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Trimer quantum spin liquid in a honeycomb array
of Rydberg atoms
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Quantum spin liquids are elusive but paradigmatic examples of strongly correlated quantum

states that are characterized by long-range quantum entanglement. Recently, signatures of a

gapped topological Z2 spin liquid have been observed in a system of Rydberg atoms; how-

ever, the full capability of these platforms to realize quantum spin liquids extends far beyond

this state alone. Here, we propose the realization of a different class of spin liquids in a

honeycomb array of Rydberg atoms. Exploring the system’s quantum phase diagram using

density-matrix renormalization group and exact diagonalization calculations, we identify

several density-wave-ordered phases and a trimer spin liquid ground state with an emergent

U(1) × U(1) local symmetry. This liquid state originates from superpositions of classical trimer

configurations on the dual triangular lattice in the regime where third-nearest-neighbor atoms

lie within the Rydberg blockade radius. Finally, we discuss the conditions to enhance the

preparation fidelity of this state by a general Rydberg-blockade-based projection mechanism,

test the robustness of the trimer spin liquid phase in a range of realistic parameters, and

outline methods for its experimental detection.

https://doi.org/10.1038/s42005-023-01470-z OPEN

1 QuEra Computing Inc., 1284 Soldiers Field Road, Boston, MA 02135, USA. 2Department of Physics and Astronomy, Iowa State University, 12 Physics Hall,
Ames, IA 50011, USA. 3 Department of Physics, Princeton University, Princeton, NJ 08544, USA. 4 Princeton Center for Theoretical Science, Princeton
University, Princeton, NJ 08544, USA. 5 ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA. 6Departamento de Física
Teórica e Experimental, Federal University of Rio Grande do Norte 59078-950, Natal-RN, Brazil. 7These authors contributed equally: Milan Kornjača and
Rhine Samajdar. ✉email: rhine_samajdar@princeton.edu; swang@quera.com; fliu@quera.com

COMMUNICATIONS PHYSICS |           (2023) 6:358 | https://doi.org/10.1038/s42005-023-01470-z | www.nature.com/commsphys 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-023-01470-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-023-01470-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-023-01470-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-023-01470-z&domain=pdf
http://orcid.org/0000-0003-1403-5901
http://orcid.org/0000-0003-1403-5901
http://orcid.org/0000-0003-1403-5901
http://orcid.org/0000-0003-1403-5901
http://orcid.org/0000-0003-1403-5901
http://orcid.org/0000-0002-5690-4995
http://orcid.org/0000-0002-5690-4995
http://orcid.org/0000-0002-5690-4995
http://orcid.org/0000-0002-5690-4995
http://orcid.org/0000-0002-5690-4995
mailto:rhine_samajdar@princeton.edu
mailto:swang@quera.com
mailto:fliu@quera.com
www.nature.com/commsphys
www.nature.com/commsphys


Quantum spin liquids are strongly correlated many-body
systems that exhibit remarkable properties such as
emergent gauge fields, long-range entanglement, and

fractionalized excitations1,2. However, even after 50 years from
their original conception as resonating valence bond (RVB)
states3, concrete realizations of these fascinating phases in mag-
netic insulator materials are few and far between. Today,
advances in neutral-atom quantum simulators have unleashed the
potential for realizing highly controllable, coherent quantum
many-body systems, which are ideal testbeds for exploring
quantum criticality4–9, probing quantum many-body
dynamics10–12, and preparing exotic phases of quantum
matter13,14. In particular, recent experiments on a 219-qubit
programmable Rydberg quantum simulator15 have demonstrated
the remarkable realization of a gapped topological phase known
as the Z2 quantum spin liquid16–19.

The zoo of quantum spin liquids1,20,21, however, has many
other species including, for instance, states where the invariant
gauge group is U(1) instead of Z2. Such a U(1) quantum spin
liquid is particularly interesting from the perspective of funda-
mental physics as it hosts an emergent gapless excitation, termed
a photon in analogy to conventional electromagnetism22.
Unfortunately, experimental efforts to realize such a phase in
rare-earth pyrochlore materials23 are often complicated by
competing microscopic interactions. On the theoretical side,
standard parton mean-field constructions17,24 also do not guar-
antee the stability of the gapless state under monopole
fluctuations25. These varied considerations highlight the impor-
tance of discovering robust candidates for studying the rich
physics of U(1) gauge theories.

In this work, motivated by the recent experimental progress in
trapping neutral atoms, we explore the possibility of finding such
spin-liquid-like RVB states in finite-sized Rydberg arrays. We
show that, on the honeycomb lattice, strong van der Waals
interactions between Rydberg atoms lead to an effective blockade
constraint26–30 that can be mapped to a trimer constraint on an
underlying triangular lattice31. Related blockade-induced dimer
constraints have played a central role in the recent proposals of
gapped dimer-RVB Z2 spin liquids of Rydberg atoms on both the
kagome32–34 and the ruby35 lattice. On the honeycomb lattice,
however, the possibility for a trimer quantum spin liquid (TQSL)
state arises owing to the correspondence with trimer instead of
dimer coverings.

The emergent trimer constraint on the honeycomb lattice has
previously been explored in the context of classical hard-core
lattice gas models31,36,37 and ordered quantum correlated states
in móire Mott insulators38. The quantum RVB state of trimers
was first classified as a gapless liquid with an emergent U(1) ×
U(1) local symmetry in Ref. 39, where a microscopic model for a
Rydberg TQSL was also originally proposed. In this work, we
focus on a similar system but crucially, in the presence of realistic
long-ranged interactions, which are not only native to most
quantum simulation platforms but also known to be particularly
important vis-á-vis the stability of Rydberg spin liquids15. Spe-
cifically, we demonstrate the realization of a TQSL phase in
honeycomb Rydberg arrays of finite size, for a range of experi-
mentally relevant parameters, by carrying out detailed numerical
studies. Here, and throughout the rest of this paper, we use
“TQSL phase” to refer to a quantum phase defined by the
coherent superposition of all possible trimer configurations for a
given finite-sized lattice, in exact analogy to a dimer resonating
valence bond phase. However, we do not address the prospects
for the existence of such a TQSL phase in an infinite system,
which lies beyond the scope of our calculations.

In order to explore the nature of the ground states, we turn to
density-matrix renormalization group (DMRG)40,41 simulations

and exact diagonalization (ED) of the so-called PXP model on
finite-size clusters42. We find suggestive signatures of the TQSL
phase on the finite-size clusters explored—including, for example,
a high fidelity overlap with the perfect TQSL state—and
demonstrate its robustness to real experimental conditions that
include long-ranged interactions, relaxed boundary conditions,
and experimental state preparation protocols. In addition, we find
that the experimental protocol leads to an enhancement of TQSL
fidelities compared to the ground state. Our understanding of the
underlying mechanism thereof leads us to conjecture a universal
fidelity enhancement for any state that is a superposition of
configurations with the maximum allowed Rydberg excitations
(subject to blockade constraints). Finally, we discuss the experi-
mental signatures of the TQSL states and demonstrate that our
proposal can be implemented and studied in today’s Rydberg
atom quantum simulators.

Results
Trimer model mapping. We consider a system of Rydberg atoms
arrayed on a honeycomb lattice with the distance between
nearest-neighbor sites being a. This can be achieved experimen-
tally by placing the neutral atoms in optical tweezers and
arranging them using spatial light modulators, with currently
attainable system sizes in excess of 200 atoms13. The atoms are
driven between the ground ( g

�� �
) and highly excited Rydberg

states ( rj i) by a coherent laser drive with Rabi frequency Ω and
detuning Δ, leading to the Hamiltonian

H
_
¼ ∑

i

Ω

2
gi
�� �

ri
� ��þ h:c:

� �
�∑

i
Δni þ∑

i<j
Vijninj; ð1Þ

where ℏ is the reduced Planck constant, i denotes the lattice sites,
ni � rj ii rh j counts the occupation of the excited states, and Vij are
the van der Waals interactions between atoms in Rydberg states.
The van der Waals interactions fall off with the distance between
atoms, R, as VðRÞ ¼ C6=R6 and are central to the phenomenon
of the Rydberg blockade that we utilize. More precisely, of the
neighboring atoms lying within a distance Rb (the blockade
radius), defined by V(Rb) ≡ Ω, only one can be excited to the
Rydberg state, leading to the blockade mechanism.

Choosing a blockade radius such that the k= 3 nearest
neighbors of an atom on the honeycomb lattice are blockaded,
the Rydberg blockade constraint becomes identical to a trimer
constraint. The trimer in question is a covering of three edges
forming a triangle within the triangular lattice built from the
vertices placed at the centers of the honeycomb lattice. The
constraint enforces that no edge or vertex is shared between
trimers31. This trimer mapping is illustrated in Fig. 1a, where the
blockaded neighbors of a central honeycomb atom are shown to
match the corresponding forbidden triangular trimers. Thus, the
space of maximally filled blockaded configurations—also referred
to as the maximum independent set (MIS) subspace43,44—can be
matched to trimer coverings of the dual triangular lattice. The
number of covering configurations is found to scale exponentially
with the total system size (area)37, despite the stiffness of
individual trimer moves.

While the classical trimer model is of interest in its own right
as it was numerically found to avoid ordering for any density31,
we are interested in a trimer model with quantum fluctuations
that can be realized in Rydberg quantum simulators. The
possibility for, to the best of our knowledge, novel physics in
the quantum model arises by considering a trimer state that is an
equal superposition of all of the exponentially many trimer
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covering configurations (TC):

TQSLj i ¼ 1
ffiffiffiffiffiffiffiffiffiffi
DMIS

p ∑
TCi

TCi

�� �
; ð2Þ

where DMIS denotes the dimension of the trimer covering
subspace (i.e., the number of different trimer coverings), and
the sum extends over all the trimer coverings TCi. Such a state
was first proposed and classified by Ref. 39 as a gapless
U(1) × U(1) spin liquid. To see the emergence of the two local
U(1) symmetries, one can tripartition the triangular lattice such
that the trimers cover one site of each sublattice (A, B, C) and
then assign electric fields on A–B and B–C trimer bonds, as
shown in Fig. 1b 39. The total A–B (B–C) flux through a closed
loop is then given by the difference between the number of A and
B (B and C) sites enclosed by the loop, showing the presence of
two independent U(1) symmetries (see Supplementary Note 1 for
more details). The gaplessness of the TQSL state then follows
from Polyakov’s results45 and was also confirmed numerically by
Ref. 39.

While the abovementioned trimer mapping provides a general
starting point, the nature of the quantum ground state of the
microscopic model has to be carefully investigated to establish the
existence of a quantum spin liquid phase, because other
possibilities, including trivial disordered or valence bond solid
(VBS) states, cannot be excluded a priori. Here, we do so by
illustrating that certain ground states of the Hamiltonian (1) are
in the TQSL phase—adiabatically connected to the perfect TQSL
state on finite clusters.

DMRG phase diagram. We first explore the quantum phase
diagram of the Rydberg Hamiltonian on the honeycomb lattice
using DMRG on long cylinders of finite sizes46. We use bond
dimensions of up to 1800 and retain the three strongest Rydberg
interactions in Eq. (1), resulting in good convergence. The
additional details of the numerical calculations are presented in
the Methods section. We use the following quantities to map the
boundaries of the different phases:

SvN ¼ �Tr ðρ0 log ρ0Þ;
χ ¼ �∂E2

0=∂Δ
2;

F ¼ 2½1� j ΨðΔ=ΩÞ� �� ΨðΔ=Ωþ δÞ
�� �j�=δ2;

ð3Þ

where SvN is the von Neumann entanglement entropy (ρ0 being
the reduced density matrix for half of the system), χ is the energy
susceptibility (E0 being the ground state energy), and F is the
fidelity susceptibility ( Ψj i being the ground-state wavefunction).
The phase diagram is presented in Fig. 1c.

Among the main features of the phase diagram are the
presence of three ordered phases in three different blockade
regimes. Intriguingly, an additional unordered region with a large
entanglement entropy is apparent, clearly separated from the
trivial disordered phase by a phase transition. The Rydberg
density profile in all of the regions is presented in Fig. 2, while the
static structure factors for the different phases are given in
Supplementary Note 2. The first ordered phase appears in the
nearest-neighbor (k = 1) blockade regime, and it corresponds to
the Néel phase with a staggered order within the honeycomb unit
cell. The Néel state hosts a domain wall in the middle of the
32 × 4 honeycomb cluster employed here due to two different
domains being preferred by the open boundaries on each end.

The next-nearest-neighbor blockade (k= 2) leads to the
stabilization of the columnar phase, characterized by the pattern
of Rydberg excitations in Fig. 2. We note, however, that there
exists an extensive classical string degeneracy in this k= 2
blockade regime (see Supplementary Note 5). From that classical
manifold of states, the columnar pattern is stabilized by both
third-neighbor Rydberg interactions and quantum fluctuations.
Both of these effects prefer maximal distance between further-
neighboring Rydberg excitations (see See Supplementary Infor-
mation below), a condition satisfied by the columnar state.
Incidentally, thermal fluctuations in the classical hard-core boson
model on the honeycomb lattice lead to the same ordered phase
in this regime31.

The final ordered phase, which we call the brick phase38,
appears in the third-neighbor blockade regime (k= 3), with the
Rydberg excitations patterned on the so-called brick lattice38 (see
Fig. 2). Similar to the Néel state, open boundaries prefer different
brick domains, leading to a domain wall in the middle of the
cluster considered. The appearance of the brick ground state
observed in our simulations is a consequence of quantum
fluctuations breaking the exponential degeneracy of valid trimer
coverings for the k= 3 blockaded classical model via an order-by-
disorder mechanism47,48. The stabilization of the brick phase, in
particular, can be understood by noting that the quantum

Fig. 1 Trimer quantum spin liquid (TQSL) on a honeycomb lattice of Rydberg atoms. a In the regime where three nearest-neighbor Rydberg atoms are
within the blockade radius (k= 3 shell, shown in orange), the blockade-obeying configurations map exactly to the trimer coverings of the triangular lattice with
vertices at the centers of the hexagons31. The number of trimer coverings on the triangular lattice grows exponentially with the system size37. b The TQSL is an
equal superposition of exponentially many trimer coverings (one covering shown with filled triangles), and is characterized by a U(1) × U(1) local symmetry due
to the tripartite nature of triangular lattice with respect to trimers39. For the tripartition and the trimer configuration shown, we assign two sets of electric fields
directed from A to B and from B to C sublattices (arrows). The two U(1) degrees of freedom can be related to two conservation laws, as the independent fluxes
are equal to the charges NA−NB and NB−NC enclosed by a closed loop. c Quantum phase diagram of Rydberg atoms on a 32 × 4 honeycomb lattice retaining
three strongest interactions, as obtained by density matrix renormalization group (DMRG)46. The boundaries of the three ordered phases (Néel, columnar, and
brick) are mapped out by entanglement entropy, energy susceptibility, and fidelity susceptibility peaks (full lines). In addition, a region with a large
entanglement entropy is distinguished by fidelity and energy susceptibility (dashed lines) measurements in the regime where third-nearest neighbors are
blockaded. The properties of this unordered phase agree with the expected properties of the TQSL state on a finite cylinder.
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fluctuations prefer maximally flippable configurations. The brick
phase indeed satisfies the maximum flippability condition, as also
observed in classical simulations of the hard trimer model
relevant to twisted bilayer graphene38. Additional classical
interactions on top of the hard trimer model were shown therein
to favor maximal flippability and, in turn, also the brick state.

At intermediate detunings, however, an additional region
emerges in the k= 3 blockade regime at fillings close to 1/6. This
region shows no order and has a high entanglement entropy
throughout. On changing the detuning at a fixed blockade radius,
the fidelity and energy susceptibilities manifest a clear peak, as
presented in Fig. 3, presumably stemming from a nonadiabatic
change in the wavefunction compared to the trivial disordered
phase. To probe the intrinsic (bulk) nature of the transition, we
also calculate the energy susceptibility difference between 32 × 4
and 24 × 4 clusters (χ

b
), thus subtracting out the effects of four

boundary columns of atoms at each end of the system. The
energy susceptibility peak persists after such boundary subtrac-
tion with sizable magnitude, pointing to a putative transition in
the bulk (inset of Fig. 3). We label this highly entangled region as
TQSL in the phase diagram of Fig. 1 due to its separation from
the trivial disordered phase and its appearance in the k= 3
regime with the density of ≈ 1/6 expected for a TQSL state. In

addition, the gap is observed to decrease with system size in the
TQSL phase, in contrast to the near-constant gap size in the
trivial disordered phase (see Supplementary Note 2). The gap
scaling and the enhanced susceptibility towards boundary-
induced density oscillations (see Supplementary Note 2) are
seemingly suggestive of a gapless state in the thermodynamic
limit, broadly consistent with the expectations for a TQSL. We
note, however, that the state is generically observed as gapped for
finite clusters (since the discrete, allowed momenta need not
coincide with the gapless point in momentum space) in the
absence of twisted boundary conditions or flux insertion49–51. In
the remainder of this paper, we focus on this intriguing TQSL
regime identified by our DMRG simulations and present evidence
for the existence of a true spin liquid ground state on finite
clusters.

TQSL in the PXP model. In order to analyze the existence,
characterization, and experimental feasibility of preparation of
the TQSL state, we perform large-scale exact diagonalization
calculations42. For these simulations, we employ a hard-
constraint approximation to the full Rydberg Hamiltonian,
known as the PXP model52, to enable us to reach large system
sizes. The essence of this approximation is to eliminate states
violating the Rydberg blockade from the Hilbert space. This is
achieved by making the first k Rydberg interactions infinite and
discarding the longer-range interactions while projecting the
Rabi-oscillation term into the subspace of allowed configurations,
leading to the Hamiltonian:

HPXP

_
¼ Ω

2
∑
i
Pσxi P � Δ∑

i
ni; ð4Þ

where P is the projector onto the blockade subspace and
σxi � ðjgiihrij þ h:c:Þ. This allows us to explore the k= 3 blockade
regime with ED42,53 on clusters of up to 60 sites with periodic
boundary conditions in both directions, thus also better simu-
lating the bulk of a large system. The PXP approximation has
been effectively employed to understand a variety of phenomena
in Rydberg systems, including quantum scars11,54,55, emergent
lattice gauge theories56,57, and gapped spin liquids on the ruby
lattice15,35.

We map out the ground-state phase diagram of the PXP model
as a function of the tuning parameter, Δ/Ω. The phase boundaries
are determined by considering the overlap of the ground state
with the perfect TQSL state in Eq. (2) (equal superposition of all
MIS states for the given cluster), j Ψh j TQSLj ij, the fidelity and
energy susceptibilities, as well as changes in the low-lying energy
spectrum of the model (see Supplementary Note 3). To explore

Fig. 2 Phases on the honeycomb lattice. Rydberg excitation density (〈ni〉, shaded from light to dark according to the colorbar) profiles at representative
points of the DMRG (density matrix renormalization group) phase diagram from Fig. 1. While the columnar phase is defectless for this cluster, the Néel and
brick phases host a domain wall in the middle of the lattice due to their incommensurability with the open boundary. The two ordered domains on each end
of the system are indicated by red boxes, while the primitive unit cells for the ordered phases are delineated in blue. In contrast to the ordered phases, in
the TQSL (trimer quantum spin liquid) region, a state with no density-wave order and bulk density close to the expected value of 1/6 is observed, on top of
which, density oscillations spread inwards from the boundaries.

Fig. 3 Transition into the trimer quantum spin liquid (TQSL) regime. On
going from the trivial disordered phase to larger Δ/Ω, clear peaks are
visible in the fidelity (blue, evaluated from Eq. (3) for δ= 0.1 on a 32 × 4
cluster) and energy susceptibilities (orange) that are preserved upon
boundary subtraction (between 32 × 4 and 24 × 4 clusters; inset). The
second peak at a larger detuning arises from the transition into the
(columnar) ordered phase.
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the robustness of our predictions, we consider three different
honeycomb cluster shapes with several system sizes and aspect
ratios for each (see Supplementary Note 3). For all the shapes and
sizes probed, we find a sizable TQSL region. The TQSL phase is
identified by a high fidelity with respect to the perfect TQSL state
as well as by explicitly checking that the ground state is
predominantly near-equal weight and phase superposition of all
trimer configurations (see Supplementary Note 3). An example
for a particular cluster is shown in Fig. 4a, where the TQSL
overlap and the fidelity susceptibility are plotted as a function of
the detuning. Three regions, separated by fidelity susceptibility
peaks, are observed: a trivial disordered phase for small
detunings, a trimer RVB phase with a high TQSL overlap in
the intermediate regime, and a phase with decreasing fidelity at
high detunings pointing to the formation of a VBS state. In the
majority of the other clusters explored, the VBS state is
completely absent up to Δ/Ω= 5. This behavior, though driven
by quantum fluctuations, is reminiscent of the effect of thermal
fluctuations in the classical PXP-equivalent model at finite
temperatures, which also lacks ordering for k= 3 at any density31.
Furthermore, increasing the effective system size, as measured by
the number of classically degenerate trimer coverings for a given
cluster, leads to no drop in the TQSL fidelity in the spin liquid
region, as shown in Fig. 4b. Lastly, examination of the structure of
the ground states in the RVB phase reveals that they are
predominantly equal-weight and equal-phase superposition of all
trimer coverings (see Fig. 4c and Supplementary Note 3), strongly
suggesting the TQSL nature of the state on the clusters explored.

Dynamical preparation of TQSL states. We now explore the
feasibility of preparing the TQSL state with an experimentally
relevant quasi-adiabatic protocol, illustrated in Fig. 5a. The pro-
tocol, of total time T, consists of starting from an initial state
where all atoms are in g

�� �
and increasing Ω to a desired value at a

fixed large negative detuning in the first segment of duration 0.1T.
This is followed by increasing Δ to its desired final value, and then
finally, an Ω off ramp of length 0.1T at a fixed detuning. The
pulses are then smoothed with a Gaussian kernel to eliminate
short timescale effects.

The results for the TQSL overlap of the state at the end of the
ramp as a function of the total time T are showcased in Fig. 5b.
The obtained fidelities are, in most cases (see Supplementary

Note 4), several orders of magnitude above the ground-state
fidelity. It also appears that the fidelities can approach arbitrarily
close to one with increasing T. The prepared fidelity depends only
weakly on detuning within the TQSL phase, while it drops in the
trivial and VBS phases (see Supplementary Note 4). This fidelity
enhancement points to a role that the quasi-adiabatic preparation
protocol might play in the preparation of spin liquid states in
general and is consistent with the recent results reported in
simulations of the Z2 spin liquid on the ruby lattice15,58.

Here, we are able to assign the origin of the fidelity
enhancement to the off-ramp part of the pulse. As shown in
Fig. 5c, the fidelity reached during the constant-Ω part of the
pulse is of the order of the ground-state fidelity. In the off-ramp
part (last 0.1T of time), a significant enhancement is seen. This is
in agreement with the experimental observations on the ruby
lattice (Private communication, Harvard atom array team.) and is
shown to be valid for both honeycomb and ruby lattices (see
Supplementary Note 4). We explain this off-ramp fidelity
enhancement by a projection mechanism. First, we note that
the time-dependent Hamiltonian during the off ramp can be
thought of as a sequence of Hamiltonians with ever-increasing
values of the ratio Δ/Ω. This leads to greater penalties for state
admixtures with less than the maximum allowed number of
Rydberg excitations (non-MIS configurations), thus leading to an
effective projection to the MIS subspace. We test this hypothesis
by comparing the TQSL overlap of the final prepared state to that
of the state obtained by projecting Ψð0:9TÞ

�� �
onto the MIS

subspace. We find that while the fidelity of the projection is
always higher than that of the prepared one, the two approach
each other for long total preparation times (Fig. 5b and
Supplementary Note 4). While such a mechanism appears to be
connected to the PXP model’s details, we show in the next section
that it applies more generally to Rydberg systems in a slightly
modified form.

Robustness of the TQSL state. Given the theoretically expected
RVB nature of the TQSL state, it is important to probe its
robustness to perturbations stemming from the tails of the van
der Waals interactions, which break the classical degeneracy of
the trimer configurations. These (experimentally relevant) inter-
action tails discarded in the pure PXP model of Eq. (4) are always
present in real atomic systems, so their inclusion is necessary in a

Fig. 4 Trimer quantum spin liquid (TQSL) in the PXP model. A robust TQSL is detected in the PXP model42,53 with up to third-nearest neighbors
blockaded. a Overlap of the ground state with the perfect TQSL state (blue circles) reveals three distinct regions in the 10 × 6 shape 1 cluster with periodic
boundary conditions (see Supplementary Note 3), namely, a trivial phase at small Δ/Ω, a trimer resonatning valence bond (RVB) region with high TQSL
fidelity in the middle, and a VBS state with decreasing fidelity at high Δ/Ω. This is further confirmed by considering the fidelity susceptibility [orange
squares, evaluated from Eq. (3) with δ= 0.05], wherein two clear peaks stemming from the trivial-TQSL and TQSL-valence bond solid (VBS) transitions
appear. b The TQSL fidelity in the spin-liquid region is preserved upon increasing the effective system size, i.e., the number of trimer coverings [equivalent
to the maximum independent set (MIS) degeneracy, DMIS], irrespective of cluster size or aspect ratio. The inset shows the different cluster shapes
employed in simulations. The cluster from (a) is emphasized with a green triangle. c The spin-liquid nature of the state with high TQSL overlap is seen by
considering the ground-state superposition structure for the typical 6 × 10 shape 3 cluster at Δ/Ω= 3.0, circled in (b). All MIS configurations have
dominant almost-equal weights and equal phases (see Supplementary Note 3), while non-MIS configurations have an order-of-magnitude smaller weights.
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realistic model. Note that the PXP approximation of the hard
blockade was already relaxed completely in the DMRG studies
above. Proceeding further, we now add the interaction tails up to
R ¼ 3a to the PXP Hamiltonian of Eq. (4). The strength of the
interaction tails is controlled by the dimensionless parameter Rb/a
that we explore in the realistic range between 2 and

ffiffiffi
7

p
for the

k= 3 regime.
The resulting ground-state fidelities for several values of Rb/a

are shown for a typical case in Fig. 6a, with additional clusters
presented in Supplementary Note 3. Without tails, this cluster
does not show a VBS phase up to Δ/Ω = 5.0, thus presenting an
extended TQSL region with the wavefunction character shown in
Fig. 4c. Taking the tails into account, a sizable spin-liquid region,
manifested as a high TQSL fidelity plateau, survives to large Rb/a
at intermediate detunings. The size of the region and the
maximum TQSL fidelity is reduced upon increasing the strength
of the interaction tails. In addition, this region is now followed by
the VBS plateau with fidelities independent of the interaction
tails’ strengths.

Next, we explore the quasi-adiabatic preparation protocol of
Fig. 5a for the TQSL state in the presence of long-ranged
interaction tails. The optimal TQSL overlap during the prepara-
tion protocol is shown in Fig. 6b for parameters corresponding to
peaks of the ground-state fidelity in the TQSL phase [solid
symbols in Fig. 6a]. We observe that the preparation fidelity—
despite being lower than that for the pure PXP case and falling off
with increasing Rb/a—still significantly outperforms the ground-
state fidelity. Unlike the pure honeycomb PXP case, there now
exists some optimal value of the total preparation time that is
linear in the system size (see Supplementary Note 4), similar to
the case of the pure PXP model on the ruby lattice58.

In order to gain further insight into the fidelity enhancement
observed with dynamical state preparation, we also consider the
fidelity as a function of the preparation time, as showcased in
Fig. 6c. We find that in the first 0.9T segment of the protocol
(denoted by gray dashed lines), the TQSL overlap from this
dynamical preparation is similar to the one obtained from the
ground state [see Fig. 6a]; however, the Ω off-ramp (the last 0.1T)
leads to a significant fidelity enhancement over the ground state.
Compared to the case without interaction tails, an additional
upturn in 1� j ΨðtÞ� �� TQSLj ij is consistently observed at the end
of the ramp, leading us to consider the optimal protocol fidelity at
intermediate times instead of the final prepared fidelity in Fig. 6b.
This upturn can also be explained within the off-ramp projection
mechanism. The semi-adiabatic protocol suppresses the

destabilizing effect of the interaction tails for intermediate total
preparation times, leading to a state before the off ramp (at 0.9T)
that has equal MIS weights and phases, but still large admixtures
of non-MIS configurations. Then, at the start of the off ramp, an
effective projection to the k= 3 MIS subspace takes place.
However, once Ω drops to a value such that the next shell
becomes effectively blockaded, i.e., Vk+1(Rb/a)=Ω(t*), the
projection to the MIS subspace for k = 4 is the effective
description of the off-ramp Hamiltonian evolution. Therefore, if
one wishes to optimize for k= 3 ground states, the off ramp
should be sharply cut off before t*. This picture is independent of
the PXP-type approximations and generalizes well to the
preparation of entangled quantum states or to the optimization
algorithms44,59 arising from blockade physics in Rydberg atom
simulators.

Discussion
Thus far, we have shown how a highly entangled TQSL phase can
emerge in a honeycomb lattice of Rydberg atoms. Although its
existence as a true thermodynamic phase in the infinite-system
limit remains to be established, here, we have presented evidence
for its emergence and robustness on finite-sized clusters.
Exploring the experimentally accessible preparation protocols, we
also uncovered an off-ramp fidelity enhancement mechanism
potentially relevant to a broad range of quantum state prepara-
tion tasks in Rydberg platforms. We now turn to the question of
the experimental characterization of the TQSL state.

The spin-liquid state that we report here is directly accessible in
current-generation Rydberg atom simulators15,60 that can realize
the relevant lattice geometry, achieve the necessary parameter
regimes, and employ the quasi-adiabatic preparation protocol.
From our simulations, the parameter range to search for the
TQSL phase in experiments corresponds to Rb/a ≈ 2.0–2.4 and
Δmax=Ωmax � 1:0–4.0. We consider 87Rb atoms and laser cou-
pling a hyperfine ground state to a 70S1/2 Rydberg state; a realistic
choice of Ωmax ¼ 4:0 ´ 2πMHz and
C6= 8.6 × 105 × 2πMHz μm6 leads to a honeycomb lattice con-
stant of a ≈ 3.2–3.9 μm, therefore easily accommodating L > 200
atoms in a 100 × 100 μm array. The typical preparation times
of ~ 3–5 μs correspond to T/L ~ 0.1, which, though currently less
than optimal, should still lead to sizable TQSL fidelities and are
comparable to the ones employed in the ruby-lattice experiments
preparing a Z2 spin liquid phase15. Further improvements to
experimental coherence times by increasing the laser power and

Fig. 5 Adiabatic preparation of the trimer quantum spin liquid (TQSL). a We test the feasibility of preparing the TQSL state with an experimentally
relevant adiabatic preparation protocol. The ramp-down time (Tdown= 0.9T) is denoted by a dashed gray line, the Rabi pulse with a blue line, and the
detuning pulse with orange. b This results in prepared state fidelities that are several orders-of-magnitude better than the ground-state ones, as seen by
plotting the prepared TQSL overlap as a function of the total preparation time (in units of 2π/Ω), rescaled by the system size (L=NxNy), for parameters
representative of the TQSL phase. The blue dashed line shows the projection of Ψð0:9TÞ

�� �
onto the MIS (maximum independent set) subspace. c TQSL

overlap during the quasi-adiabatic sweep presented for the filled data points in (b), showing that the gain compared to the ground state stems mostly from
the off-ramp part of the protocol, to the left of the gray dashed lines denoting Tdown. The off ramp effectively acts as a projector to the MIS subspace (see
Supplementary Note 4) in a mechanism that is expected to be a general feature of Rydberg systems.
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moving to larger intermediate-state detunings can extend T/L to
the optimal preparation time in experiments.

Two main experimental signatures would be sufficient to
conclusively characterize the TQSL state. The first corresponds to
testing its trimer character and the associated U(1) × U(1)
symmetry39 upon sampling the wavefunction in the experimen-
tally accessible Z-basis. For each snapshot of the TQSL state, a
corresponding trimer structure with fluxes can be assigned as
presented in Fig. 1. One can then test for the U(1) × U(1) con-
servation law by evaluating the flux enclosed by a closed loop (Φ)
and comparing it to the theoretical expectations based on the
occupation of different sublattices within the loop (NA,B,C). These
operators are direct analogs of the closed Z-loops15 employed for
detecting the Z2 topological phase on the ruby lattice. As an
example, for A–B electric fields of the loop in Fig. 7a, ZAB=
ΦAB− (NA−NB) is expected to be zero for a perfect (classical)
trimer covering, and likewise for B–C. For a quantum TQSL state
with additional number fluctuations (recall Ω ≠ 0), the value is no
longer exactly zero, and the trivial and the TQSL phase are
expected to be separated by a significant drop in 〈Z〉, as observed
in our ED simulations and presented in Fig. 7b. In addition, we
also sample the wavefunction in the TQSL region of the DMRG
phase diagram of Fig. 1. In contrast to the trivial disordered and
ordered columnar states surrounding it, the samples in the TQSL
regime are found to be all unique and have predominantly trimer
character. This trimer nature is demonstrated by evaluating 〈∣Z∣〉
in the TQSL region for the closed loop in Fig. 7a and averaging
over all such loops in the bulk of the system, with the results
shown in Fig. 7c.

The second experimental signature necessary for conclusive
detection of the TQSL state concerns showing the resonance
between different trimer configurations in superposition and can
be performed using X-basis measurements. The relevant X-loop
operators to be probed are those that flip between different trimer
configurations; these can be found by considering the difference
between two irregular breathing honeycomb lattices36–38,61

describing the underlying trimer configurations, as sketched in
Fig. 7d, e. An X-loop operator is comprised of spin flips,

Q
iσ

x
i in

the vicinity of the loop’s perimeter. This operator corresponds to
a particular breathing move and permutes within the classes of
states in the MIS subspace. Thus, measuring the expectation value
of different breathing operators, explicitly constructed from
irregular honeycomb mappings, can distinguish between the
TQSL and ordered trimer phases. The X-loop measurements

would require a global basis rotation applied in the experimental
protocol, akin to the measurements performed for the ruby
lattice15,35. One possible approach is mapping the two states to a
noninteracting hyperfine manifold and then employing single-
qubit rotations62. Such X-loop operators are expected to decay
exponentially with the perimeter of the loop X (due to the pre-
sence of nontrimer admixtures in the wavefunction) only in the
TQSL phase, in complete analogy to the ruby-lattice X-loops15,35.
The perimeter-law scaling is showcased for a breathing move in
Fig. 7, where any difference between two loop-connected con-
figurations is limited to the yellow-shaded region of two trian-
gular layers around the loop’s perimeter. The additional prefactor
for the X-loop’s intensity is related to the trimer subspace’s
fractionalization into sectors described by topologically distinct
irregular honeycomb lattices36. This prefactor is, in the worst
case, proportional to the inverse of the number of topological
classes, scaling as 1/L2 for system size L36. The constant nature of
the prefactor for a given system size and shape still allows for
probing the perimeter-law scaling of the X-loops, and thus, the
TQSL phase.

Other useful probes of the TQSL phase may be more indirect.
For instance, the TQSL should be featureless in the bulk, thus
setting it apart from proximate ordered phases in measurements
of the static structure factor. However, it should also be distin-
guishable from the trivial disordered state via energy suscept-
ibility measurements that exhibit a peak at the trivial–TQSL
transition (see Supplementary Note 2); note that the energy
susceptibility can be experimentally extracted from the total
density in the Z-basis, as χ= ∂〈n〉/∂Δ.

Our study opens up several research directions. Theoretically,
it would be valuable to understand whether a U(1) × U(1) spin
liquid state can be stabilized in (2+1) dimensions by coupling the
gauge field to gapless fermionic matter and to analytically
demonstrate the irrelevance of perturbations (in the
renormalization-group sense) about the spin-liquid fixed point25.
Numerically, a question for future work would be to establish the
TQSL as a stable phase of matter in the thermodynamic limit,
perhaps using methods such as infinite DMRG63 or quantum
Monte Carlo, which can provide new insights beyond exact
diagonalization calculations that inevitably suffers from finite-size
effects. Still, irregardless of the stability of the TQSL state in the
thermodynamic limit, our results show that it should be possible
to efficiently prepare the state on finite clusters with current
experiments. Experimentally, the preparation and

Fig. 6 Effect of interaction tails. To probe the robustness of the TQSL (trimer quantum spin liquid), we add the interaction tails up to R ¼ 3a to the PXP
Hamiltonian. a The ground-state overlap with the perfect TQSL state as a function of Δ/Ω for different interaction strengths (Rb/a) shows that the spin
liquid survives the long-ranged interactions on the typical cluster with the large MIS (maximum independent set) degeneracy, though with a smaller
parameter region for the TSQL phase and lower fidelities. b The adiabatic preparation protocol at parameters corresponding to the peak ground-state
fidelity in the TQSL region, denoted by filled symbols in (a), still shows maximum preparation fidelities significantly above the ground-state ones. In
contrast to the system without tails, an optimal total preparation time exists, showing the significance of semi-adiabatic effects. c The TQSL overlap during
the adiabatic sweep continues to show a sizable gain during the off ramp, with an additional nonmonotonic feature. The behavior during the off ramp in the
presence of interaction tails can still be explained by the universal off-ramp projection mechanism (see Supplementary Note 4).
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characterization of the TQSL state would pave a new path
towards exploring its physics, including the robustness of the
state, its gauge field dynamics, and the fractionalization of exci-
tations. For example, in order to probe the excitations of the
TQSL, Rydberg spectroscopy consisting of time-dependent cor-
relator measurements can be employed using locally addressable
Rydberg arrays62,64,65. Furthermore, it would be of interest to
investigate the nature of the quantum critical points leading out
of the TQSL phase as well as the associated nonequilibrium
quantum many-body dynamics and potential dynamical phase
transitions. More broadly, it would also be useful to explore
further the prospect of preparing other many-body-blockade
related emergent states, as proposed, e.g., in Ref. 28. Finally, the
generic understanding of fidelity enhancements developed in this
work can be of relevance to not only adapting the preparation
protocols for obtaining strongly correlated states but also solving
hard optimization problems66–68 on Rydberg atom simulators.

Methods
Exact diagonalization. Exact diagonalization simulations of the
PXP Hamiltonian were performed using the Bloqade42 and
Generic Tensor Networks53 packages with periodic boundary
conditions on a torus. The Hamiltonians in the blockaded sub-
space were generated by Bloqade’s routines and diagonalized
using the Lanczos scheme. The perfect TQSL state was generated
by finding all MIS configurations and calculating the MIS

degeneracy using Generic Tensor Networks. Three distinct shapes
were explored with a variety of aspect ratios and system sizes of
up to 60 sites. These cluster shapes are shown in Fig. 4b, which
presents an example of a Nx= 4,Ny= 4 shape 1 cluster, a
Nx= 6,Ny= 2 shape 2 cluster, and a Nx= 4,Ny= 3 shape 3
cluster.

State preparation. The quasi-adiabatic state preparation simu-
lations of the PXP model without tails were executed using
Bloqade’s42 ODE-solver-based routines with the same clusters
and boundary conditions as reported for exact diagonalization
and with the preparation protocol from Fig. 5a with a Gaussian
kernel radius set at T/100. The time step used for simulating the
dynamics was 5 × 10−4 (in units of 2π/Ω), leading to excellent
convergence as manifested by a TQSL overlap changing by at
most 10−7 upon further decreasing the time step to 10−4. The
state preparation with tails was executed with Bloqade-generated
Hamiltonians and pulses with Krylov-subspace-based evolution
routines. The time step used for Trotterization was 10−3, which
achieved a similar level of convergence as the ODE-solver-based
methods. The two methods tested against each other for the
Hamiltonian without tails have shown excellent agreement.

DMRG. The DMRG calculations were performed using the
ITensor package46. The geometry studied here consisted of a long

Fig. 7 Experimental probes of the trimer quantum spin liquid (TQSL). Two experimental probes that together conclusively characterize a state as a TQSL
are the measurements of Z- and X-loop operators. a The main experimental probe that distinguishes between trivial and TQSL phases entails checking the
two U(1) conservation laws39 relating the electric field (arrows) flux with enclosed charges (number of different sublattice sites) along an arbitrary closed
loop (example shown in blue). b Two Z-loop operators evaluated for the loop shown in blue in (a) for the 10 × 6 shape 1 cluster from Fig. 4a. The two U(1)
conservation laws are violated in the trivial phase, but are approximately satisfied in both the TQSL and VBS (valence bond solid) phases. The second
transition between the TQSL and the VBS present on this cluster is not distinguishable from Z-loop measurements alone, as both phases are of trimer
character. c Expectation value of ∣Z∣, evaluated by sampling from DMRG ground state of 32 × 4 cylinder and averaging over the bulk of the system
(discarding four rows of atom on each end of the system). The violations of the U(1) conservation laws are high in the trivial and columnar phase and low in
the TQSL phase (denoted by dashed green lines extracted from energy susceptibility peaks in Fig. 3). Sampling errors are smaller than the marker size.
d The X-loop experimental probe can be explicitly constructed for a given breathing move on the irregular honeycomb lattice of trimer domain walls shown
here (see Supplementary Note 1). The X-loop operator is a product of σx operators needed to expand the loop. e An example of a simple breathing move is
shown with configurations before and after the move differing only within the yellow shell around the perimeter of the loop, a general feature of any
breathing move. The moves needed to expand the honeycomb, in this case, lead to the many-body X-loop operator that is a product of 24 individual
honeycomb σx operators.
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cylinder (with open boundary conditions along the shorter edge
and periodic along the longer) shown in Fig. 8 for a Nx= 12,
Ny= 4 system, with the phase diagram of Fig. 1 constructed for a
32 × 4 system. Phase diagrams for 24 × 4, 26 × 4, and 32 × 3
cylinders, as well as for a 32 × 4 system with the addition of
interaction tails up to fifth-nearest neighbors (R ¼ 3a) were also
fully reconstructed, with the phase boundaries qualitatively
matching the ones for the 32 × 4 system, including the TQSL
region. Other aspect ratios were employed for probing the
properties of the TQSL regime, with Nx= 16–32 and Ny= 3–6.
The sweep protocol employed was based on typically Oð200Þ
sweeps with bond dimensions in the range 400–1800, depending
on the transverse system size (Ny, the number of unit cells in the
transverse direction). Initially, many sweeps were performed at a
relatively small bond dimension (<100), with the bond dimension
being progressively increased in later stages. A gradually
decreasing noise term was added until the final stages of the
sweep to prevent the DMRG from being stuck in local minima.
The protocol achieved good convergence with typical discarded
weights below 10−10 and the relative change in the ground state
energy after the final increase in the bond dimension being below
10−6.

Note added. After the completion of this work, we became aware
of a related work, Ref. 69, which, however, does not consider
either the spin liquid phase or the stabilization of the solid phases.

Data availability
All data supporting the results of this study are available within the paper and its
Supplementary Information or from the corresponding authors upon reasonable request.
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