phase, see Eq. (23) in
the data analysis below. Furthermore, we extract only the
modulus of the weak values for spin and energy observables.
Thus, these off-diagonal weak values cannot be distributed
symetrically around zero.

The energy changes produced with the RF coils are coupled
with spin flips in our experiment. This is in principle avoidable
when using a combination of an RF and a DC spin flipper instead.
The first one flips the energy and spin vector, while the second
one flips the spin vector back to the initial orientation. This
effectively produces an energy change without spin manipulation.

Since both spin and energy in our experiment are treated as
two-level systems, four possible combinations exist which are
orthogonal to each other. The keen reader might have noticed
that one of them, the state ";E0

�� �
, was not mentioned, yet. This

fourth state could only be produced by a combination of both a
DC spin flip and an RF spin flip as described in the previous
paragraph. This state has a particular character as it is expected to
exhibit no conspicuous reaction to any single weak interaction –
neither of DC nor RF spin rotations.

When applying the weak interactions in our experiment,
changes in the mean intensities compared to the preparational
IFGs are expected in seven of the nine situations, where the term

situation now refers to a combination of a specific weak
interaction applied in a specific path. For the weak beam
attenuations, the intensity changes directly give the path weak
values of Eqs. (9) and (12), Fig. 5, and Table 2. For the unitary
spin/energy manipulations, the mean intensity changes corre-
spond to the terms proportional to ± α2rot in Eqs. (10) and (11).
(In the exact calculation of Eq. (19), the mean intensity changes
are represented by the terms proportional to ± sin2ðα=2Þ.) In our
experiment, the intensities are expected to increase by α2rot=4 �
3% when inducing weak unitary rotations in paths I or III, while a
decrease of the same amount is expected for weak unitary
rotations induced in path II. The measured intensity changes
between the IFGs of Figs. 3 and 4 are given in Fig. 8 and Table 3.
The theoretical prediction and the experimental results show
reasonable agreement. Their comparison suffices to establish
higher order reactions which demonstrate that the intensity
changes in all three paths through the unitary weak interactions
as described in12,13. But a higher statistical precision will be
necessary to quantitatively confirm the theoretically predicted
intensity changes.

Extraction of Weak Values. Parameters in this section with
indices “empty”, “prep” and “weak” correspond to the three types
of interferograms recorded, respectively, with either no elements
in the interferometer, with the preparational DC and RF flip
applied, and an additional weak interaction applied. To read out
the signal generated by the weak interaction, we assume that, in
the case of the weak interaction IFGs, the time-independent
intensity oscillation of Eq. (13) is the sum of two independent
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Experiment 
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Path j
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I            II           III
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Fig. 8 Changes of the mean intensities presented graphically. Graphical
presentation of relative changes between mean intensities Iweak of weak
measurement interferograms (IFGs) in Fig. 4 normalised with mean
intensities Iprep of preparational IFGs in Fig. 3 for each combination of weak
interaction and path. Grey bars refer to an increase in intensity, pink ones to
a decrease. The black statistical error bars indicate one standard deviation.
Blue crosses indicate the values expected from theory. The normalised
intensities are directly given in Table 3. In the absorber case (abs)
described by Eq. (12), an intensity drop proportional to A of 10% is
expected in path II. In the direct-current (DC) and radio-frequency (RF)
cases described by Eqs. (10) and (11), intensity changes proportional to α2rot
of approximately ± 3% are expected.
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oscillations:

IweakðχÞ ¼I0;weak þ Bweak cosðωemptyχ þ φweakÞ
¼I0;weak þ Bprep cosðωemptyχ þ φprepÞ

þ Bsignal cosðωemptyχ þ φsignalÞ:
ð21Þ

Therein, the “signal” refers to the changes in the IFGs from the
preparational case to the weak interaction case. The amplitude
and phase of the signal can be retrieved by comparing
interferograms of the sets consisting of an interferogram with
only the preparation applied and an interferogram with an
additional weak interaction applied. The signal amplitude Bsignal
and its statistical error ΔBsignal follow from Eq. (21) as

Bsignal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
weak þ B2

prep � 2BweakBprep cosðφweak � φprepÞ
q

ð22Þ

and

ΔBsignal ¼
1

Bsignal
Bweak � Bprep cosðφweak � φprepÞ

 �

ΔBweak

h i2�

þ Bprep � Bweak cosðφweak � φprepÞ

 �

ΔBprep

h i2
þ BweakBprep sinðφweak � φprepÞ

 �2

ðΔφ2
weak þ Δφ2

prepÞ
�1=2

:

ð23Þ

The weak values are extracted by comparing experimental data
with the theoretical prediction. By substituting the second last
equality in Eq. (S.3) in Supplementary Note 1 into Eq. (21) and
neglecting terms of order higher than αrot, we obtain

f jih ij j2 1þ CemptyαrotIm σ̂DCx Π̂
� �E0

w

n oh i
¼I0;weak þ Bprep cosðωemptyχ þ φprepÞ

þ Bsignal cosðωemptyχ þ φsignalÞ:
ð24Þ

This includes the correction considering the maximum experi-
mental contrast Cempty of the empty interferometer given through
the fits in Fig. 6. The index j of the path where the rotation is
implemented is omitted here. We can drop the oscillation
proportional to Bprep already present in the preparational IFGs as
it is an experimental imperfection and does not represent the
behaviour described by weak values. It is however included
through the error propagation of Eq. (23). Furthermore, we can
insert f jih ij j2 ¼ I0;prep � I0;weak. In this context, it is important to
discern between the phase χ0 of the wave function and the phase
shifter position χ that are related via χ0 ¼ ωemptyχ þ const: such

Table 4 Origins of systematic errors and their estimated consequences on the preparational contrast of Fig. 3/Table 1 and weak
values of Fig. 5 and Table 2.

Estimation of systematic errors

origin of systematic expressed as systematic error on

measure quantity prep. contrast weak value

thermal stability contrast ΔC≤ ± 0.02 < 0.01 < 0.01
phase stability Δφ≤ ± 1∘/hour – < 0.01

current adjustment spin rotation angle Δα≤ ± 0. 5∘ < 0.01 ≤ 0.025
eddy currents in Indium foil (weak Abs) spin rotation angle Δα≤ ± 0. 5∘ – ≤ 0.025
mutual current induction between coils (weak RF path
III)

spin rotation angle Δα≤ ± 4∘ – ≤ 0.20

monochromaticity wavelength distribution δλ/λ0≤0.02 ≤ 0.02 < 0.01 (corrected for)
⇕
ϵ≥0.98

field inhomogeneity spin manipulation efficiency ϵ≥0.9 ≤ 0.03 < 0.01 (corrected for)
spin polarisation degree of polarisation P > 99% < 0.01 < 0.01 (corrected for)
total systematic error ≤ 0.04 ≤ 0.20 (weak RF path III)

≤ 0.04 (other cases)

The highest systematic error is expected when applying a weak RF spin rotation in path III where an RF spin flip is conducted for preparation. The interaction between these coils produces unintended
consequences as described in the section “Experimental Resources”.

Table 3 Numerical mean intensities of weak measurement
IFGs in Fig. 4 normalised with mean intensities of
preparational IFGs in Fig. 3 for each combination of weak
interaction and path as presented graphically through
relative intensity changes in Fig. 8.

Relative intensities

weak interaction path

I II III

DC 1.02(1) 0.99(1) 1.01(1)
Abs 0.99(1) 0.92(1) 0.99(1)
RF 1.02(1) 0.99(1) 1.05(1)

The statistical errors given indicate one standard deviation. In the case of a weak absorber,
solely a 10% decrease is expected in path II, while the other paths are expected to be unaffected.
In the DC and RF cases, reactions proportional to α2rot are expected to change the mean
intensities according to Eqs. (10) and (11) by approximately ± 3%.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01494-5 ARTICLE

COMMUNICATIONS PHYSICS |            (2024) 7:14 | https://doi.org/10.1038/s42005-023-01494-5 |www.nature.com/commsphys 11

www.nature.com/commsphys
www.nature.com/commsphys


that ωemptyχ þ φsignal ¼ χ0 þ φ0
signal. It follows that

I0;prep 1þ CemptyαrotIm σ̂DCx Π̂
� �E0

w

n oh i
¼I0;weak þ Bsignal cosðχ0 þ φ0

signalÞ;

1þ CemptyαrotIm σ̂DCx Π̂
� �E0

w

n o
¼ I0;weak

I0;prep
þ Bsignal

I0;prep
cosðχ0 þ φ0

signalÞ;

CemptyαrotIm σ̂DCx Π̂
� �E0

w

n o
�Bsignal

I0;prep
cosðχ0 þ φ0

signalÞ;

Im σ̂DCx Π̂
� �E0

w

n o
cosðχ0 þ φ0

signalÞ
�

Bsignal

I0;prep

Cemptyαrot
; 8 χ0 2 R:

ð25Þ
Since this relation must hold for all χ0, the imaginary part of the
weak value must be sinusoidal as obtained in Eq. (9).
Furthermore, the cosine function and the imaginary part of the
weak value must have the same frequency and be in phase. The
weak values of Eq. (9) all have constant moduli and we also
assume this to hold for all extracted weak values. Thus we finally
obtain in first order of αrot the measured modulus of the weak
value

σ̂DCx Π̂
� �E0

w

��� ��� ¼ Bsignal
I0;prep

Cemptyαrot
; ð26Þ

and its statistical error

Δ σ̂DCx Π̂
� �E0

w

��� ��� ¼ Bsignal

I0;prepCemptyαrot

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔBsignal

Bsignal


 �2
þ ΔI0;prep

I0;prep


 �2
þ ΔCempty

Cempty


 �2
þ Δαrot

αrot


 �2r
:

ð27Þ
The same steps lead to a similar result for the RF case. For the
case of weak absorption, we measured the absorption coefficient
of the Indium foil with a single interferometer path as

A ¼ 1� 0:90ð1Þ ¼ 0:10ð1Þ: ð28Þ
We substitute the second last line in Eq. (S.4) in Supplementary

Note 1 into Eq. (21) such that

f jih ij j2 1� Π̂
� �E0

w A
h i

¼I0;weak þ Aprep cosðωemptyχ þ φprepÞ
þ Asignal cosðωemptyχ þ φsignalÞ:

ð29Þ
The index j of the path where the absorption is implemented is
omitted again. Both oscillations can be neglected as they neither
describe a reaction to the weak absorption nor change the mean
intensity. With similar steps as for the DC case we calculate

f jih ij j2 1� Π̂
� �E0

w A
h i

¼I0;weak

I0;prep 1� Π̂
� �E0

w A
h i

¼I0;weak

1� Π̂
� �E0

w A;¼ I0;weak
I0;prep

Π̂
� �E0

w A ¼1� I0;weak
I0;prep

Π̂
� �E0

w ¼Aw

A ;

ð30Þ

with the effective absorption coefficient Aw in the path of the
interferometer where the absorber is inserted written as

Aw ¼ 1� I0;weak
I0;prep

: ð31Þ

The propagated statistical error of the path weak value is given by

Δ Π̂
� �E0

w ¼ 1
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� I0;weak

I0;prep

 !
ΔA
A

" #2
þ I0;weak

ΔI0;prep
I20;prep

 !2

þ ΔI0;weak
I0;prep

 !2
vuut :

ð32Þ
An estimation of the upper boundaries of systematic errors is

given in Table 4.

Data availability
The data that support the findings of this study are available at https://doi.org/10.5291/
ILL-DATA.CRG-2880.
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