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Identifying key players in complex networks via
network entanglement
Yiming Huang 1,2, Hao Wang 3, Xiao-Long Ren 2✉ & Linyuan Lü1,2✉

Empirical networks exhibit significant heterogeneity in node connections, resulting in a few

vertices playing critical roles in various scenarios, including decision-making, viral marketing,

and population immunization. Thus, identifying key vertices is a fundamental research pro-

blem in Network Science. In this paper, we introduce vertex entanglement (VE), an

entanglement-based metric capable of quantifying the perturbations caused by individual

vertices on spectral entropy, residing at the intersection of quantum information and network

science. Our analytical analysis reveals that VE is closely related to network robustness and

information transmission ability. As an application, VE offers an approach to the challenging

problem of optimal network dismantling, and empirical experiments demonstrate its super-

iority over state-of-the-art algorithms. Furthermore, VE also contributes to the diagnosis of

autism spectrum disorder (ASD), with significant distinctions in hub disruption indices based

on VE between ASD and typical controls, promising a diagnostic role for VE in ASD

assessment.
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Complex systems, such as ecological1, social2, neuronal3,
and economic4 systems, are ubiquitous and can be
abstracted and studied as networks5. Key players in a

complex network refer to a small part of vertices that play a vital
role in the structure and function of the network6. The study of
identifying a set of key players helps answer a range of critical
questions from biology to marketing to immunization: Which set
of influential individuals should we choose as seeds to trigger a
cascade in viral marketing2? Which kind of species could trigger
dramatic changes to the entire ecosystem if they were to demise7?
Which groups should be prioritized for vaccination given the
limited number of vaccines available8,9?

In practice, finding the optimal set of players in a given net-
worked system has far-reaching effects in various disciplines. In
previous studies, a great deal of work has been devoted to
exploring how to find key players in specific networks6,10,11. Most
research ranks players using neighborhood-based centralities,
path-based centralities, iterative refinement centralities, or
dynamics-based methods12–14. See Supplementary Note 1 for a
detailed introduction. With the recent fast development of
quantum-based processes on networks15–17, identifying key
players in complex networks via network entanglement presents a
promising solution to these issues.

Quantum entanglement is a precious quantum resource for
computation and communication18. The distance between
quantum entangled states and the set of separable states is one of
the quantum entanglement metrics19–21. Inspired by quantum
statistical mechanics and collective network entanglement16, this
paper proposes an entanglement-based approach described by a
Gibbsian-like density matrix. Spectral entropy captures the global
topological feature of the network rather than a subset of the
network’s descriptors22. Vertex entanglement reflects the spectral
entropy variance between the v-control network and the original
network, indicating changes caused by a single vertex to spectral
entropy. The theoretical analysis and empirical experiments show
that vertex entanglement is closely related to the dynamic
diversity of information and network robustness. Specifically, the
vertex entanglement tends to vanish in a transient diffusion time,
while it coincides with the number of connected components at
extremely large time scales. The proposed approach is partially
based on the original framework of collective network entangle-
ment (CNE)16, which essentially measures the difference between
the original graph and the sum of two subgraphs, i.e., a star graph
formed by a detached node with its edges and the remainder of
the original graph. Therefore, CNE measures how subadditive the
entropy of these networks is. However, in our approach, VE
directly calculates the difference in terms of spectral entropy
between the original network and the perturbed network, which is
closer to the mathematical nature of quantum resource theory18

and is computationally more efficient.
The issue of optimal network dismantling or percolation is a

non-deterministic polynomial-time hard (NP-hard) problem9.
One critical application of vertex entanglement is network dis-
mantling, where VE addresses two previously neglected but cri-
tical issues. The first concern pertains to network integrity, which
refers to the network’s ability to maintain its normal inter-node
communication and other functions in the face of an attack16.
Comprehending the information propagation mechanism in a
network goes beyond simply identifying the shortest path23.
Therefore, to thoroughly analyze how information propagates in
networks and is affected by perturbations, we necessitate a mul-
tiscale framework that can distinguish network response from
micro, meso, and macroscales. Secondly, most centrality metrics
predominantly focus on partial aspects of a network’s structure or
local topological features, such as degree and betweenness24,
rather than considering the global structure of the system as a

whole. As a result, these measures may not accurately capture the
full complexity of the network and are prone to miss important
information. Vertex entanglement, which is based on the global
properties of the network, provides a promising approach to
address the network dismantling problem as it is closely corre-
lated with network robustness and connectivity. By conducting
targeted attack experiments on various empirical systems, we find
that VE outperforms other state-of-the-art algorithms in network
dismantling, and networks will collapse rapidly once highly
entangled vertices fail or are attacked. Another essential appli-
cation of vertex entanglement is to assist in the diagnosis of
autism spectrum disorder (ASD)25, a disorder caused by a
developmental brain impairment26,27. To be specific, significant
differences are detected between ASD and typical controls on the
hub disruption indices based on vertex entanglement. Moreover,
the hub disruption indices display a significant positive correla-
tion with the intelligence quotient (IQ) of ASD participants,
suggesting that VE may contribute to the prediction of behavioral
characteristics of ASD participants.

Results
In this section, we first introduce the required theoretical grounds
for the new metric vertex entanglement and clarify its definition.
Then we analyze the correlations between VE and four node
centralities, and explore VE’s application in network dismantling
and ASD diagnosis.

Network information theory. The possibility of extending the-
oretical measures of quantum information to complex systems
has been investigated in terms of the statistical field theory of
information dynamics15,28. Take into account a network GðV; EÞ
with a set of nodes V and a set of links E. Its adjacency matrix A
can fully encode the connectivity of the network, with entry Aij

being the link’s weight from node i to j. If a vector ψ(τ) encodes
the amount of information about all nodes at a given time τ, then
its evolution process can be described as ψ(τ)= e−τLψ(0). Here,
ψ(0) denotes the initial state, e−τL is the diffusion propagator,
L=D− A is the combinatorial graph Laplacian matrix, and D is
the diagonal matrix with the degree sequence along the diagonal.
Dij is defined as δijki, where δij is Kronecker function and
ki=∑jAij.

Inspired by quantum information theory, the density matrix of
network G, denoted as ρ, was proposed in terms of the
normalized diffusion propagator22 as

ρ ¼ e�τL

Z
; ð1Þ

where Z ¼ tr e�τL
� �

is the partition function of the system, and
the positive parameter τ encodes the diffusion propagation time.
It can be easily confirmed that ρ is a semi-positive matrix with a
trace equal to one, satisfying the same mathematical conditions as
a density matrix29, that is, ρ can be regarded as the density matrix
for networks. Recently, a generalized network density representa-
tion has also been proposed, expanding the range of applicability
of the framework to nonlinear dynamics30.

One cardinal concept of classical information theory is
Shannon entropy31, which is related to the amount of disorder
and information in systems32. This concept can be extended to
the quantum realm by replacing probability distributions with
density operators and Shannon entropy with the von Neumann
entropy32. Naturally, we are also interested in studying complex
networks from the perspective of information processing.

When it comes to complex systems, several entropies have
been introduced, such as the remaining degree33 and shortest
path distribution34,35. However, these entropies merely take into
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account the network’s local properties. A cutting-edge research
direction in complex networks is the integration of quantum
information theory15,16. Spectral entropy22 serves as a network
counterpart of von Neumann entropy based on the network
density matrix, and it follows that

Sτ ρ
� � ¼ �tr ρ log2ρ

� �
: ð2Þ

Spectral entropy captures the global topological feature of the
network, rather than a subset of the network’s descriptors,
making it a more appropriate entropy metric for complex
systems. It has also been discovered that the functional diversity
among the vertices can be quantified by spectral entropy28. For
simplicity, the notion Sτ Gð Þ ¼ Sτ ρ

� �
is also adopted in this paper

to denote the spectral entropy of the network G.
We analytically demonstrate that spectral entropy is a

monotonic function and Sτ 2 ½log2C; log2N�, where C denotes
the number of disconnected components (see “Methods” for
proof and explanation). Consequently, for connected networks, Sτ
falls within the interval ½0; log2N�.

Definition of vertex entanglement. Quantum entanglement is a
kind of precious resource18, and the distance between quantum
entangled states and a collection of separable states can be defined
as entanglement. When it comes to complex systems, the influ-
ence of node removal on the largest eigenvalue of the adjacency
matrix is defined as dynamic importance36. Similarly, we can
define entanglement as the effect of changes in the local structure
of the network on spectral entropy. The network resulting from
the local perturbation is referred to as the v-control network,
denoted as Gv. The difference between the entropy of Gv and G
captures the confusion due to the function of vertex v, and in
mathematics, vertex entanglement (VE) can thus be defined as:

Eτ vð Þ ¼ Sτ Gv

� �� Sτ Gð Þ: ð3Þ

Here, diffusion time τ is a tunable parameter, enabling us to study
the network entanglement from a time-varying perspective. In
contrast to dynamical importance36, which only considers the
variation of maximum eigenvalues, our entanglement measure

can quantitatively portray the importance of vertices to the
overall network topology.

Vertex entanglement captures the effect of the perturbations
caused by a single vertex on the spectral entropy of the network.
It has been discovered that spectral entropy reflects the functional
diversity in complex systems28. Thereby, a vertex is supposed to
be more important in our framework if it can affect the system’s
functional diversity more severely. Vertex entanglement is thus a
fundamental metric for the dynamic diversity of information and
measures the importance of vertices in complex systems. In
addition, diffusion time τ serves as a tunable parameter in the
computation of VE, enabling us to study network response at
micro, meso, and macroscales. We conducted an analytical study
on the impact of τ on vertex entanglement with a mean-field
approximation, and the results show that

● τ→ 0: E0 ≈ 0,
● τ ! 1 : E1 � log2Cv .

Here, Cv denotes the number of connected components of Gv.
In the mesoscale, where 0 < τ <∞, vertex entanglement also
captures the impact of topological perturbations (see “Methods”).
The variations in the vertex entanglement with respect to
diffusion time are depicted in Fig. 1.

As the name indicates, Gv is under the control of vertex v. One
of the possible methods to construct Gv is to detach vertex v
crudely and without any other adjustments16. Nevertheless, this
method will result in changes to many fundamental properties of
the network, including the number of links M and the average
degree 〈k〉. A nature principle associated with probabilistic
dismantling is that Gv should preserve as much as possible the
statistical properties of the original network G, such asM and 〈k〉.
To achieve this, instead of detaching vertex v, we transform the
subgraph formed by v and its neighboring vertices into a
probabilistic complete graph, i.e., a graph where all possible edges
between vertices are present with a certain probability, with the
link relationships between other vertices remaining unchanged.
The above process is analogous to shrinking v and its neighbors
into one super vertex and evenly distributing the original weights
within the super vertex. This strategy is visualized in Fig. 2.
Intuitively, if a node’s neighbors are densely connected, this
perturbation method tends to assign less importance to such a
node because there are many alternative ways to interact and
communicate with its neighbors. A thorough comparative
analysis between this perturbation strategy and directly detaching
nodes is deferred to Supplementary Note 2. Experiments
conducted on several empirical networks have also indicated that
better network dismantling results can be obtained with this
strategy, also see Supplementary Note 2.
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Fig. 1 The variations of vertex entanglement Eτ vð Þ with the diffusion
propagation time τ. The curves are colored based on the degree of the
detached vertex when constructing the v-control network Gv, with darker
orange indicating a larger degree. It can be observed that E0 vð Þ ! 0 when
diffusion is transient and E1 vð Þ ! log2Cv on an extremely large time scale,
where Cv denotes the number of connected components of Gv.

( ) ( )

Fig. 2 Construction diagram of the v-control network Gv. The process of
constructing Gv is somewhat analogous to shrinking v and its neighbors
into one super vertex and redistributing the original weights evenly within
the super vertex. Specifically, the transition from G to Gv occurs merely in
v and its neighbors, being restructured into a probabilistic complete
graph. The weight of each link in the probabilistic complete graph is
ωv ¼ sumof linkweights among v and its neighbors

possible links number ¼ kvþ0:5kv kv�1ð Þcv
kv kvþ1ð Þ ¼ cv

2 � cvþ1
kvþ1, with cv

presenting the clustering coefficient of Gv. For example, in the above
network, ωv ¼ 4

6 ¼ 2
3.
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In order for vertex entanglement to capture the structural
significance of individual players without relying on diffusion
time, a logical assumption is that the connectivity of the v-control
network is independent of diffusion time. Nevertheless, the
impact of local perturbations on the global network topology is
limited at smaller time scales. Conversely, longer diffusion time
tends to cause a significant overlap between the flow vectors
initiated from different nodes, resulting in a decrease in the ability
to identify important nodes. Therefore, we seek to find τ that
amplifies the potential impact of local control on information
dynamics across various time scales. From Fig. 1, we can draw
that the minimum value of vertex entanglement is negative, and
this property is proved in “Methods”. Therefore, the preferred
value of τ should be such that the vertex entanglement is
minimized, and a new definition of vertex entanglement with
independent diffusion time τ can be given as:

E vð Þ ¼ Eτ� vð Þ ¼ min
τ

Eτ vð Þ: ð4Þ

An issue of central importance is whether such τ* exists. It
would be inappropriate to dismantle networks based on vertex
entanglement if τ* is nonexistent. The proof of the existence of τ*
will be presented in the Methods Section. In addition, we
introduce an efficient method for approximating vertex entangle-
ment that significantly decreases the computational complexity
by one order of magnitude in “Methods”, while maintaining a
high degree of accuracy.

Correlation analysis. It is worth noting that the vertex entan-
glement contains rich information in addition to network cen-
trality measures, such as degree and betweenness. In Fig. 3a–e, we
illustrate the physicist collaboration network37 corresponding to
different node centralities, namely degree, Coreness38, Collective
Network Entanglement (CNE)16, Betweenness24, and vertex
entanglement (VE). The Pearson correlation matrix among all
index pairs is depicted in Fig. 3f. Here, we adopt the opposite
values to VE since VE is negative, ensuring that each metric has
positive values, with larger values indicating greater importance.

As evidenced by the comparatively low correlations between
vertex entanglement and the other four indicators, it is apparent
that vertex entanglement encapsulates a plethora of information
and is poised to provide fresh insights beyond those of established
metrics. This serves as a noteworthy, albeit frequently overlooked,
indicator of the potential metric of the VE metric. Additional
correlation analyses will be presented in Supplementary Note 3.

Entanglement-based network dismantling. Discovering the
minimum set of units that can drive a complex system to its
collapse, also termed network dismantling, is a famous NP-hard
problem. According to our discussion (see “Methods”), vertex
entanglement is closely related to network connectivity, robust-
ness, and information transfer efficiency. Therefore, the proposed
vertex entanglement in this paper provides an effective frame-
work for network dismantling.

To validate the applicability of the proposed metric, we
conduct targeted attack experiments on four empirical systems,

Fig. 3 Visualization and correlation analysis of the ranking of five centrality indicators. The physicist collaboration network is taken as an example.
a–e The colors of vertices are proportional to the normalized values of the indicators. Here, min-max normalization is adopted. Since the values of VE are
negative and smaller values of VE correspond to more important nodes, we perform an additional operation of taking the opposite of VE before normalizing
it. This transformation is solely intended to ensure consistent interpretation across all metrics, where higher values indicate greater importance of nodes.
f visualizes the pairwise Pearson correlation, with letters a–e in the abscissa and ordinate representing Degree, Coreness, CNE, Betweenness, and the
opposite value of vertex entanglement, respectively. a–c illustrate that the vital nodes are tightly interconnected with each other, forming clusters in
specific regions of the network. In contrast, d, e show a different pattern, where significant nodes are dispersed throughout the network, and in (e), the vital
nodes are more evenly distributed than in (d).
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that is, the power-grid network (Grid)39, crime network
(Crime)39, physicist collaboration network (Collaboration)37,
and Petster–Hamster online social network (PH)39. We compare
the proposed method with several state-of-the-art dismantling
schemes, namely collective influence (CI)40, Belief Propagation
guided Decimation (BPD)41, Collective Network Entanglement
(CNE)16, Generalized Network Dismantling with Reinsertion
(GNDR)9, FINDER42, CoreHD43, MinSum44, and Betweenness
centrality24. In addition, as some strongly entangled vertices may

aggregate and their contributions may overlap, there may be
some difference between the dismantling result of attacking a
small number of vertices and that of attacking a larger one.
Therefore, we adopt the reinsertion algorithm44, which is often
used to improve an existing solution, to enhance the network
dismantling performance of VE.

The size of giant connected components (GCC) is commonly
used to indicate the robustness of the network against random or
targeted attack45, as giant clusters are generally necessary to
ensure the proper functioning of the system. So, we utilize
normalized GCC size to compare networks of various scales.
Figure 4 exhibits the network dismantling processes of the nine
dismantling schemes on the four empirical systems, enabling a
visual and thorough comparison. We also list the proportion of
attacked vertices when the dismantling target size is 1% in
Table 1. It can be drawn that VE leads to a much faster collapse
than other strategies.

The robustness measure R46 is another index that quantita-
tively describes the performance of different network dismantling
algorithms by measuring the area under the dismantling curve.
Mathematically, R is defined as

R ¼ 1
N
∑
n
gðnÞ; ð5Þ

where g(n) is the normalized GCC size after removing n vertices.
The normalization factor 1

N allows R to be compared between
networks of different sizes. Obviously, a smaller R corresponds to

(a) (b)

(c) (d)

Fig. 4 Dismantling process of different methods. Targeted attack towards a power-grid network, b crime network, c physicist collaboration network, and
d Petster–Hamster online social network with the dismantling target size of 1%. The x axis values represent the removed fraction of vertices, and the y axis
values represent the size of giant connected components (GCC) after normalization. Compared with the other eight methods (see legend of panel a for the
color code), the number of vertices attacked and the area beneath the curve for vertex entanglement (VE, red line) are comparably small in all cases,
indicating superior dismantling performance. b Red nodes suggest that they are under direct attack, gray nodes indicate that they belong to various small
connected components, and the colors of the remaining nodes signify how they are distributed among various large connected components.

Table 1 The efficiency performance of various network
dismantling strategies.

Network Grid Crime Collaboration PH

CI 0.107 0.545 0.351 0.513
BPD 0.063 0.134 0.100 0.236
CNE 0.186 0.336 0.231 0.504
GNDR 0.066 0.135 0.098 0.234
FINDER 0.122 0.383 0.226 0.438
CoreHD 0.110 0.408 0.209 0.478
MinSum 0.074 0.138 0.103 0.255
Betweenness 0.351 0.569 0.246 0.450
VE 0.062 0.130 0.097 0.229

The proportion of vertices attacked to achieve the dismantling target measures the dismantling
efficiency, with lower values indicating better performance. The dismantling target for each
method is 1% of the network size, and the best results are highlighted in bold.
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a more effective network dismantling strategy. Figure 5 shows the
robustness value R of various attack strategies on four real-world
networks. We conduct additional experiments in Supplementary
Note 4 on more empirical networks, demonstrating the
effectiveness and broad applicability of the proposed algorithm.
In general, the proposed method is comparable to and even
outperforms the others in terms of both dismantling efficiency
and robustness.

Entanglement-based ancillary diagnosis of ASD. Autism spec-
trum disorder (ASD) is considered a lifelong neurological and
genetic disorder25, whose manifestations include impairments in
social communication and interaction, sensory abnormalities,
repetitive behaviors, and varying levels of intellectual disability.
Early diagnosis of ASD is crucial because early intervention can
make a difference and lead to superior treatment outcomes.

To enhance our comprehension of how information is
transmitted within the brain of ASD patients, imaging techniques
are extensively utilized to deduce the structural and functional
interconnections between distinct brain regions, as demarcated by
parcellation into regions of interest (ROI)47. This enables brains
to be effectively simplified into complex networks with much
smaller sizes, which are subsequently scrutinized through the lens
of network science48. Specifically, the data about ASD and typical
control (TC) participants used in this study comes from the
second iteration of Autism Brain Imaging Data Exchange (ABIDE
II)49, which was openly released to the scientific community in
June 2016. This study enrolls 40 participants, from ABIDE II-
Indiana University site, 20 with ASD and 20 with TC. A 600 × 600
brain functional network is obtained for each participant. More
details about data processing and network construction are
delayed to Supplementary Note 5.

To detect differences in brain networks between ASD
participants and TC participants, we utilize vertex entanglement
and find a significant disparity in the hub disruption indices
based on vertex entanglement between the two groups.

Specifically, we compute each subject’s hub disruption index
(HDI)50, a metric capturing the topological reorganization of the
brain network. First, entanglement E vð Þ is calculated for all ROIs
in the functional brain network among all participants, consisting
of Ea vð Þ for ASD participants and Et vð Þ for TC participants. The
average vertex entanglement of TC participants is denoted as
〈Et(v)〉. Subsequently, each subject’s hub disruption index κ
corresponds to the slope of the linear regression on the set of
ðhEtðvÞi; EðvÞ � hEtðvÞiÞ� �

. This means that for each participant,
their HDI is calculated based on how their vertex entanglement

compares to the average vertex entanglement of TC participants.
Therefore, HDI captures the topological abnormalities in the
functional brain network. Because different thresholds have
different effects on the results, we calculated the average hub
disruption index of five thresholds (ranging from 1 to 5% with a
1% interval) to obtain robust and comprehensive results. In
addition, we compute the hub disruption indices based on other
centrality metrics with the same approach.

As the statistical results shown in Fig. 6, the VE-based hub
disruption index can clearly differentiate between ASD and TC
participants. In this analysis, we focus on four metrics: VE,
Betweenness24, CNE16, and CoreHD43, as the other methods
employed in the previous experiments are primarily tailored for
network dismantling tasks. Evidently, the hub disruption indices
for individuals with ASD are significantly lower than those for TC
subjects across various metrics, indicating that the brain networks
of ASD patients may be more stable and adaptable, which could
compensate for impairments of certain brain regions. This special
feature of ASD patients’ brain network can be used to help
diagnose ASD.

Moreover, a significant positive correlation (r= 0.681, P=
0.001857) has been observed between ASD participants’
performance intelligence quotient (IQ) and the VE-based hub
disruption index, while no significant correlations are detected
between Performance IQ and the other three metrics, as shown in
Fig. 7. In our study, we employ the Performance IQ, as
ascertained by the Wechsler Abbreviated Scale of Intelligence
(WASI), as a measure of cognitive ability, which has been widely
used and recognized as a reliable tool in assessing cognitive
abilities across various settings51. The relationship between the
Performance IQ and the brain hub disruption index in Fig. 7
provides valuable insights into potential associations between
cognitive abilities and disruptions in brain networks. Specifically,
if the disruption of brain topology is more severe, then the
individual’s Performance IQ tends to be lower. To perform these
analyses, Shepherd’s pi correlation is employed here as it provides
adequate statistical power and is less affected by outliers. This
method is an extension of Spearman’s correlation and addition-
ally incorporates a bootstrap-based estimation of the Mahalano-
bis distance, thereby enabling an unbiased detection and

Grid Crime Collaboration PH

Fig. 5 The robustness performance of various network dismantling
strategies. Per-method cumulative robustness measure R, which measures
the area under the curve of network dismantling, with lower values
indicating better performance. The dismantling target for each method is
1% of the network size, and all values are scaled to the one of VE for the
same network. VE CNE

Betweenness

CoreHD

H
ub
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600 ROIs
ASD
TC

Fig. 6 Average hub disruption indices based on different centrality
metrics. The vertical coordinate of each dot is the average hub disruption
index for five brain networks with a sparsity of 1% to 5% (1% interval).
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exclusion of outliers. Furthermore, Shepherd’s pi correlation52

analysis is particularly suited for small sample sizes53. Detailed
statistical analysis and the Spearman correlation analysis without
moving outliers are deferred to Supplementary Note 5.

Our findings align with the theory that ASD patients may have a
different network organization compared to typically developing
individuals54. Specifically, individuals with ASD may experience
functional activity suppression in some key brain areas, indicating
the diminished importance of those key areas. In order to maintain
essential brain activity, the functional connectivity of some limbic
brain areas, i.e., vertices of lower importance, is likely to be
enhanced to compensate for the suppression, thus increasing the
significance of these limbic brain vertices. The combined effect of
suppression and compensation mechanisms results in a smaller
hub disruption index κ, and individuals with more severe ASD
symptoms tend to have smaller κ.

Conclusion. In this study, we employ networks’ density matrices
to measure the entanglement between vertices and their respec-
tive networks. Specifically, we propose an approach to key vertex
identification by analyzing the effect of perturbations generated
by a single vertex on the overall functionality of the network. In
addition, entropy is found to be a functional diversity indicator of
a node as a sender of information28, and VE measures the change
in the spectral entropy of the network resulting from the per-
turbations. Thereby, VE is an ideal metric for assessing the sig-
nificance of vertices in terms of the functional diversity of the
whole system.

The diffusion time τ is tunable when calculating VE, allowing
the network response to be studied from micro, meso, and
macroscales. As theoretical and experimental analysis reveals,

vertex entanglement can effectively capture the transport proper-
ties and dynamic diversity of complex systems. To be specific, VE
tends to zero when diffusion is transient and will converge to
log2Cv (Cv denotes the number of connected components of Gv)
on an extremely large time scale. This advantageous property
highlights the potential of our metric to address real-world issues
and promises a wide range of practical applications. The
multiscale property of VE renders it versatile in analysis, and
we further introduce a reliable method for selecting τ in practical
scenarios. Moreover, we propose an approximate calculation for
vertex entanglement that effectively reduces the complexity by an
order of magnitude without compromising its accuracy. This is
particularly useful in applications where excessive overhead is a
concern.

We perform correlation analysis before delving into VE’s ability
to identify key vertices, and our findings indicate that VE offers
valuable insights beyond traditional network centrality metrics by
providing rich information. As an application, vertex entanglement
can be applied to network dismantling tasks. We fine-tune the v-
control network for the sake of an improved dismantling result,
and find that targeted attacks on a few strongly entangled vertices
in the network can lead to the collapse of the entire network.
Empirical results demonstrate that VE outperforms other cutting-
edge algorithms in dismantling tasks, highlighting its superior
performance gains. Early diagnosis of ASD patients is quite
daunting. As another significant application, entanglement offers
significant contributions to its diagnosis. The hub disruption index
based on vertex entanglement for ASD patients is significantly
lower than that of typical controls. Moreover, the hub disruption
indices exhibit a significant positive correlation with the intelli-
gence quotient (IQ) of ASD participants, suggesting that VE
promises to serve as a diagnostic tool for ASD.
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Fig. 7 The Shepherd’s pi correlations between average hub disruption indices (HDI) and intelligence quotient (IQ) of autism spectrum disorder
participants. The horizontal axes are the average hub disruption indices based on a Vertex Entanglement (VE), b Betweenness, c CNE, and d CoreHD, over
brain networks with sparsity ranging from 1 to 5% (1% interval). The dashed line is obtained by least squares fitting.
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This study explores the intersection of quantum information and
complex systems at the research frontier, providing fresh insights
into the intrinsic topological properties of complex systems.
Specifically, key players are those that are robust against local
perturbations. The proposed entanglement frame can be employed
to identify key players in complex networks, including but not
limited to identifying critical vertices. A less explored but promising
research direction is to identify influential mesoscale structures,
such as measuring the significance of simplices in simplicial
complexes11,55. Simplices are a natural extension in our framework
as nodes can be seen as 0-simplices. Similarly, we can perturb
simplices and their associated neighborhood structures in simpli-
cial complexes to assess their impact on the structure and
functional diversity. However, we note that perturbing larger
subgraph structures will significantly affect entropy, resulting in
greater inaccuracies in approximate analysis and computation.
Therefore, more efficient analytical and computational methods are
required. The extension of our framework to simplicial complexes
introduces further potential applications, such as higher-order link
prediction56 and simplex information imputation57.

Methods
Multiresolution analysis of entanglement. Time τ serves as a
tunable parameter in the computation of VE, which enables the
study of the network response at micro, meso, and macroscales.
In this section, we conduct an analytical study of the properties of
vertex entanglement across various diffusion time scales.

According to the definition22, spectral entropy can be figured
out using the spectral decomposition theory that

Sτ Gð Þ ¼ �tr ρ log2ρ
� � ¼ � ∑

N

i¼1
λi ρ
� �

log2λi ρ
� �

: ð6Þ

By applying λi ρ
� � ¼ e�τλi Lð Þ=Z, it can be derived that

SτðGÞ ¼
1

Z ln 2
∑
N

i¼1
e�τλi Lð Þ τλi Lð Þ þ lnZ

� � ð7Þ

¼ τ

ln 2
∑
N

i¼1
λi Lð Þλi ρ

� �þ log2Z ð8Þ

¼ τ

ln 2
tr Lρ
� �þ log2Z; ð9Þ

where Z ¼ trðe�τLÞ ¼ ∑N
i¼1 e

�τλiðLÞ is the partition function. The
last equation holds as L and ρ can be spectrally decomposed
simultaneously. Mean-field approximations for network entropy
have recently been suggested for the random walk-based58 and
continuous diffusion-based16 density matrices, together with
analytical and numerical investigations demonstrating that this
approximation is quite effective in approximating the dynamics
of systems at the meso- and macroscales58. Hence, the sum term
in Eq. (8) can also be simplified with mean-field
approximation16,58 as follows:

hλiðLÞλiðρÞi ¼ hλiðLÞihλiðρÞi þ hðλiðLÞ � hλiðLÞiÞðλiðρÞ � hλiðρÞiÞi
� hλiðLÞihλiðρÞi:

ð10Þ
Since the number of λi satisfying λi Lð Þ ¼ 0 is equal to the

connected components C59, one can further obtain

hλiðLÞi ¼
1
N

∑
N

i¼1
λi Lð Þ ¼ 1

N � C
∑
N

i¼Cþ1
λi Lð Þ ¼ 2m

N � C
; ð11Þ

and the mean value for λi(ρ) follows that

hλiðρÞi ¼
1
N

∑
N

i¼1

e�τλi Lð Þ

Z
¼ 1

N � C
∑
N

i¼Cþ1

e�τλi Lð Þ

Z
¼ 1

N � C
1� C

Z

� �
:

ð12Þ
A simplified form can thus be obtained through the mean-field

approximation that

Sτ Gð Þ � 2mτ

ln 2ðN � CÞ 1� C
Z

� �
þ log2Z: ð13Þ

Thereby, the vertex entanglement can be formulated as

Eτ vð Þ ¼ Sτ Gv

� �� Sτ Gð Þ

� 2mτ

ln 2ðN � CÞ
Cv

Zv
� C

Z

� �
þ log2

Zv

Z
;

ð14Þ

where Cv is the number of connected components of Gv.
Assuming that the v-control network maintains the number of
connected components, i.e., Cv= C, and by performing the
Taylor expanding, we can obtain

Eτ vð Þ ¼ 2mτC
ln 2 N � Cð Þ

Z � Zv

ZvZ
þ log2

Zv

Z

� 2mτC
ln 2 N � Cð Þ

ΔZ
ZvZ

þ ΔZ
Z ln 2

;

ð15Þ

where ΔZ= Z− Zv.
Moreover, for large-scale networks, the vertex entanglement

can be further approximated as

Eτ vð Þ ¼ ΔZ
Z ln 2

1þ τChki
Zv

� �
; ð16Þ

where 〈k〉 stands for the average vertex degree, and
hki ¼ 1

N ∑
N
i¼1 ki ¼ 2m

N � 2m
N�C. The partition function Z captures

the topological property of the system, indicating the average
return probability of a random walker58.

In the following, we will discuss the properties of vertex
entanglement in the various diffusion time limits. As a
preparation, we will demonstrate that the spectral entropy is
monotonically decreasing with respect to diffusion time τ and
Sτ 2 log2C; log2N

� 	
.

Since

∂log2Z
∂τ

¼ 1
Z ln 2

∂Z
∂τ

¼ 1
Z ln 2

∑
N

i¼1
�λi Lð Þe�τλi Lð Þ

� �
¼ � tr Lρ

� �
ln 2

;

ð17Þ
according to Eq. (9), we can conclude that

∂Sτ
∂τ

¼ tr Lρ
� �
ln 2

þ τ

ln 2

∂tr Lρ
� �
∂τ

� tr Lρ
� �
ln 2

¼ τ

ln 2

∂tr Lρ
� �
∂τ

¼ τ

Z2 ln 2
� ∑

N

i¼1
λ2i Lð Þe�τλi Lð Þ � ∑

N

i¼1
e�τλi Lð Þ þ ∑

N

i¼1
λi Lð Þe�τλi Lð Þ

� �2
" #

< 0:

ð18Þ
The last inequality holds exploiting the Cauchy–Schwarz inequal-
ity. The process of entropy reduction is somewhat intriguing, but
we find it explainable. As the diffusion time τ increases, there is a
notable overlap between the flow vectors initiated from nodes,
which results in lower spectral entropy28.
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When τ→∞, it can be directedly obtained that Z→ C and
τ
ln 2 tr Lρ

� � ¼ τ∑N
i¼1 λi Lð Þe�τλi Lð Þ

ln 2C ! 0. Hence,

S1 ¼ τ

ln 2
tr Lρ
� �þ log2Z ¼ log2C: ð19Þ

At this stage, the information has spread throughout the network.
Additionally, when τ→ 0, spectral entropy follows that

S0 ¼
τ

ln 2
tr Lρ
� �þ log2Z ¼ log2N: ð20Þ

This result is consistent with the fact that when τ= 0, no signal
propagation happens and thus the spectral entropy reaches its
maximum value, as no information regarding the network
structure is available.

Since we have proved that spectral entropy is monotonically
decreasing concerning τ, it can be concluded that
Sτ 2 ½log2C; log2N�. In particular, Sτ 2 ½0; log2N� for those
connected networks.

The diffusion time τ is a tunable parameter in the definition of
vertex entanglement, and we will discuss asymptotic expressions
for vertex entanglement.

When τ→ 0,

E0 vð Þ ¼ S0 Gv

� �� S0 Gð Þ ¼ 0: ð21Þ
When τ→∞,

E1 vð Þ ¼ S1 Gv

� �� S1 Gð Þ ¼ log2
Cv

C
: ð22Þ

In particular, for a connected network G, it further reduces to
E1 vð Þ ¼ log2Cv .

From the above discussion, we can conclude that vertex
entanglement is closely related to network connectivity and

information transfer efficiency. Therefore, VE is an ideal metric
for assessing the importance of vertices in terms of these properties.

Choosing a suitable diffusion time. Given our objective of
assessing the significance of network players from a structural
perspective, it makes sense to require that the connectivity of the
v-control network be independent of τ. However, it is crucial to
meticulously consider the impact of local perturbations on the
global network topology, as this impact is limited at smaller time
scales. Conversely, longer diffusion times tend to cause significant
overlap between the flow vectors initiated from different nodes,
thereby diminishing our ability to identify vital players. There-
fore, we seek to amplify the possible impact of local control on the
information dynamics at different time scales, and thus a suitable
diffusion time τ* should satisfy

τ� ¼ argmin
τ

Eτ xð Þ: ð23Þ

If there exists no such parameter τ* that satisfies Eq. (23), then
it is infeasible to perform network dismantling and address other
issues using vertex entanglement. In the following, we will prove
the existence of τ* and that the vertex entanglement with τ* is
less than 0.

Let

f τð Þ ¼ Z0

Z
¼ ∑N

i¼1 e
�τλ0iðLÞ

∑N
i¼1 e

�τλiðLÞ
: ð24Þ

Since f is a continuous function and f 0þð Þ ¼ 1, let
γ ¼ max

i
e�τðλ0i Lð Þ�λi Lð ÞÞ ≥ 1, then there exists τ > 0 such that
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Fig. 8 Approximation calculation. Average spectral entropies of v-controlled networks Gv are compared between the exact and approximate values for
three types of synthetic networks: a Erdős-Rényi network with P= 0.1, b Watts–Strogatz network with parameter K= 3 and P= 0.3, and c Barabási–Albert
network with m= 3. In all cases, networks with N= 64 are considered. For (d–f), the horizontal and vertical coordinates of each dot are the exact and
approximate values of vertex entanglement, and the Pearson correlations r between the exact and approximate VE values are reported at the top of each
panel. Panels in (d–f) take the negative logarithm for negative values of VE (both exact and approximate values).
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f τð Þ≤ γ. We can directly obtain that e�τλ0
i
Lð Þ

Z0 ≥ e�τλi Lð Þ
Z . Hence,

Eτ vð Þ ¼ Sτ Gv

� �� Sτ Gð Þ≤ 0: ð25Þ
Since Eτ vð Þ ¼ log2Cv ≥ 0 for very large τ, E vð Þ is doomed to

exist and be non-positive. Moreover, a smaller value of E vð Þ
reflects the greater impact of v on the network connectivity and
stronger entanglement. Intuitively, VE is negative can be
explained by the fact that we perturb the subgraph consisting
of node v and its direct neighbors into a probabilistic complete
graph when constructing the v-control network, which obviously
promotes the propagation of information within the network,
thus leading to a decrease in entropy, i.e., Sτ Gv

� �
< Sτ Gð Þ. In

addition, the diffusion time τ* should belong to ð0; 1
λ2
Þ as the time

for the system to stabilize is inversely proportional to the smallest
nonvanishing eigenvalue λ2 of L60.

Approximate calculation and complexity analysis. The most
computationally intensive step to calculate entanglement is solving
the spectrum problem, with complexity varying between OðN2Þ
andOðN3Þ depending on the sparsity of the network. Worse still is
the necessity to repeat spectral decomposition N+ 1 times, since
the entanglement of each vertex needs to be calculated.

The spectrum of the graph Laplacian matrix of Gv can be
presented as λi L

0ð Þ ¼ v0i
TL0v0i, where v0i is the eigenvector corre-

sponding to λi L
0ð Þ. Notice that the graph Laplacian matrix of each v-

control network Gv is only slightly changed by several terms from G
for large-scale sparse networks, and denote the change as
ΔLðΔL ¼ L0 � LÞ. This property enables an approximation algo-
rithm for computing entanglement to avoid resolving the spectrum
each time, thus resulting in a complexity reduction. Using the
eigenvector vi of L as an approximation instead of v0i we can obtain

λi L
0ð Þ ¼ vTi Lþ ΔLð Þvi ¼ λi Lð Þ þ vTi ΔLvi: ð26Þ

Since ΔL has only a few nonvanishing terms that need to be
calculated, the complexity of calculating entanglement can be
reduced to O k2


 �
N

� �
per vertex, where k indicates degree. As a

result, a single eigenvalue decomposition for the original network
is sufficient, eliminating the need for additional N decompositions
and thus reducing the complexity of the algorithm by an order of
magnitude. Moreover, empirical experiments suggest that this
approximation also achieves impressive performance in both
network dismantling and ASD diagnosis. Nevertheless, we admit
that the efficiency of this approximation algorithm still lags
behind other efficient centrality metrics. One potential avenue for
breakthrough rests in leveraging partial eigenvalues, as opposed
to the full spectrum, to approximate VE.

After that, the spectral entropy and vertex entanglement could
be solved within OðNÞ. When seeking the τ that minimizes E vð Þ,
each trial can as well be completed in OðNÞ according to Eq. (7).
Figure 8 presents a comparison between the approximate and
exact results in Barabási–Albert (BA)61, Erdős–Rényi (ER)62 and
Watts–Strogatz (WS)63 networks. It can be drawn that the
proposed strategy significantly reduces the complexity of the
method by roughly one order of magnitude while maintaining a
high level of accuracy.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The raw neuroimaging datasets are available from ABIDE II (https://
fcon_1000.projects.nitrc.org/indi/abide/abide_II.html). All datasets supporting the

findings of this study are available at the following GitHub repository: https://github.
com/Yiminghh/VertexEntanglement.

Code availability
The custom code that supports the findings of this study is available at the following
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