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Collective variable model for the dynamics of liquid
crystal skyrmions
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Liquid crystal skyrmions are topologically protected spatially-localized distortions of the

director field which exhibit particle-like properties including translational motion in oscillating

electric fields. Here, we develop a collective variable model of the skyrmion dynamics,

extending the approach of Long and Selinger proposed earlier for one dimensional systems.

The model relates the skyrmion motion to a complex dynamics of the width of the twist wall

around the skyrmion core. The width evolves in a non-reciprocal way, quantifying squirming

deformations of the high twist region within on and off states of the field. We analyze in

details the average skyrmion velocity as a function of the frequency and strength of the field

as well as its duty cycle. The model predictions agrees qualitatively with experiments and

results of numerical minimization of the Frank-Oseen model. Our results provide insights into

the conditions necessary to observe velocity reversal as a function of the field parameters.
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Topological solitons emerge in nonlinear field theories as
spatially localized and topology-stabilized configurations1.
Examples include kink or antikink solutions of the ϕ4

model2, Skyrme solitons (skyrmions) in nuclear physics3, vortex-
like spin configurations known as magnetic skyrmions in con-
densed matter systems4–9, as well as torons, hopfions, and baby
skyrmions in confined chiral liquid crystals (LCs)10–22. From the
fundamental science point of view, solitons exhibit particle-like
behavior and have been proposed as a model of the nucleon3.
From a practical standpoint, magnetic skyrmions can be moved
by using weak electric currents23, which opens an avenue to
exploit magnetic skyrmions in spintronic applications, e.g., in
racetrack memory devices24.

LC skyrmions can also be brought into controlled directional
motion in oscillating electric fields12,13. Numerical minimization
of the Frank-Oseen elastic free energy12 has uncovered the basic
physical mechanism of skyrmion translation, which is related to
the non-reciprocal relaxation dynamics of the chiral director field
in time-modulated electric fields. More specifically, the boundary
of a region with the high director twist undergoes deformations
that resemble squirming surface waves of biological micro-
organisms undergoing self-propulsion. Contrary to micro-
swimmers, however, the squirming motion of skyrmions is not
related/accompanied to/by LC material flows and is purely due to
the reorientation dynamics of the director field. In the present
work, we provide a quantitative measure of these squirming
undulations of the high twist regions, in terms of the thickness of
the twist wall around the skyrmion core.

Experimental results have shown that the skyrmion velocity
sensitively depends on the frequency, strength, and duty cycle of
the pulse width modulated driving electric field. In multi-
skyrmion systems, unexpected collective behavior has been
reported experimentally including light-controlled skyrmion
interactions and self-assembly14, reconfigurable cluster forma-
tion, and formation of large-scale skyrmion crystals mediated by
out-of-equilibrium elastic interactions15. Driven LC skyrmions
offer a distinct paradigm of solitonic active particle-like structures
without mass transport12,13. The experimental setups employed
to stabilize and study active skyrmions are similar to those used in
LC display technologies25. As such, the controlled motion of a
large number of skyrmions holds potential for the development of
reconfigurable electro-optic materials26. Numerical analysis based
on minimization of the Frank-Oseen12,13 and Landau-de
Gennes18–20 free energies have successfully reproduced many
experimental results regarding the structure and dynamics of LC
skyrmions. These fine-grained approaches fully resolve the
spatio-temporal structure of the LC order parameter field and are
computationally costly, which does not allow a comprehensive
sampling of the whole space of the model parameters.

To overcome this challenge, Long and Selinger proposed a
coarse-grained model of the skyrmion dynamics22, where a few
collective variables approximately describe the skyrmion config-
uration and its response to an external field. The method was
applied to characterize the motion of one-dimensional sine-
Gordon solitons, and its extension to two-dimensional (2D)
skyrmions was outlined without detailed analysis. The method of
Long and Selinger is similar to the one used in nonlinear field
theories to construct a reduced description of soliton interactions
in terms of several relevant collective variables2,27. This method is
also similar to that employed in refs. 28–30 to study the dynamics
of magnetic skyrmions, with the only difference that in those
studies the skyrmion position was the only collective variable, i.e.,
it was assumed that the magnetic structure translates at a given
speed as a rigid body31. By contrast,22 introduced an internal
degree of freedom− the width of the twisted wall that changes as
the skyrmion moves.

Here, based on the original idea of ref. 22 we present a collective
variable model of driven motion of LC skyrmions in 2D. We
stress that in this study only full skyrmions are considered. The
developed minimal model demonstrates that the net displacement
of the skyrmion under periodic switching of the electric field on
and off is related to the complex dynamics of the width of the
twist wall around the skyrmion. The width provides a quantitative
characteristic of the high twist region and changes in a non-
reciprocal way within each on and off state of the field, resulting
in the net skyrmion displacement over one period of the electric
field. We find that the skyrmion velocity is proportional to the
time derivative of the polar angle specifying the far-field director,
which responds to the changes in the applied voltage, and the
speed is maximal just after the electric field has been turned on or
off. The analysis also demonstrates that velocity reversal with
changing the field frequency or the duty cycle is related to the
ratio of the director relaxation times during the field-on and field-
off states. The relaxation time is given by the inverse square of the
external effective field, which also includes a fictitious component
mimicking the effects of homeotropic boundary conditions in real
3D systems. We emphasize, that the approach developed here can
straightforwardly be applied to magnetic skyrmions. One just
needs to use a suitable Ansatz for the magnetization field into the
Landau-Lifshitz-Gilbert equation32 in order to derive the equa-
tions governing the evolution of the corresponding internal
degrees of freedom (Ansatz parameters) of the magnetic
skyrmion.

Results
Skyrmion Ansatz. We assume that at zero electric field, the far-
field nematic director is aligned along the z-axis, and define an
axisymmetric Ansatz for the skyrmion configuration with the
winding number equal unity as follows:

naxðr; ξÞ ¼ sin Ξðr; ξÞð Þ cos ΨðrÞð Þ
nayðr; ξÞ ¼ sin Ξðr; ξÞð Þ sin ΨðrÞð Þ
naz ðr; ξÞ ¼ cos Ξðr; ξÞð Þ;

ð1Þ

where

Ξðr; ξÞ ¼ π þ πH r � p
2

� �
exp � r � p

2

� �2
ξ2

 !
� 1

" #
ð2Þ

ΨðrÞ ¼ arctan
x � xs
y � ys

� �
þ π

2
ð3Þ

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � xsÞ2 þ ðy � ysÞ2

q
: ð4Þ

Here H is the Heaviside step function, p is the cholesteric pitch
and r is the distance from a point (x, y)T to the skyrmion center at
ðxs; ysÞT , where the superscript T denotes the transposition
operation. The parameter ξ controls the width of the twisted wall
which separates the skyrmion core of size p/2 with the vectorized
director pointing in �ẑ direction from the far-field director
aligned along ẑ. The function Ξ(r; ξ) is plotted in Fig. 1, and from
this point onwards, lengths are given in units of the cholesteric
pitch p.

In this study, we consider LCs with positive dielectric
anisotropy Δε, and thus when an external electric field is applied
perpendicular to ẑ, the skyrmion will morph to a non-symmetric
so-called bimeron33 configuration, with the far-field director
n0 ¼ ðsinΘ cosΦ; sinΘ sinΦ; cosΘÞT tilted away from ẑ. For
strong enough electric fields, n0 will be in the (x, y) plane. The
resulting bimeron configuration has no analytical representation,
therefore we resort to a simple approximation, which relies on a

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01486-5

2 COMMUNICATIONS PHYSICS |             (2024) 7:2 | https://doi.org/10.1038/s42005-023-01486-5 | www.nature.com/commsphys

www.nature.com/commsphys


uniform local rotation of the symmetric director field in Eq. (1)

nðr;Θ;Φ; ξÞ ¼ RðΘ;ΦÞnaðr; ξÞ: ð5Þ
Here. R(Θ,Φ) is the rotation matrix which transforms ẑ to n0.
Figure 2a illustrates the director configuration of the original
Ansatz in Eq. (1), and Fig. 2b, c shows the approximation (5) of
the bimeron configurations for Θ= π/4 and π/2.

One way to obtain n0 is to rotate ẑ by Θ about the axis
ð� sinΦ; cosΦ; 0Þ in the (x, y) plane. The parameterization of the
rotation matrix R, in terms of the axis and the angle, is given by
Rodrigues formula34

RðΘ;ΦÞ ¼ Iþ sinΘMðΦÞ þ ð1� cosΘÞM2ðΦÞ; ð6Þ
where I is the identity matrix and

MðΦÞ ¼
0 0 cosΦ

0 0 sinΦ

� cosΦ � sinΦ 0

2
64

3
75: ð7Þ

The rotated configuration (5) depends on the five parameters
ξ, xs, ys,Θ,Φ, and in the next section we construct equations
describing their time evolution in response to switching the
external electric field on and off.

Frank-Oseen free energy and a dissipation rate. We adopt the
one elastic constant K11= K22= K33= K approximation, and
present below all the equations in a dimensionless form, with Kp
set as the unit of energy and γp2K−1 the unit of time, where γ is
the rotational viscosity. For the unit of the electric field we useffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2K=ε0Δεp2
p

, where ε0 is the vacuum permittivity and Δε is the
dielectric anisotropy. We consider here a two-dimensional system

where the director field varies in the (x, y) plane. At zero field this
corresponds to a three-dimensional system that is translationally
invariant along the skyrmion’s symmetry axis, see Fig. 2a. This
analogy, however, does not apply to deformed configurations, as
shown in Fig. 2b, c, obtained at non-zero fields. The dimen-
sionless Frank-Oseen elastic free energy per length along z-axis
reads:

F ¼
Z

∇ � nð Þ2 þ ∇ ´nð Þ2 þ 2π n � ∇ ´n� ðE � nÞ2
2

� �
d2r: ð8Þ

The integral is over the whole plane (x, y), and the effective
electric field E= (0,−E,W)T, where E is the amplitude of the real
electric field applied in the �ŷ direction, and W accounts for
effects of the homeotropic anchoring conditions at the cell sur-
faces of a three-dimensional system. This is a standard approach
to account for boundary-induced anisotropy through an effective
bulk electric field in 2D system, see ref. 18, for a detailed dis-
cussion. We introduce the ratio m of the electric and elastic
energy in the following way

m2 ¼ ðE2 þW2Þ: ð9Þ
As we show below, m controls the relaxation time of the director
when the electric field is turned on and off.

The Rayleigh dissipation function per unit length, due to the
director reorientation, has the form22:

D ¼ 1
2

Z
dn
dt

				
				
2

d2r ¼ 1
2

Z
∂n
∂Θ

_Θþ ∂n
∂Φ

_Φþ ∂n
∂rs

� _rs þ
∂n
∂ξ

_ξ

				
				
2

d2r:

ð10Þ
Here the double vertical lines mean the absolute value of the
enclosed vector. The dynamic equations for the skyrmion
collective variables are obtained from the force balance22

∂D

∂ _Θ
þ ∂F

∂Θ
¼ 0; ð11Þ

∂D

∂ _Φ
þ ∂F

∂Φ
¼ 0; ð12Þ

∂D

∂ _ξ
þ ∂F

∂ξ
¼ 0; ð13Þ

∂D
∂ _xs

¼ 0; ð14Þ

∂D
∂ _ys

¼ 0; ð15Þ

where dots above the parameters indicate time derivatives, and
the two last equations take into account that the free energy F
does not depend on the skyrmion position ðxs; ysÞT . We fix the
reference frame such that E changes in the (y, z) plane only,
which will lead to the skyrmion motion along the x-axis. Any

Fig. 1 Polar angle of the director Ansatz for a skyrmion. Ξ(r; ξ) defined in
Eq. (2) as a function of the distance r from the skyrmion center, for two
values of the wall thickness ξ= 1 and 0.5, With increasing r the director
field rotates by π, which corresponds to a full-skyrmion.

Fig. 2 Director profile of the skyrmion Ansatz. The director field of the skyrmion configurations for Θ ¼ 0; π4 ;
π
2 a, b, and c, respectively; Φ ¼ � π

2 in all the
cases. The director field is represented by cylinders. The skyrmion core has the same alignment as the background. The wall thickness parameter is ξ= 0.7.
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initial background director will, after a short transient, reorient
and remain in the (y, z) plane, i.e., Φ will approach a constant
equal π/2 or− π/2 depending on the initial orientation. Here we
set up the system such that this value is always− π/2. As we show
below the skyrmion displacement proceeds in the direction
perpendicular to the plane in which the background director
varies, in agreement with previous experimental12 and theoretical
results22. Considering the above, in the following we consider
only Eqs. (11), (13) and (14). This system of equations is not
amenable to analytical solutions, and thus we developed a hybrid
analytico-numerical method to analyze them. The general
algebraic structure of the terms in the dissipation rate D and
the free energy F may be written as a product of two tensors

BijðΘÞ
Z

Tijðξ; rÞd2r; ð16Þ

where the summation over repeated indices is implied. Tensors
Bij depend on the far-field background parameter. They are
expressed as products RkiRkj or Rki∂Rkj/∂Θ and can be calculated
analytically. The spatially varying tensors Tji(ξ, r) depend only on
the thickness ξ of the twisted wall and have the form of products
of pairs selected from the components of na in (1), spatial
derivatives of na or its derivatives with respect to xs and ξ. The
double integrals in Eq. (16) are calculated numerically and the
resulting functions of ξ are fitted to simple expressions as detailed
in Methods below.

We assume that the dynamics of Θ is not dependent on the
presence of the skyrmion, and evaluate the lhs and the rhs in Eqs.
(11) inserting the uniform far-field n0 into Eqs. (8) and (10). With
this. we obtained the following system of dynamical equations:

_Θ ¼ ðE sinΘþW cosΘÞðE cosΘ�W sinΘÞ; ð17Þ

_ξ ¼� d1ðξÞ � 15:5

ξ2
þ d2ðξÞð1þ cosΘÞ þ d3ðξÞ W2 � E2


�

þ3 cosð2ΘÞðE2 þW2Þ þ 6EW sinð2ΘÞ�
�
;

ð18Þ

_xs ¼ d4ðξÞ _Θ: ð19Þ
The explicit expressions for d1(ξ) up to d4(ξ) and the numerical
procedure for how they have been obtained are provided in the
“Methods” section below. Equation (17) for the background angle
Θ(t) admits an analytical solution which we present in Methods
as well.

Linear stability analysis. In this section, we carry out a linear
stability analysis of the system of Eqs. (17)–(19) around their
fixed points. The skyrmion will evolve towards stable fixed points
and also spend time near them in the case of time-dependent
electric fields. The behavior resulting from the linearized equa-
tions sheds light on the evolution of the full nonlinear system.
Since the dynamics of xs is slaved to that of ξ and Θ, Eq. (19), it is
sufficient to consider only Eqs. (17) and (18).

Setting the rhs of Eq. (17) to zero renders two fixed point
solutions for the polar angle Θ� ¼ arctanðE=WÞ and
Θ� ¼ � arctanðW=EÞ. It turns out that the second solution
corresponds to an unstable fixed point. The fixed point for the
twist wall thickness ξ* follows from setting Θ=Θ* on the rhs of
Eq. (18) and finding the roots of the resulting equation
numerically. The resulting fixed point solution ξ* is plotted in
Fig. 3 as a function of m, and is well approximated by m−2 in
agreement with18. In experiments as well as numerical simula-
tions, the skyrmion is only stable in a finite range of electric
fields18,35.

We linearize equations (17) and (18) near the fixed point
(Θ*, ξ*)

_Θ � �ðE2 þW2ÞðΘ� Θ�Þ; ð20Þ
_ξ � � ξ � ξ�


 �
λðm; E=WÞ; ð21Þ

where λ(m, E/W) is the derivative of the rhs of Eq. (18) with
respect to ξ evaluated at ξ*. λ as a function of m is shown in Fig. 4,
and it is approximately∝m2 in the relevant range of m. We
emphasize, that the relaxation of ξ upon turning the field off is
slower as compared to the field-driven response, which provides
additional means to control the skyrmion dynamics.

Next, we substitute the solutions Θ(t) and ξ(t) of the linearized
equations (20) and (21) into (19), which renders

_xsðtÞ ¼ �m2e�m2tðΘ0 � Θ�Þðξ� þ ξ0 � ξ�
� �

e�λtÞ; ð22Þ
where we replaced d4(ξ) with ξ for simplicity (see Methods where
d4(ξ) is defined), and Θ0 is the initial value of the far-field polar
angle. An approximate equation (22) describes the skyrmion
velocity in the vicinity of the fixed point (Θ*, ξ*), therefore the
initial values Θ0 and ξ0 must be taken close to the fixed point.

We find that in the relevant range of m λ > 0, as shown in
Fig. 4, and thus the late-time behavior of the velocity in (22) is
governed by the term / expð�m2tÞ, and the term / expð�λtÞ
may be neglected. With this in mind, the approximate solution

Fig. 3 Equilibrium thickness of the skyrmion twist wall. The stable wall
thickness ξ* as a function of m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þW2

p
, at two values of the

equilibrium Θ*. The lines are to guide the eyes.

Fig. 4 Inverse relaxation time of the twist wall thickness. λ, which is the
derivative of the rhs of equation (18) with respect to ξ evaluated at ξ*, as a
function of m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þW2

p
, for two equilibrium values of Θ= 0 and π/2.

For comparison the curve∝m2 is also shown.
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xs(t) of (22) may be written in the following form

xsðtÞ ¼ expð�m2tÞðΘ0 � Θ�Þξ� þ xsð1Þ; ð23Þ

Δxs � xsð1Þ � xsð0Þ ¼ ξ�ðΘ� � Θ0Þ; ð24Þ
where we have also defined the net skyrmion displacement Δxs.
Equation (24) highlights two important features in determining
the net skyrmion displacement: i) a rotation from the vertical
configuration Θ0= 0 to a larger Θ*, e.g when the electric field E is
applied, yields a positive displacement increasing with
ΔΘ≡Θ*−Θ0; ii) the displacement depends on the stable wall
thickness ξ*. Figure 3 shows that ξ* decreases with increasing
both m and E/W.

Imagine that the electric field E undergoes step-like oscillations
between zero and a sufficiently high value, such that Θ*(E) ≈ π/2.
Additionally, assume that the oscillation period is large enough
such that Θ oscillates between the two equilibrium values 0 and π/
2. Then, during the field on state, the net skyrmion displacement
Δxs[off→ on] ≈ πξ*(mon, E)/2, while the net skyrmion displace-
ment during the off state is Δxs[on→ off] ≈− πξ*(moff, 0)/2. The
expressions in the square brackets indicate the situations when
the electric field has changed from 0 to E, [off→ on], or from E to
0, [on→ off], also moff ¼ W<mon ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2 þ E2

p
. Based on the

numerical results displayed in Fig. 3, we conclude that
ξ*(moff, 0) > ξ*(mon, E) and the net skyrmion’s displacement over
one period of the electric field is Δxs[off→ on]+ Δxs[on→ off] <
0: the skyrmion translates in the �x̂ direction.
We will show in the next section that in the framework of the

full nonlinear model given by Eqs. (17)–(19). The skyrmion
velocity can reverse its direction. The numerical solution of the
full nonlinear dynamics demonstrates that most of the displace-
ment occurs at early times away from the stable value of ξ, where
the linear model is not valid.

Skyrmion relaxation upon abrupt changes in the electric field.
Equation (17) can be solved analytically, where the corresponding
solution Θ(t) is given in Methods, Eq. (32), and Eqs. (18), (19))
are solved numerically using Mathematica. We first solve for the
twist wall thickness ξ(t), which is coupled to Θ(t), and then
determine the skyrmion position xs(t). Figure 5 depicts the time

evolution of Θ when the electric field changes abruptly from 0 to
some value E (full blue curve), and then after Θ reaches the
equilibrium value arctanðE=WÞ, the field is turned off abruptly
and Θ evolves to 0 (dashed orange curve). The solutions converge
quickly to those of the linearized Eq. (20), i.e., / expð�m2tÞ. If ξ
were constant, the skyrmion displacement would look exactly like
Θ(t), see Eq. (19).

The internal degree of freedom of the skyrmion, the twist wall
thickness ξ is shown in Fig. 6. The non-monotonic behavior of
ξ(t) at early times, when the field is on, traces back to a specific
value of the initial condition ξ(t= 0) > ξ(t=∞)≡ ξ*. According
to the results in Fig. 3, ξ* decreases with the increasing E,
therefore more pronounced non-monotonic behavior of ξ(t) is
expected when the field changes from zero to larger values. Thus,
the skyrmion speed which is∝ ξ(t) (see Eq. (19)) is largest just
after the field is turned on.

Having determined ξ(t) and Θ(t) enables calculating the
skyrmion trajectory

xsðtÞ /
Z t

0
ξðt0Þ _Θðt0Þdt0; ð25Þ

where the proportionally constant is the coefficient 0.6 in the
function d4(ξ), Eq. (31).

We evaluate the integral in Eq. (25), starting with the
axisymmetric skyrmion configuration, Eq. (1) At t= 0 the electric
field is set to a value E, and the skyrmion morphs (see Fig. 7b)
towards the second fixed point, shown in Fig. 7c. Then, after
equilibrium is reached, the field is turned off and the skyrmion
relaxes back (see Fig. 7d, e) to the axisymmetric form. The
skyrmion trajectory xs(t) corresponding to this protocol is shown
in Fig. 7a together with several representative skyrmion
configurations.

When the field is turned on, the far-field director n0 tilts away
from ẑ, dragging the skyrmion along x. When the background
reaches Θ� ¼ arctanðE=WÞ the skyrmion stops, with the
corresponding configuration shown in Fig. 7c. Next the field is
turned off and n0 rotates back to ẑ, Fig. 7e. During this field-off
state, the relaxation time of Θ is (E2+W2)/W2= 2.7 times slower

Fig. 5 Relaxation dynamics of the polar angle of the far-field director. Θ
as a function of time when the electric field changes abruptly from 0 to E,
blue curve. After the angle completely relaxes towards the horizontal
dashed-dotted red line, the field is turned off and the corresponding Θ(t) is
shown by the dashed orange curve, where t= 0 coincides with the time of
turning the field off. The magnitude of the electric field is 30% larger than
that of the anchoring. E/W= 1.3 and mon ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þW2

p
¼ 6. The horizontal

dashed red line corresponds to arctanð1:3Þ. Time is in units of γp2K−1.

Fig. 6 Relaxation dynamics of the thickness of the skyrmion twist wall.
The thickness ξ of the twist wall around the skyrmion core as a function of
time, is calculated numerically by using Eqs. (18) and (17). The blue curve
corresponds to the case when the field is changed abruptly from 0 to E.
When ξ reaches the equilibrium ξ* the field is turned off and the
corresponding ξ(t) is shown by the dashed orange curve, where t= 0
coincides with the time of turning the field off. The subsequent dynamics
are represented by the orange curve. mon= 10, E/W= 1.2 and time is in
units of γp2K−1.
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than in the preceding field-on state, recall that linear model
predicts Θ / expð�m2tÞ, see Eq. (20).

Equation (24) is valid in the linear regime and predicts a
negative displacement under such protocol, because the stable
thickness is larger for the off state. However, the opposite is
observed here. This can be understood by analyzing Eq. (25).
Indeed, the rate of change of Θ is maximal right after the field
changes, and is significantly reduced by approaching to the
equilibrium where the linear regime holds. Therefore, the initial
nonlinear transient of Θ is more relevant in determining the net
displacement than the stable thickness ξ* controlling the
skyrmion displacement at late times. This transient is affected
by the initial conditions and field parameters, which will be
discussed in the following section.

Steady-state cycle in pulse width modulated electric fields:
driving protocol 1). We discuss the skyrmion dynamics in a
pulse width modulated electric field, which is switched on for a
fraction of the period, referred to as the duty cycle D, and then
turned off. The period T is the sum of the field off and on times.

We first consider a driving protocol where the electric field has
only one component in the �ŷ direction: protocol 1). In the
course of time the skyrmion trajectory will approach a
characteristic closed loop when plotted in the phase plane
(Θ, ξ), with one example shown in Fig. 8. The loop corresponds to
a steady-state cycle and as long as the field continues to oscillate
the system follows the loop.

The repeating cycles yield skyrmion motion with a steady
average velocity 〈v〉= Δxs/T, where Δxs is the skyrmion
displacement over one period T. It is instructive to change the
integration variable in Eq. (25) from time t0 to Θ0 ¼ Θðt0Þ giving
the net skyrmion spatial displacement along the steady-state cycle

Δxs /
Z ΘB

ΘA

dΘ0ξon Θ�1ðΘ0Þ� ��
Z ΘB

ΘA

dΘ0ξoff Θ�1ðΘ0Þ� � !
;

ð26Þ
where the first integral is taken over the on branch (the full blue
curve in Fig. 8) of the cycle, and the second integral over the off
branch (the dashed orange curve in Fig. 8) of the cycle. ΘA and
ΘB correspond to the limiting values of Θ at times when the field
undergoes jumps from 0 to E and then back to 0, respectively.

Fig. 7 Skyrmion evolution upon turning the field on and off. a Skyrmion
position xs as a function of time t when the electric field is turned on at t= 0
and then turned off at t= 0.2. In the on state mon ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þW2

p
¼ 6 and

E/W= 1.3. When the field is turned off the background and the position
take longer to relax because moff=W <mon. Time is in units of γp2K−1.
b–e show director configurations represented by the cylindrical rods. The
configurations correspond to the times indicated by b–e in panel a. b the
skyrmion moves forward and the twist wall thickness decreases; c the
stable angle Θ ¼ arctanð1:3Þ was reached, the shrinking continues without
skyrmion movement. d after the field changes the wall width is at its
shortest and the skyrmion moves backwards, e the far-field polar angle
Θ≪ 1, and the skyrmion speed approaches zero.

Fig. 8 Steady-state cycle upon periodic turning of the field on and off.
Skyrmion trajectory in the (Θ, ξ) phase plane upon periodic switching of the
field on and off. The initial configuration corresponds to point A. At the
initial time, the field is on, and the corresponding stable polar angle Θ* is
indicated by the vertical dashed line. The transient trajectory is shown by
the dash-dotted magenta curve, while the full blue (field-on state) and the
dashed orange (field-off state) curves correspond to the long-time steady-
state cycle. The black arrows indicate the direction of the motion. The field
is turned on at point B and off at point C. The net skyrmion displacement is
proportional to the area enclosed by the loop. The area between the field-
on (the full blue curve) trajectory and the horizontal axis is larger than the
area between the field-off (the dashed orange curve) trajectory and the
horizontal axis, which results in the skyrmion motion in the þx̂ direction.
The field parameters are mon= 7, E/W= 1.5, T= 1 and D ¼ 0:5.
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According to (26) Δxs is proportional to the area enclosed by the
steady cycle loop, which is divided into the on branch (the full
blue curve in Fig. 8), where the skyrmion moves in the þx̂
direction, and the off (the dashed orange curve in Fig. 8) branch,
where it moves in the �x̂ direction.

The skyrmion trajectory xs(t) corresponding to Fig. 8 is shown
in Fig. 9. The instantaneous velocity is proportional to the rate of
change of Θ, and in the linear regime (close to the fixed points)
Θ / expð�m2tÞ. The relaxation of Θ along the field off branch is
1+ (E/W)2 times slower compared to the relaxation along the
field on branch, such that the larger E/W is, the faster the director
rotates away from the axisymmetric configuration favored by the
effective anchoring W. This behavior gives rise to an asymmetry
between the increasing (field on) and the decreasing (field off)
parts of xs(t), which is clearly visible in Fig. 9.

Next, we compute 〈v〉 as the average slope of the numerical
steady cycle trajectories xs(t). For the case shown in Fig. 9, 〈v〉
equals the slope of the red dashed line. 〈v〉 as a function of the
frequency f= 1/T of the pulsed electric field E(t), at selected
values of the duty cycle and of field amplitude, is shown in
Fig. 10. 〈v〉 exhibits a maximum at a frequency fmax and is always
positive. We have varied values of the model parameters in wide
ranges and have not observed velocity reversal. As we argue
below, this behavior is specific to protocol 1), and velocity reversal
may be achieved by introducing a pulsed z-component of the
electric field Ez(t), such that ðW þ EzðtÞÞ2 þ EðtÞ2 remains
constant.

To better understand the emergence of the maximum in 〈v〉 we
examine how steady-state cycles are affected by changing the
frequency, which is shown in Fig. 11. Θ increases when the field is
turned on, and decreases when it is turned off. Decreasing the
frequency from fmax allows Θ to relax completely. As a result, the
steady-state cycle shown in Fig. 11a, remains unchanged by
reducing the frequency even further. The system spends most of
the time at the endpoints of the branches. Unchanging steady-
state cycles lead to net displacements (over one period)
independent of f, such that 〈v〉∝ f in the low-frequency regime
of Fig. 10.

The reduction in 〈v〉 at high frequencies is due to the decrease
in the range ΔΘ of the variation of the background director
tilting, and the reduction of the difference between ξon (the full

blue curves in Fig. 11b) and ξoff (the dashed orange curves in
Fig. 11b) in the two branches of the steady-state cycle. We can
write the average skyrmion velocity in the following way

hvi / fΔΘðξon � ξoff Þ; ð27Þ
where we used Eq. (26) and introduced an average over Θ width
ξon (ξoff ) when the field is on (off). On the other hand
ΔΘ< _Θmax=f , and the maximal angular velocity _Θmax depends
only on the field strength, and not on f, so increasing the
frequency will decrease the angular displacement ΔΘ. This
renders hvi< _Θmaxðξon � ξoff Þ which tends to zero as f increases
due to the decrease of the difference in brackets.

Figure 12 summarizes the effects of the field strength, the
frequency, and the duty cycle upon the skyrmion’s average
velocity. The velocity is positive in the studied region of the
parameter space. This result is directly related to the relaxation
behavior of ξ(t), shown in Fig. 6, which in this regime of
parameters is effectively monotonically decreasing/increasing
along the on/off states. Consequently, the difference ðξon �
ξoff Þ> 0 for all steady cycles, and the skyrmion velocity is positive.
This analysis suggests that for the velocity reversal, there must
exist an extended range of times where ξ(t) exhibits a markedly
non-monotonic behavior, and where the variation ΔΘ of the
polar angle is significant. In fact, we observe a weak non-
monotonicity in ξon(t) (the full blue curve in Fig. 6) at early times,
which in principle may give rise to velocity reversal. However, the
corresponding range of the model parameters around that bump
on ξon(t) is such that the calculated skyrmion speeds are ~10−5

and our numerical method is not capable of resolving eventual
changes in the direction of motion.

Below we show that it is possible to resolve this issue by
resorting to another driving protocol. Indeed, in experiments in
refs. 12,13, the background angle Θ relaxes faster towards zero
when the field is turned off. This is incompatible with driving
protocol 1), which renders τoff/τon= 1+ (E/W)2 > 1.

Pulse width modulated electric fields: driving protocol 2). We
proceed to consider a driving protocol where τon= τoff, which,
as it turns out, is sufficient to obtain velocity reversal.
To this end, we introduce an additional electric field component
in the ẑ direction Ez(t), which is in antiphase with the
field component in the ŷ direction E(t), such that

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðtÞ2 þ ðW þ EzðtÞÞ2

q
¼ const. More specifically, in the

Fig. 9 Skyrmion displacement upon periodic turning of the field on
and off. Skyrmion trajectory xs(t) corresponding to the situation depicted in
Fig. 8. Over durations significantly longer than the electric field period, the
motion is characterized by a steady average skyrmion velocity 〈v〉, and the
magnitude of this velocity is portrayed by the slope of the dashed red line.
The field parameters are mon= 7, E/W= 1.5, T= 1 and D ¼ 0:5.

Fig. 10 Skyrmion average velocity. Steady average velocity 〈v〉 of the
skyrmion calculated numerically as a function of the frequency f= 1/T.
mon ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þW2

p
¼ 10; E=W ¼ 1:5 and D ¼ 0:5. The line is to guide the

eyes.
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field off state E= 0 and Ez > 0, while in the field on state, we set
E > 0 and Ez= 0 to guarantee m= const.

An example of the dynamics of ξ under this protocol 2) is
shown in Fig. 13. The first difference, when compared to protocol
1) discussed in Fig. 6, is the reduced difference between ξon(t) (the
full blue curve) and ξoff(t) (the dashed orange curve), which will
lead to an overall reduction of the skyrmion speed. Secondly, and
more importantly, the ξon(t) has a significant and extended
regime of non-monotonic behavior at early times, which enables
to tuning of the model parameters, such that ðξon � ξoff Þ changes
sign. In Fig. 14a, which corresponds to low frequencies, the
steady-state cycle explores the whole range of Θ and the loop
passes through both fixed points. At the same time, ξ is larger
when the field is on, and the skyrmion moves in þx̂ direction. At
higher frequency, in Fig. 14b, the steady-state cycle shrinks and is
attached to the field off fixed point Θ*= 0, in contrast to Fig. 11b
where the dynamics are controlled by the field on fixed point
Θ� ¼ arctanðE=WÞ.

Figure 13 shows that when the electric field (0,− E, 0) is turned
on, ξ passes through a broad maximum before relaxing to its

Fig. 11 Steady-state cycle shrinks as the frequency increases. Steady-state cycles of the system in the (Θ, ξ) configuration space. The dashed vertical
lines mark the stable Θ when the field is turned on. The values of the parameters are mon ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þW2

p
¼ 10; E=W ¼ 1:5;D ¼ 0:5, a f= 1, and b f= 8. Low

frequency in a allows the system to cover the full angular range and enables a large difference in ξ when the electric field is on and off, as compared to the
high-frequency loop in b.

Fig. 12 Heat map of the skyrmion average velocity for driving protocol 1).
Color-coded steady average velocity 〈v〉 of skyrmions moving under pulse
width modulated electric fields. a 〈v〉 as a function of D and f at mon ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þW2

p
¼ 10 and E/W= 1.5 corresponding to the green circle in b. b 〈v〉

as a function of m and E/W at f= 3 and D ¼ 0:4 corresponding to the
green circle in a.

Fig. 13 Relaxation dynamics of the twist wall thickness for driving
protocol 2). Thickness ξ as a function of time when the electric field
(0,− E, 0) is turned on at t= 0, solid blue curve. After ξ relaxes completely,
the electric field is turned off, and the corresponding ξ(t) is shown by the
dashed orange curve, where t= 0 coincides with the time of turning the

field off. For both curves m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðtÞ2 þ ðW þ EzðtÞÞ2

q
¼ 7. Time is given in

units of γp2K−1.
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stable value. If the frequency is large enough and the duty cycle is
small enough, the ξon(t) branch follows the short time increasing
part of the on curve in Fig. 13. This behavior is depicted in
Fig. 14b by the full blue curve. Next, after the field is turned off
the system follows the dashed orange curve in Fig. 14b.
Surprisingly, just after setting the field to zero, we observe a
growing ξoff(t), which leads to ðξon � ξoff Þ< 0 and the velocity
reversal.

The color-coded velocity profiles in the ðf ;DÞ and
ðm; arctan E=WÞ planes are shown in Fig. 15a and b, respectively.
Figure 15a shows that the most efficient way to reverse the
skyrmion velocity is by using the duty cycle. Indeed, by analyzing
Fig. 15 we find that the velocity can be reversed by changing D for
any f. By contrast, reversing the velocity by changing f or E can
only be achieved in narrow ranges of D or m.

Discussion
We developed a 2D collective variable model of the driven motion
of LC skyrmions. The starting point was a five-parametric axi-
symmetric Ansazt for the director field of a skyrmion with the
skyrmion number equal to one. The five parameters are the polar
and azimuthal angles of the far-field director; the width of the
twist wall around the skyrmion core, and the location of the
skyrmion center. Assuming the driving electric field varies in a
plane perpendicular to the skyrmion plane, the azimuthal angle
can be ignored, as it quickly relaxes to the plane of the electric
field, while the skyrmion motion proceeds in the direction normal
to that plane. Therefore, only three parameters (collective vari-
ables) are relevant for the skyrmion dynamics.

The linear stability analysis of the governing dynamical equa-
tions demonstrates that the far-field director relaxes with the
characteristic time m−2, where m ¼ mon �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þW2

p
or m=

moff≡W for the field-on or field-off states, respectively. There-
fore, for this driving protocol the far-field background relaxes
slower towards the fixed point ẑ, corresponding to zero field. The
skyrmion velocity is given by the product of the rate of change of
the polar angle Θ and the fixed point value of the twist wall
thickness ξ* (different for field-on and field-off). The resulting
displacement of the skyrmion over one period of the pulse width
modulated electric field is given, for large periods, by
Δxs= π(ξ*(mon, E)− ξ*(moff, E))/2 < 0, which follows from the
results in Fig. 3.

The full nonlinear model predicts Δxs / ΔΘðξon � ξoff Þ, where
ΔΘ is the (absolute) range covered by the polar angle Θ over one
period, and the symbols with the bars denote ξ(t) averaged over Θ
for the field-on and field-off states. We found that Δxs is always
positive for driving protocol 1), i.e., the steady average velocity
does not change direction and exhibits a single maximum at
certain values of the field frequency, duty cycle, and effective field
strength.

Velocity reversal is observed for driving protocol 2) where
m= const independent of the direction of the effective electric
field. This renders the relaxation times for the far-field director
equal in the on and off states of the cycle. We obtained positive
velocity at low frequencies and large duty cycles when the electric
field is on most of the time, and negative velocity at high fre-
quencies and small duty cycles when the electric field is off most
of the time.

Here, we focused on LCs with positive dielectric anisotropy,
and one possible future direction is to study systems with negative
ones, which is the case for most experimental systems. Another
possibility is to investigate the effects of varying the skyrmion
core radius, which was kept constant equal to half of the cho-
lesteric pitch. Additionally, the generalization of the presented
approach to many skyrmion systems could shed light on the out-
of-equilibrium collective behavior of skyrmions.

Finally, we comment briefly on the relation of the present work
to another study carried out recently in the same group36. While
in the present work, we considered a minimal model for the
dynamics of a single skyrmion director field, represented by a
small number of collective variables (using the Ansatz to describe
the skyrmion texture), in ref. 36 the authors have replaced the
skyrmionic textures with Brownian particles subject to time-
dependent forces, which represent the skyrmion’s tendency to
move forwards and backward as the electric field is turned on
and off.

Methods
Functions d1(ξ) up to d4(ξ) are obtained by the following pro-
cedure. First, we construct tij(ξ)= ∫Tij(ξ, r)d2r by carrying out a
double integral numerically for a range of values of ξ. Next, the
numerical data tij(ξ) is fitted to simple functions of ξ. We find that
functions of the form a+ bξn, where a, b are fitting parameters,
and n=− 2,− 1, 0, 1 are good fits in all cases. The explicit

Fig. 14 Steady-state cycles for driving protocol 2). Steady-state cycles of the system in the (Θ, ξ) configuration space for protocol 2), where a vertical

component of the electric field Ez(t), oscillating in antiphase with E(t), is introduced such that m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðtÞ2 þ ðW þ EzðtÞÞ2

q
¼ 7 for both field-on and field-off

states. The dashed vertical lines mark the stable Θ when the field is on. The values of the other parameters are arctanðE=WÞ ¼ 1:25;D ¼ 0:3, a f= 1, and

b f= 7. Low frequency in a allows the system to fully cover the angular range Θ 2 ½0; arctanðE=WÞ�. In this case, ðξon � ξoffÞ>0 leading to a positive

skyrmion velocity. High frequency in b reduces the angular range covered by the system, and ðξon � ξoffÞ<0, which results in a negative skyrmion velocity.
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expressions for d1(ξ) up to d4(ξ) read:

d1ðξÞ �
ξ

16:1ξ þ 6:5
ð28Þ

d2ðξÞ � 4π
0:2
ξ

� 6:6

� �
ð29Þ

d3ðξÞ � 4ð0:5þ 1:9ξÞ ð30Þ

d4ðξÞ �
4:9þ 8:5ξ
15:5þ 9:7=ξ

� 0:6ξ ð31Þ

Equation (17) for the background polar angle Θ admits an
analytical solution

ΘðtÞ ¼ arctan E2 �W2 þ ðE2 þW2Þ tanh 1
2
tðE2 þW2Þ

���

þarctanh
�E2 þW2 þ 2EW tanðΘ0Þ

ðE2 þW2Þ

� �
�
=2EW



:

ð32Þ
where Θ0 is the initial (at t= 0) polar angle of the background
director field. We also provide a special case of the above equation
corresponding to the case of zero electric field

ΘðtÞ ¼ arccos ð1þ e�2W2ttan2Θ0Þ
�1

2
h i

: ð33Þ

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request

Code availability
The computer codes used to produce the results presented in the article are available
from the corresponding author upon reasonable request.

Received: 25 April 2023; Accepted: 29 November 2023;

References
1. Manton, N. and Sutcliffe, P. Topological Solitons (Cambridge University Press,

Cambridge, England, 2004).
2. Manton, N. S., Oleś, K., Romańczukiewicz, T. & Wereszczyński, A. Collective

coordinate model of kink-antikink collisions in ϕ4 theory. Phys. Rev. Lett. 127,
071601 (2021).

3. Skyrme, T. A unified field theory of mesons and baryons. Nucl. Phys. 31, 556
(1962).

4. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915
(2009).

5. Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal.
Nature 465, 901 (2010).

6. Zhang, X., Zhou, Y. & Ezawa, M. Antiferromagnetic skyrmion: Stability,
creation and manipulation. Sci. Rep. 6, 24795 (2016).

7. Liu, Y., Lake, R. K. & Zang, J. Binding a hopfion in a chiral magnet nanodisk.
Phys. Rev. B 98, 174437 (2018).

8. Sutcliffe, P. Hopfions in chiral magnets. J. Phys. A: Math. Theor. 51, 375401
(2018).

9. Das, S. et al. Observation of room-temperature polar skyrmions. Nature 568,
368 (2019).

10. Smalyukh, I. I., Lansac, Y., Clark, N. A. & Trivedi, R. P. Three-dimensional
structure and multistable optical switching of triple-twisted particle-like
excitations in anisotropic fluids. Nat. Mater. 9, 139 (2010).

11. Ackerman, P. J., Trivedi, R. P., Senyuk, B., van de Lagemaat, J. & Smalyukh, I.
I. Two-dimensional skyrmions and other solitonic structures in confinement-
frustrated chiral nematics. Phys. Rev. E 90, 012505 (2014).

12. Ackerman, P. J., Boyle, T. & Smalyukh, I. I. Squirming motion of baby
skyrmions in nematic fluids. Nat. Commun. 8, 673 (2017).

13. Sohn, H. R. et al. Dynamics of topological solitons, knotted streamlines, and
transport of cargo in liquid crystals. Phys. Rev. E 97, 052701 (2018).

14. Sohn, H. R. O., Liu, C. D., Wang, Y. & Smalyukh, I. I. Light-controlled
skyrmions and torons as reconfigurable particles. Opt. Express 27, 29055
(2019).

15. Sohn, H. R., Liu, C. D. & Smalyukh, I. I. Schools of skyrmions with electrically
tunable elastic interactions. Nat. Commun. 10, 4744 (2019).

16. Song, C. et al. Commensurability between element symmetry and the number
of skyrmions governing skyrmion diffusion in confined geometries. Adv.
Funct. Mater. 31, 2010739 (2021).

17. Bogdanov, A. N., Röåler, U. K. & Shestakov, A. A. Skyrmions in nematic
liquid crystals. Phys. Rev. E 67, 016602 (2003).

Fig. 15 Heat map of the skyrmion average velocity for driving protocol 2).
Color-coded steady average velocity 〈v〉 of skyrmions moving under an
electric field ð0;�EðtÞ;W þ EzðtÞÞT , where the time-dependent components
asynchronously pulse with the frequency f and the duty cycle D. a 〈v〉 as a
function of D and f at m= 10 and arctanðE=WÞ ¼ 1:25, corresponding to the
green circle in b. b 〈v〉 as a function of m and arctanðE=WÞ at f= 6 and
D ¼ 0:4, corresponding to the green circle in a. The dashed black lines
correspond to 〈v〉= 0.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01486-5

10 COMMUNICATIONS PHYSICS |             (2024) 7:2 | https://doi.org/10.1038/s42005-023-01486-5 | www.nature.com/commsphys

www.nature.com/commsphys


18. Duzgun, A., Selinger, J. V. & Saxena, A. Comparing skyrmions and merons in
chiral liquid crystals and magnets. Phys. Rev. E 97, 062706 (2018).

19. Duzgun, A., Saxena, A. & Selinger, J. V. Alignment-induced reconfigurable
walls for patterning and assembly of liquid crystal skyrmions. Phys. Rev. Res.
3, 012005 (2021).

20. Duzgun, A., Nisoli, C., Reichhardt, C. J. O. & Reichhardt, C. Directed motion
of liquid crystal skyrmions with oscillating fields. N. J. Phys. 24, 033033
(2022).

21. Coelho, R. C., Tasinkevych, M. & Gama, M. M. T. D. Dynamics of flowing 2d
skyrmions. J. Phys. Condens. Matter 34, 034001 (2022).

22. Long, C. & Selinger, J. V. Coarse-grained theory for motion of solitons and
skyrmions in liquid crystals. Soft Matter 17, 10437 (2021).

23. Yu, X. Z. et al. Skyrmion flow near room temperature in an ultralow current
density. Nat. Commun. 3, 988 (2012).

24. Krause, S. & Wiesendanger, R. Skyrmionics gets hot. Nat. Mater. 15, 493
(2016).

25. Shen, Y. & Dierking, I. Dynamic dissipative solitons in nematics with positive
anisotropies. Soft Matter 16, 5325 (2020).

26. Wu, J.-S. & Smalyukh, I. I. Hopfions, heliknotons, skyrmions, torons and both
abelian and nonabelian vortices in chiral liquid crystals. Liq. Cryst. Rev. 10,
34–68 (2022).

27. Samols, T. M. Vortex scattering. Commun. Math. Phys. 145, 149 (1992).
28. Schütte, C., Iwasaki, J., Rosch, A. & Nagaosa, N. Inertia, diffusion, and

dynamics of a driven skyrmion. Phys. Rev. B 90, 174434 (2014).
29. Jung, D.-H. et al. Magnetic skyrmion diode: unidirectional skyrmion motion

via symmetry breaking of potential energy barriers. Phys. Rev. B 104, L060408
(2021).

30. Miyazaki, Y., Yokouchi, T. & Shiomi, Y. Trapping and manipulating
skyrmions in two-dimensional films by surface acoustic waves. Sci. Rep. 13,
1922 (2023).

31. Thiele, A. A. Steady-state motion of magnetic domains. Phys. Rev. Lett. 30,
230 (1973).

32. Gilbert, T. A phenomenological theory of damping in ferromagnetic materials.
IEEE Trans. Magn. 40, 3443 (2004).

33. Li, X. et al. Bimeron clusters in chiral antiferromagnets. npj Comput. Mater. 6,
169 (2020).

34. Belongie, S. Rodrigues’ Rotation Formula. https://mathworld.wolfram.com/
RodriguesRotationFormula.html. last visited on 14/12/2022 (2022).

35. Tai, J.-S. B. & Smalyukh, I. I. Surface anchoring as a control parameter for
stabilizing torons, skyrmions, twisted walls, fingers, and their hybrids in chiral
nematics. Phys. Rev. E 101, 042702 (2020).

36. Teixeira, A. S., Tasinkevych, M., & Dias, C. S. Particle-based model of active
skyrmions https://doi.org/10.48550/arXiv.2305.03670 (2023).

Acknowledgements
We acknowledge financial support from the Portuguese Foundation for Science and
Technology (FCT) under the contracts: PTDC/FISMAC/5689/2020, EXPL/FIS-MAC/
0406/2021, UIDB/00618/2020 and UIDP/00618/2020.

Author contributions
M.T.G. and M.T. conceived the idea. T.A. carried out analytical and numerical calcu-
lations. T.A. and M.T. wrote the manuscript. M.T.G. provided critical comments.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42005-023-01486-5.

Correspondence and requests for materials should be addressed to Mykola Tasinkevych.

Peer review information Communications Physics thanks the anonymous reviewers for
their contribution to the peer review of this work. A peer review file is available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01486-5 ARTICLE

COMMUNICATIONS PHYSICS |             (2024) 7:2 | https://doi.org/10.1038/s42005-023-01486-5 | www.nature.com/commsphys 11

https://mathworld.wolfram.com/RodriguesRotationFormula.html
https://mathworld.wolfram.com/RodriguesRotationFormula.html
https://doi.org/10.48550/arXiv.2305.03670
https://doi.org/10.1038/s42005-023-01486-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsphys
www.nature.com/commsphys

	Collective variable model for the dynamics of liquid crystal skyrmions
	Results
	Skyrmion�Ansatz
	Frank-Oseen free energy and a dissipation�rate
	Linear stability analysis
	Skyrmion relaxation upon abrupt changes in the electric�field
	Steady-state cycle in pulse width modulated electric fields: driving protocol�1)
	Pulse width modulated electric fields: driving protocol�2)

	Discussion
	Methods
	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




