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Breakdown of conventional winding number
calculation in one-dimensional lattices with
interactions beyond nearest neighbors
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Topological insulators hold promises to realize exotic quantum phenomena in electronic,

photonic, and phononic systems. Conventionally, topological indices, such as winding num-

bers, have been used to predict the number of topologically protected domain-wall states

(TPDWSs) in topological insulators, a signature of the topological phenomenon called bulk-

edge correspondence. Here, we demonstrate theoretically and experimentally that the

number of TPDWSs in a mechanical Su-Schrieffer-Heeger (SSH) model can be higher than

the winding number depending on the strengths of beyond-nearest-neighbor interactions,

revealing the breakdown of the winding number prediction. Alternatively, we resort to the

Berry connection to accurately characterize the number and spatial features of TPDWSs in

SSH systems, further confirmed by the Jackiw-Rebbi theory proving that the multiple

TPDWSs correspond to the bulk Dirac cones. Our findings deepen the understanding of

complex network dynamics and offer a generalized paradigm for precise TPDWS prediction in

potential applications involving localized vibrations, such as drug delivery and quantum

computing.
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As a special class of mechanical metamaterials and pho-
nonic crystals, topological mechanical metamaterials and
phononic crystals endowed with anomalous wave

manipulation capabilities have attracted significant attention over
the past decade. Analogous to topological insulators in quantum
physics1–4, where a topological invariant is introduced to classify
different quantum states of matter, in mechanical systems, such a
topological invariant can also be derived from the spectral evo-
lution of eigenvectors, or mode shapes, from a unit cell analysis to
determine the number and types of topologically protected sur-
face/edge/corner states confining phonon modes both
statically5–10 and dynamically11–27, usually referred to as the
bulk-edge correspondence.

One illustrative example of employing a topological invariant
to determine the nontrivial topologically protected domain-wall
states (TPDWSs) can be seen in the one-dimensional (1D) Su-
Schrieffer-Heeger (SSH) model28,29 as shown in Fig. S1a, b in
Supplementary Note 1. Initially introduced to study solitons in
polyacetylene, the SSH model was later adapted in mechanical
systems to identify TPDWSs via a winding number
calculation30–32. As discussed in the references above and the
“Analysis of One-Dimensional Su–Schrieffer–Heeger Model”
subsection in Methods, the two arrangements of isomers with
different spring stiffness c1 and c2 in Fig. S1b represent two
topologically distinct phases. When c1 > c2, the origin is excluded
in the contour plot in the complex plane of the off-diagonal term
in the stiffness matrix, C(k), where k is the wave number in the
reciprocal space, and thus, the winding number n= 0, signifying
a trivial intra-cell-hopping phase. In contrast, when c1 < c2, the
contour winds about the origin once, i.e., n= 1, indicating a
topologically nontrivial inter-cell-hopping phase, see Fig. S1c in
Supplementary Note 1. These gauge-dependent winding numbers
can also be evaluated via the Zak phase33 measuring the rotation
of eigenvectors in the unit cell, see Fig. S2 in Supplementary
Note 1. Alternatively, the winding number can be directly cal-
culated from C(k):

n ¼
Z π=a

�π=a

1
4πi

tr½σ3C0�1∂kC
0�dk; ð1Þ

where σ3 is the third Pauli matrix, and C0 is similar to an effective
Hamiltonian, which is a chiral matrix obtained from:

C0ðkÞ ¼ CðkÞ � ðc1 þ c2Þσ0; ð2Þ
where σ0 is the identity matrix. Seaming two phases with different
ns creates a domain wall where a localized mode emerges. Such a
domain-wall state is topologically protected due to the intrinsic
topological phase difference between the two domains, i.e., the
bulk-edge correspondence.

The above discussion has been well understood and applied to
systems of higher dimensions, such as the 2D quantum valley
Hall effect in phononic crystals12,18,32,34–37. Most of these studies
can be simplified using mass-spring systems considering only the
nearest neighbor (NN) interactions. Recently, arising attention
has been devoted to mechanical metamaterials with lattice
interactions beyond nearest neighbors (BNNs), achieving roton-
like acoustic dispersion relations under ambient conditions
similar to those observed in correlated quantum systems at low
temperatures38–43. In addition, intriguing topological states also
arise due to such BNN coupling, including the increased winding
number corresponding to a higher number of edge states due to
larger BNN differences, as reported in previous studies44–46.

In this study, we report the impact of BNN couplings on bulk-
edge correspondence in addition to the increased winding num-
ber. Despite being commonly believed that the number of
TPDWSs is governed by the difference in winding numbers

between the two domains, we prove that the number of TPDWSs
in the SSH model is not dictated by the winding number, but by
the Jackiw-Rebbi (JR) indices associated with the JR zero
modes47. In previously studied SSH models, the winding numbers
and JR indices happened to predict the same number of TPDWSs.
However, our investigation reveals that such a coincidence is not
generic, i.e., in the presence of BNN couplings, these two indices
can significantly deviate from each other. In such a generic setup,
we prove analytically and verify numerically and experimentally,
that the JR indices always correctly predict the number of
TPDWSs, while the relationship between the winding number
and TPDWSs generally fails. We note that the discrepancy
between the two is not a special scenario in an SSH model but a
rather generic phenomenon across all topological Maxwell lattices
and chiral matters48. We, thus, propose to use the Berry con-
nection with distinguishable local winding numbers as an alter-
native topological index to identify TPDWs, which also applies to
a broader range of lattices with BNN interactions beyond those
presented in the main text.

Results and discussion
Mass-spring model analysis. To start with, we add third-nearest
neighbors (TNNs) with spring stiffness c0 to a 1D mass-spring
chain of lattice spacing a with a NN spring stiffness c and restrict
the motion of identical masses to the horizontal direction, as pre-
sented in Fig. 1a. The phonon dispersion of a pair of masses reveals
that when c0<1=3c, the acoustic and optical phonon bands cross at
k= π/a, protected by the space inversion symmetry (SIS). When
c0>1=3c, two additional band crossings emerge in the irreducible
Brillouin zone (IBZ), as presented in Fig. 1b, c. Derivation of the
exact locations of the Dirac points due to the existence of the TNN
is presented in Eqs. (10)–(17) in the “Analysis of One-Dimensional
Su–Schrieffer–Heeger Model with Third-Nearest Neighbors” sub-
section in Methods. The additional band folding due to strong c0s
results in negative group velocities in the acoustic phonon branch,
corresponding to the backward wave observed in the previous
study38. We then break the SIS by applying a small perturbation to
the NN spring stiffness c, i.e., making c1= 0.8c and c2= 1.2c, while
maintaining all TNNs identical, which opens a band gap between
acoustic and optical bands, as shown in Fig. 1d. The winding
number calculation from C0ðkÞ in Eq. (13) for the two isomers of
such a system suggests that, regardless of the strength of c0, the
difference between two phases is always one, indicating one
TPDWS at the domain boundary of the two phases. Note that, with
the existence of c0, the contour plots in the complex plane are no
longer circular as those shown in Fig. S1c. With weak c0 (for
example, c0 ¼ 1=10c), they present oval shapes, as shown in Fig. 1e,
while strong c0 (such as c0 ¼ c) creates two additional loops along
the path, Fig. 1f. In either case, the circuit winds around the origin
exactly once when c1 < c2, indicating the topological charge being
n= 1, while excluding it when c1 > c2, thus n= 0, yielding a con-
sistent n difference.

To verify the number of TPDWSs predicted with winding
numbers, we consider a supercell containing 301 masses with a
domain-wall mass at the center connected to soft or stiff springs
on both sides, as shown in Fig. 2a, b, about which are the
symmetrically arranged two phases with different ns. Bloch
conditions are applied at the two ends of the chain to mimic an
infinitely long chain for phonon dispersion calculation. Details of
the Bloch conditions for the supercell are presented in the
“Supercell Analysis of the Su–Schrieffer–Heeger Model” subsec-
tion in Methods. As predicted, when connected by weak TNNs,
i.e., c0 ¼ 1=10c, only one symmetric (asymmetric) TPDWS exists
within the bulk bandgap when the domain-wall mass is
connected by soft (stiff) NN springs, as shown in the supercell
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band structures in Fig. 2c with corresponding edge and bulk
mode shapes presented in Fig. 2e–j. However, when c0 ¼ c, we
identify two additional edge modes in the bulk bandgap, Fig. 2d,
violating the aforementioned winding number prediction. Mode
shapes of these emerging bands in the bulk bandgap shown in
Fig. 2k, m, p–r, confirm the localization of displacements at the
domain wall, distinguishable from the bulk modes, as shown in
Fig. 2n, o, s, t. When the domain-wall mass is connected by two
soft (stiff) springs c1= 0.8c (c2= 1.2c), we obtain one (two)
symmetric and two (one) asymmetric displacement fields about
the domain-wall mass, as can be seen in Fig. 2k-m (p-r).

Spatial Fourier transform (SFT) of the mode shapes presented
in Fig. 3 show a significantly widened peak width in all these edge
modes compared to their bulk counterparts, suggesting a faster
spatial decay of the vibration from the domain wall, evident of an
edge mode. It is worth noting that, due to strong TNN
interactions, the additional band crossing at k= π/2a as shown

in Fig. 1c when c1= c2 (the location of which is expressed in Eq.
(17) in the “Analysis of One-Dimensional Su-Schrieffer-Heeger
Model with Third-Nearest Neighbors” subsection in Methods)
results in the global peak (valley) of the bulk acoustic (optical)
mode occurring at k= π/2a, instead of k= π/a where a local peak
(valley) appears, as in Fig. 2d. Hence, sharper SFT peaks appear at
k= π/2a in the bulk modes closest to the bandgap (i.e., SC1/2-B1/
2), as shown in Fig. 3b. In-gap TPDWSs are presented as widened
peaks located at k= π/2a, π/a, and 3π/2a, as shown in Figs. 3b
and S3 in Supplementary Note 2, indicating their rapid spatial
decay away from the domain wall with hybridized wavelengths.

Jackiw Rebbi zero modes. These domain-wall states can also be
characterized by a massless Dirac theory. For c1 > c2 (c1 < c2), the
breaking of the SIS introduces a positive (negative) mass to each
Dirac point. Due to the mass sign flipping at the domain wall, one

Fig. 1 Unit-cell analysis of the Su-Schrieffer-Heeger model with identical third-nearest neighbors. a Unit cell (circled in a dashed line) of a chain of
identical masses, m, with nearest neighbors (NNs) with spring constants c1 (black springs) and c2 (red springs), and third-nearest neighbors (TNNs) with
spring constants c01 (gold lines) and c02 (green lines), respectively. b 3D representation of phonon band variation with identical NN stiffness c and TNN
strength c0 (with lattice spacing a= 1). ω0=

ffiffiffiffiffiffiffiffi
c=m

p
. c, d Unit cell band structures with various c0 and c identical and d non-identical c. Shaded areas in

d denote the bandgaps between acoustic and optical phonon branches with matching colors. e, f Contour plots of the off-diagonal element of the chiral
matrix, C0ðkÞ, in the complex plane for a complete circuit of k from k= 0 to 2π/a for unit cells with ec0 ¼ 1=10c and fc0 ¼ c.
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TPDWS in the bandgap, known as the JR zero mode, is expected
to arise at the domain wall for each Dirac cone47. Thus, the
number of crossings presented in Fig. 1c within the IBZ equals
that of TPDWSs when the bandgap is open. Such an agreement
also strongly resembles those in the quantum valley Hall effect in

2D, where the number of in-gap TPDWSs also matches that of
bulk Dirac cones12. A comprehensive demonstration of the
existence of TPDWSs due to the hybridization of JR modes
corresponding to the three Dirac points within the IBZ and their
analytical solutions characterizing the spatial decay are presented

Fig. 2 Supercell analysis of the Su-Schrieffer-Heeger model with a domain wall with weak and strong identical third-nearest neighbors. a, b Supercells
featuring the two arrangements of nearest neighbors (NNs) with a soft-SC1 and b stiff-SC2 springs with spring constants c1= 0.8c and c2= 1.2c,
respectively, where c is an arbitrary spring constant, connected to the domain-wall mass (highlighted in orange). c, d Band diagrams of the supercells with
c weak (with a spring constant c0 ¼ 1=10c) and d strong (c0 ¼ c) third NNs (TNNs), respectively. Blue and yellow bands correspond to supercell a and
b, respectively. Red curves are bulk bands acquired from the unit cell analysis in Fig. 1. Phonon bands within the bulk bandgap for the case of c0 ¼ c in d are
zoomed in next to the complete dispersion. Dashed blue and bold solid yellow bands in c and d are domain-wall modes, denoted as SC1-E(1-3) and SC2-
E(1-3), respectively. Bands below and above the bulk bandgap are marked as SC1/2-B1/2. The domain-wall and bulk mode shapes with c0 ¼ 1=10c (c0 ¼ c)
are presented in e–j (k–t) with blue and yellow colors matching SC1 and SC2, respectively. Red solid circles in e–t denote the displacements of domain-wall
masses. Although visualized in the vertical directions, all mass displacements are de facto in the horizontal direction.

Fig. 3 Spatial Fourier transform of supercell mode shapes in lattices with weak and strong identical third-nearest neighbors. a Spatial Fourier transform
(SFT) of mode shapes of the lattice with weak third-nearest neighbors (TNNs) presented in Fig. 2e (blue solid), f (yellow solid), g (blue dot-dash), h
(yellow dot-dash), i (blue dash), and j (yellow dash). The SFT of Jackiw Rebbi (JR) zero mode expressed in Eq. (36) in Methods is plotted as the red solid
curve. b SFT of mode shapes of the lattice with strong TNNs presented in Fig. 2k (blue triangle), l (blue x), m (blue square), n (blue dot-dash), o (blue
dash), p (yellow triangle), q (yellow x), r (yellow square), s (yellow dot-dash), and t (yellow dash). The SFT of the three JR modes corresponding to strong
TNNs expressed in Eqs. (38) and (42) in Methods are expressed as red (Eq. (38)), purple (Eq. (42) with the"+ ” sign in the solution) and green (Eq. (42)
with the “− ” sign in the solution) solid curves. Note that the SFT plots in b indicate the spatial decay starting from the domain-wall mass. Plots starting
from the mass right next to the domain wall are presented in Fig. S3 in Supplementary Note 2.
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in the “Derivation of the Jackiw Rebbi Zero Modes” subsection in
Methods. As presented in Figs. 3, and S3, SFT of the analytical JR
zero modes match well with those obtained from the supercell
analysis, indicating successful prediction of TPDW properties
using the JR theory, as well as the breakdown of the winding
number prediction.

In principle, regardless of the strengths of c0, the analytical
solutions of JR modes in the SSH model should all stay at ω=ω0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðc1 þ c2 þ 2c0Þ=m
p

(or ω2=ω2
0 ¼ 0 if plotting the eigenvalues of

C0ðkÞ in Eq. (13)). However, this is not the case if we simply flip
the arrangement of springs about the domain-wall mass as
presented in Fig. 2a, b. One reason is that the domain wall setup
breaks the chiral symmetry of the stiffness matrix C(k) since the
total spring constants about the domain-wall mass is 2c1 þ 2c0

(2c2 þ 2c0) for SC1 (SC2), different from c1 þ c2 þ 2c0 around
other masses in the supercell. Such a perturbation can be readily
fixed by pinning the interface to the ground using an additional
spring with a constant of c2− c1 (c1− c2) for SC1 (SC2), as shown
in Fig. S4a (b) in Supplementary Note 2. The two TPDWSs due to
different domain walls for weak TNNs (for example, c0 ¼ 1=10c)
then become degenerate at ω=ω0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc1 þ c2 þ 2c0Þ=m

p
, or

ω2=ω2
0 ¼ 0 if removing the diagonal elements of C(k), as shown

in Fig. S4c. However, for the ones with strong TNNs (for
example, c0 ¼ c) where multiple TPDWSs exist at one domain
wall, such a fix can only bring one of the TPDWSs to ω=ω0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðc1 þ c2 þ 2c0Þ=m
p

(or ω2=ω2
0 ¼ 0 if removing the diagonal

elements of C(k)). The other two TPDWSs are located
symmetrically above and below it, as shown in Fig. S4d. The
remaining shift in frequency is due to the hybridization of two JR
modes with the same parity. Details about TPDWS symmetry and
parity, as well as their hybridization conditions causing the
frequency shift, are all discussed in “Jackiw Rebbi Mode Parity
and Hybridization” subsection in Methods. The shifting of the
zero-frequency(energy) domain-wall modes (after pinning the
domain-wall mass) to finite frequencies is not unique to the SSH
model, instead, it is a generic feature existing in most known 0D
topological modes in various types of topological insulators (such
as corner modes in 2D higher-order topological insulators),
whose energies are also sensitive to local perturbations near the
localized modes49,50.

Berry connection. The question then arises as to how to
determine TPDWSs using a topological descriptor associating
the spectral evolution of the eigenvector with these states. A
closer examination of the contour plots in Fig. 1e, f and the
winding number calculation in Eq. (1) suggest that, although
the difference in n is one regardless of the TNN strength, tra-
jectories of the contour plots, or the integrand of Eq. (1), i.e.,

the Berry connection,

BðkÞ ¼ 1
4πi

tr½σ3C
0�1∂kC

0�; ð3Þ

varies with c0, where C0 is expanded to Eq. (13) in the “Analysis
of One-Dimensional Su–Schrieffer–Heeger Model with Third-
Nearest Neighbors” in Methods. Since the number of TPDWSs
depends on the topological invariant difference due to different
gauges, we plot ΔB(k)= B1(k)− B2(k), where B1(k) [B2(k)]
refers to the case when c1 < c2 (c1 > c2), for unit cells with dif-
ferent c0 in Fig. 4 to describe its topology. When c0 ¼ 0, only one
peak exists at k= π/a in ΔB, corresponding to the Dirac point at
k= π/a in the band structure in Fig. 1c. As c0 increases while
c0<1=3c, this peak at k= π/a decreases and widens until it splits
into two smaller peaks (such as when c0 ¼ 1=3c). As c0 continues
to increase, the valley at k= π/a dips below ΔB(k)= 0 while the
two positive peaks drift apart with locations matching Dirac
points as expressed in Eq. (17), until k= π/3a and 5π/3a, as
discussed in the “Analysis of One-Dimensional Su-Schrieffer-
Heeger Model with Third Nearest Neighbors” in Methods.
Meanwhile, the two peaks and one valley are further sharpened
as c0 increases. The integral around each peak (valley) is ±1, i.e.,
yielding a local winding number. It is worth noting that the
total integral over the IBZ does not change as c0 varies, yielding
a consistent winding number of n= 1. The transition from one
peak in ΔB into two peaks and one valley agrees with the
change of TPDWS counts with corresponding c0. Moreover, the
locations of the peaks/valleys informing of the TPDWS wave-
lengths also agree with those calculated from JR zero modes
demonstrated in “Derivation of the Jackiw Rebbio Zero Modes”
and the supercell calculation presented in “Supercell Analysis of
the Su–Schrieffer–Heeger Model” in Methods, the results of
which are plotted in Figs. 3, S3, and S4u, v in Supplementary
Note 2 if fixing the domain wall to make C(k) chiral.

To understand such a transition from one peak to two peaks
and one valley with increased c0, one can draw an analogy
between the evolution of ΔB as c0 decreases and the inter-valley
mixing of the Berry curvature in our previously studied valley
Hall effect12. In the current SSH model with TNNs, when c0 � c,
the perturbation induced by the NNs, c, is relatively small,
resulting in minimal inter-valley mixing between the two peaks
and one valley in ΔB, which distinctively exist in the IBZ,
matching the three TPDWSs within the bulk bandgap. As c0

weakens, the difference in c becomes more prominent, introdu-
cing stronger SIS perturbation, and thus an enhanced peak-valley
mixing closer to the valley at π/a, and eventually merging all into
one single peak at k= π/a, leaving only one TPDWS in the
bandgap.

Fig. 4 Berry connection variation with third-nearest neighbor strength. a Winding number difference, ΔB(k), from ka= 0 to 2π (where k is the wave
number and a is the lattice spacing) in the irreducible Brillouin zone with different third-nearest neighbor strengths, c0. b and c 3D visualization of the
evolution of ΔB(k) with c0 (c is the strength of nearest neighbors). The red and black curves in the top view shown in c indicate peaks and valleys of the
Berry connections, respectively.
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It is worth noting that, compared to conventional winding
number calculations, the Berry connection prediction alluded to
is not limited to making correct TPDWS predictions in lattices
with identical TNNs. As discussed in subsection “Topologically
Protected Domain-Wall States beyond Equal Third-Nearest
Neighbors” in Methods, one can also predict the number and
the wavelengths of TPDWS when TNNs are nonidentical, i.e.,
c01≠c

0
2, as well as for systems with interactions beyond TNNs,

whose results are shown in Figs. S5 and S6, respectively, in
Supplementary Note 3. The additional TPDWs due to BNNs
always arise in pairs with local integrals of Berry connection
around the peaks and valleys being ±1, respectively. Information
about wavelengths acquired from such a Berry connection
analysis is also unattainable using conventional winding number
calculations. Hence, the Berry connection provides a generalized
methodology supplying enriched information about TPDWSs in
lattices with complex networks.

Laser-assisted experimental characterization. We proceed now
to conduct experiments on 1D specimens adapted from an
existing TNN model38,39, as shown in Fig. 5a-d. Information
regarding the experimental specimens is listed in subsection
“Experimental Fabrication and Characterization” in Methods. As
presented in Fig. 5d, each unit cell contains a pair of masses
connected by alternating stiff and soft NN bars and identical
TNN frames. The domain-wall mass behind the frame labeled as
E1 in Fig. 5 f is connected by two stiff struts (blue bars), about
which are placed with 8 unit cells with opposite stiff and soft NN
arrangements. The lattice specimens are hung by a string from
the top and are excited in the y-direction using an electrodynamic
shaker (PCB 2007E01, powered by a Krohn-Hite 7500 amplifier)
placed off-centered near the bottom left end for torsional exci-
tation. Velocities of the left and right ends of each frame in
Fig. 5b, c in the y− direction are measured by a scanning laser
Doppler vibrometer (SLDV, Polytec PSV-500), and their differ-
ences are recorded as the torsional velocities about the z-axis.
Note that shear deformations in the y-direction will also be
recorded simultaneously. However, these shear modes do not
exist in our frequency range of interest. For comparison, unit cell
and supercell analyses containing a domain wall with the same
dimensions and material parameters are also performed using the
finite element method with COMSOL Multiphysics with results
presented in Fig. S7 in Supplementary Note 4.

We then prescribe a chirp excitation sweeping from 800 to
1400 Hz to the lattice with strong TNNs, Fig. 5b (500 to 700 Hz to
the one with weak TNNs, Fig. 5c) and measure torsional
velocities. For the specimen with strong TNNs and without a
domain wall, we achieve an excellent agreement between the
spatiotemporal spectral response obtained from a discrete Fourier
transform of the torsional velocity sampled along the axial
direction of the specimen (i.e., the z-axis in Fig. 5) and the
acoustic and optical torsional phonon branches predicted from
the unit cell analysis, as shown in Fig. 5e, presenting a roton-like
dispersion relation. Frequency responses of the experimentally
measured torsional velocities of the frames near the domain wall
and in the bulk of the specimen with strong (weak) TNNs reveal
three (one) distinct peaks within the bulk bandgap with amplified
torsional velocities in proximity to the domain wall, as evident in
Fig. 5g (h). These in-gap peaks agree with the TPDWSs predicted
in supercell band structures containing matching lattice config-
urations with Bloch boundary conditions applied at two ends,
presented as dark solid lines in Fig. 5g, h. Snapshots of the
torsional velocity fields experimentally measured at bulk and
TPDWS frequencies are shown in Fig. 5i and j, corresponding to
strong and weak TNNs, respectively, agreeing with mode shapes

calculated using the finite element method plotted in Fig. S7 in
Supplementary Note 4. Symmetries of these measured and
calculated TPDWSs concur with those in the toy model presented
in Fig. 2p–r and f, i.e., the three torsional TPDWSs in the lattice
with strong TNNs experimentally measured shown in Fig. 5i,
simulated as in Fig. S7a, and modeled using masses and springs in
Fig. 2p-r are asymmetric, symmetric, and symmetric about the
domain wall (corresponding to the red, yellow, and green peaks in
Fig. 5g), and the one TPDWS in the lattice with weak TNNs
shown in Figs. 5j, S7b, and 2f are all asymmetric (corresponding
to the red peak in Fig. 5h), confirming that these domain-wall
modes are indeed TPDWSs predicted in theory.

Conclusions
We theoretically and experimentally reveal the breakdown of the
conventional winding number prediction of TPDWSs in SSH lat-
tices with BNN interactions. We, instead, propose to count the
local winding numbers by calculating the Berry connection char-
acterizing the evolution of eigenvectors in the reciprocal space to
obtain the correct number of TPDWSs. Moreover, Berry connec-
tion offers more insights into the TPDWSs, including their
wavelengths and spatial decay rates. Further, we demonstrate that
these TPDWSs are the phonon realization of JR zero modes,
analytically validating the Berry connection prediction. Note that
the discordance between the total winding number in IBZ and the
counting of topological modes isn’t an exception; rather, it is a
common characteristic universally seen across topological states
governed by winding numbers. For example, a similar discrepancy
is also evident in topological Maxwell lattices and chiral matters48,
where the accurate enumeration of topological modes requires the
winding number to be adjusted by the addition of integer numbers.
Such amendments encapsulate the intricate aspects of the system’s
physics, such as lattice structures, gauge choice, and local counting.
Furthermore, our study provides a more generalized paradigm in
accurate topological state predictions in lattices beyond 1D with
TNNs, and is applicable to a broader range of complex systems
with multi-nodal interactions21,51, especially at the nano-52 and
microscales53, where BNN interactions commonly exist. Success-
fully identifying and achieving mechanical/vibration topological
states in complex systems can also inspire solutions in other realms
of science where predictable and precise vibration modes are cri-
tical, such as facilitating drug delivery54,55 and advancing quantum
information processing using phonons56–58 in quantum technol-
ogies, such as quantum computing.

Methods
Analysis of one-dimensional Su–Schrieffer–Heeger model. The
governing equations of a 1D SSH lattice unit cell shown in Fig. S1
in Supplementary Note 1 can be expressed as

m€un1 ¼ c1ðun2 � un1Þ � c2ðun1 � un�1
2 Þ; ð4Þ

m€un2 ¼ c2ðunþ1
1 � un2Þ � c1ðun2 � un1Þ; ð5Þ

where displacements of the two masses in the n-th cell are
denoted as un1 and un2 , respectively, and can be expressed using a
plane-wave solution in combination with Bloch-Floquet periodic
boundary conditions:

unðtÞ ¼ ~uðkÞeiðnka�ωtÞ; ð6Þ
where ω is the vibration frequency, un are the displacements of
the n-th cell with un ¼ ½un1 ; un2 �, k is the wave number, which is
inversely proportional to the wavelength λ, i.e., k= 2π/λ, a
denotes the lattice constant, ~uðkÞ are displacements within the
unit cell. Substituting this expression in Eqs. (4) and (5) gives:

½CðkÞ � ω2m�~uðkÞ ¼ 0; ð7Þ
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where C(k) is the stiffness matrix of the periodic system:

CðkÞ ¼ c1 þ c2 �c1 � c2e
�ika

�c1 � c2e
ika c1 þ c2

" #
; ð8Þ

Assume a= 1 and divide the stiffness matrix C(k) by c2, we can
then plot the off-diagonal element of C(k), i.e., ρ(k)= c1/c2+ eika,
and project ρ(k) to a complex plane, as shown in Fig. S1c in
Supplementary Note 1.

Fig. 5 Experimental characterization of topological domain-wall states in lattices with strong and weak third-nearest neighbors. a Experimental setup
showing the scanning laser Doppler vibrometer and the shaker attached to the specimen bottom. b, c Zoomed-in views of the specimens with b strong and
c weak third-nearest neighbors (TNNs), with a unit cell in d, where masses (green blocks) connected by alternating stiff (thick blue bars) and soft (thin
yellow bars) springs are also linked by red frames and bars as TNNs, whose strength is adjustable by tuning the red bar diameter. All unit cell dimensions
are in the “Experimental Fabrication and Characterization” subsection in Methods. e 2D map of the discrete Fourier transform of experimental data
matching the torsional phonon bands from the unit cell analysis (magenta-solid). f Zoomed-in view around the domain-wall mass connected by two blue
bars. E1, E2, and E3 indicate the frames near the domain wall where torsional velocities are measured and presented as green, red, and yellow curves (with
the velocity magnitude axis on the right) in g (strong TNNs) and h (weak TNNs), where bulk and domain-wall modes from the supercell analysis are also
plotted as dotted and solid curves (with the vertical axis showing the wavenumber, ka, on the left), respectively. i, j Torsional velocity fields excited
(triangle near the top) at frequencies denoted by arrows above for lattices with i strong and j weak TNNs. Dashed lines with matching bar colors in f denote
the locations of three TNN frames. The purple dashed lines near the excitation points are bulk regions, whose frequency responses are shown as purple
curves in g, h. Torsional velocity profiles in e, i, and j are all normalized by the highest magnitude with a color bar shown in j.
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The winding number difference between the two gauges can
also be characterized by the Zak phase:

Z ¼ i
π

Z π=a

�π=a
~u��ðkÞ∂k~u�ðkÞdk; ð9Þ

where ~u�ðkÞ ¼ ½ρ�ðkÞ=jρðkÞj; 1�= ffiffiffi
2

p
is the eigenvector corre-

sponding to the smaller eigenvalue of the matrix C(k). Writing

ρ(k)= ∣ρ(k)∣eiϕ(k), we find Z ¼ i
2π

R π=a
�π=a dk ∂kð�iϕðkÞÞ ¼

1
2π

R π=a
�π=a dk ∂kϕðkÞ. This implies that the Zak phase measures the

change in the phase of the first component (in this particular
choice of gauge) of the eigenvector as wavenumber k changes
from− π/a to π/a. When c1 > c2, Z= 0, suggesting no changes in
the phase difference of the eigenvectors across IBZ, see the blue
curve in Figs. S1c and S2a. When c1 < c2, Z= 1, indicating a phase
change of 2π within the IBZ, see the red curve in Figs. S1c and
S2b in Supplementary Note 1.

Analysis of one-dimensional Su–Schrieffer–Heeger model with
third-nearest neighbors. Adding TNNs, as in Fig. 1a, modifies
the governing equations to:

m€un1 ¼ c1ðun2 � un1Þ � c2ðun1 � un�1
2 Þ

þ c01ðunþ1
2 � un1Þ � c02ðun1 � un�2

2 Þ; ð10Þ

m€un2 ¼ c2ðunþ1
1 � un2Þ � c1ðun2 � un1Þ

þ c02ðunþ2
1 � un2Þ � c01ðun2 � un�1

1 Þ: ð11Þ

Plugging the same wave ansatz in Eq. (6) in the above set of
equations, we obtain an equation of the same form as Eq. (7) with
the following stiffness matrix:

CðkÞ ¼ c1 þ c2 þ c01 þ c02 �c1 � c2e
�ika � c01e

ika � c02e
�2ika

�c1 � c2e
ika � c01e

�ika � c02e
2ika c1 þ c2 þ c01 þ c02

" #
:

ð12Þ
The chiral matrix then becomes:

C0ðkÞ ¼ CðkÞ � ðc1 þ c2 þ c01 þ c02Þσ0; ð13Þ
The contour plots of the off-diagonal element of this matrix
ρðkÞ ¼ c1 þ c2e

ika þ c01e
�ika þ c02e

2ika for a complete circuit of k
from k= 0 and k= 2π/a for different values of TNN spring
stiffness, c01 ¼ c02 ¼ c0, are plotted in Fig. 1e, f. We see that for
c1 < c2 (c1 > c2) the winding number of ρ(k) around the origin is
one (zero).

It is also instructive to find the values of k at which the Dirac
points appear when c1= c2= c and c01 ¼ c02 ¼ ηc. To get this, we
note that the band gap closes when the off-diagonal term in the
matrix C(k) in Eq. (12) is zero:

cþ c
z
þ ηcz þ ηc

z2
¼ 0 ) z ¼ �1;

�1þ η±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ ηÞð1� 3ηÞp
2η

;

ð14Þ
where z= eika. Clearly, there are three Dirac points when

j �1þη±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þηÞð1�3ηÞ

p
2η j ¼ 1 since z= eika. Now, there are two cases:

(i)
�1þη±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þηÞð1�3ηÞ

p
2η is real, (ii)

�1þη±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þηÞð1�3ηÞ

p
2η is complex. In

the first case, we have:

�1þ η±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ηÞð1� 3ηÞ

p� �2 ¼ 4η2

) η ¼ �1 or η ¼ 1=3 or η ¼ 0;
ð15Þ

The solution of z in Eq. (14) prevents η from being zero since it
can blow up z. A negative η is also not possible because there is no
negative spring constant. Therefore, the only valid solution is

η= 1/3, resulting in all three Dirac points appearing at z=−1,
i.e., k= π/a.

On the other hand, if
�1þη±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þηÞð1�3ηÞ

p
2η is complex, the

requirement of the existence of three Dirac points is:

�1þ ηþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ηÞð1� 3ηÞ

p� �
�1þ η�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ηÞð1� 3ηÞ

p� �
¼ 4η2 ) 1� 2ηþ η2 � 1þ 2ηþ 3η2 ¼ 4η2;

ð16Þ

which is always true. Thus, if
�1þη±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þηÞð1�3ηÞ

p
2η is complex, its

absolute value is always 1, regardless of the value of η. Note that
this condition is only valid when

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ηÞð1� 3ηÞ

p
is complex,

meaning η > 1/3 (since η ≥ 0). Hence, combining the complex and
real solutions of z, we can identify the three Dirac points for
η ≥ 1/3. The values of k at which these three Dirac points appear
are:

k ¼ π

a
; ±

1
a
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ηÞð3η� 1Þ

p
�1þ η

 !
: ð17Þ

Note that in the limit of c0 � c or η→∞, the three Dirac points
appear at k= π/a and ± π/3a (the latter of which are equivalent to
π/3a, and 5π/3a from 0 to 2π/a), corresponding to the band
crossing locations presented in Fig. 1c.

Supercell analysis of the Su–Schrieffer–Heeger model. Let’s
consider supercell SC1 in Fig. 2a. To obtain the phonon disper-
sion and mode shapes of the supercell with a domain wall, Bloch
boundary conditions are applied at the two ends of the supercell
containing 301 masses to mimic an infinitely large lattice with
periodic domain walls 300 masses apart. The governing equation
for each mass in the supercell is as follows:

m€unp ¼ c1ðunpþ1 � unpÞ þ c2ðunp�1 � unpÞ
þ c0ðunpþ3 � unpÞ þ c0ðunp�3 � unpÞ;

ð18Þ

m€unp ¼ c1ðunpþ2 � unpþ1Þ þ c2ðunp � unpþ1Þ
þ c0ðunpþ4 � unpþ1Þ þ c0ðunp�2 � unpþ1Þ;

ð19Þ

where the subscript denotes the pth mass is the supercell and the
superscript denotes the nth cell. Below are the governing equa-
tions of displacements of the three beginning masses at the left
end, u1, u2, and u3, and the three ending masses at the right end,
uP, uP−1, and uP−2, where P is the total number of masses, which
equals 301 in our model, within the current supercell, n:

m€un1 ¼ c1ðun2 � un1Þ þ c2ðun�1
P � un1Þ

þ c0ðun4 � un1Þ þ c0ðun�1
P�2 � un1Þ;

ð20Þ

m€un2 ¼ c2ðun3 � un2Þ þ c1ðun1 � un2Þ
þ c0ðun5 � un2Þ þ c0ðun�1

P�1 � un2Þ;
ð21Þ

m€un3 ¼ c1ðun4 � un3Þ þ c2ðun2 � un3Þ
þ c0ðun6 � un3Þ þ c0ðun�1

P � un3Þ;
ð22Þ

m€unP�2 ¼ c2ðunP�1 � unP�2Þ þ c1ðunP�3 � unP�2Þ
þ c0ðunþ1

1 � unP�2Þ þ c0ðunP�5 � unP�2Þ;
ð23Þ

m€unP�1 ¼ c2ðunP � unP�1Þ þ c1ðunP�2 � unP�1Þ
þ c0ðunþ1

2 � unP�1Þ þ c0ðunP�4 � unP�1Þ;
ð24Þ

m€unP ¼ c2ðunþ1
1 � unPÞ þ c1ðunP�1 � unPÞ

þ c0ðunþ1
3 � unPÞ þ c0ðunP�3 � unPÞ;

ð25Þ
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Displacements of supercell n in relation to the n− 1th and
n+ 1th supercells, respectively, are:

unþ1
1 ðtÞ ¼ un1ðkÞeiðka�ωtÞ; ð26Þ

unþ1
2 ðtÞ ¼ un2ðkÞe�iðka�ωtÞ; ð27Þ

unþ1
3 ðtÞ ¼ un3ðkÞeiðka�ωtÞ; ð28Þ

un�1
P ðtÞ ¼ unPðkÞeið�ka�ωtÞ; ð29Þ

un�1
P�1ðtÞ ¼ unP�1ðkÞeið�ka�ωtÞ; ð30Þ

un�1
P�2ðtÞ ¼ unP�2ðkÞeiðka�ωtÞ; ð31Þ

Applying these boundary conditions to the displacements of the
three masses at two ends of the supercell results in the supercell
stiffness matrix C(k) as:

The eigenvalues and eigenvectors of this matrix yield ω2 and
supercell mode shapes, respectively, as shown in Fig. 2.

Since matrix C(k) in Eq. (32) is not strictly chiral due to the sum
of spring constants at the domain-wall mass is different from
c1 þ c2 þ 2c0, we add an additional spring with a constant of c2− c1
(c1− c2 at the domain-wall mass when it is connected by two soft
(stiff) springs, c1 (c2), as shown in Fig. S4a (b) in Supplementary
Note 2. We can then plug C(k) for such a setup into Eq. (13) to
obtain C0ðkÞ with strict chiral symmetry. The eigenvalues (ω2=ω2

0 are
henceforth symmetric about ω2=ω2

0 ¼ 0, as presented in Fig. S4c, d
in Supplementary Note 2. Mode shapes of C0ðkÞ are almost identical
to those calculated from C(k) before adding an additional spring to
the domain-wall mass, except that the sequences of the three modes
in the case with strong TNNs are reordered, with the two above and
below ω2=ω2

0 ¼ 0 sharing the same parity under inversion
symmetry, opposite from the one located at ω2=ω2

0 ¼ 0, as shown
in Fig. S4e-t in Supplementary Note 2.

Derivation of the Jackiw Rebbi zero modes. In this section, we
demonstrate the existence of multiple TPDWSs as shown in Fig. 2d
in using the JR theory. With an SIS, i.e., c1= c2, each band crossing
point can be characterized by a massless Dirac theory. For c1 > c2
(c1 < c2), the breaking of SIS introduces a positive (negative) mass
to each Dirac point. Due to the mass sign flipping at the domain
boundary, one TPDWS in the bandgap, known as the JR zero
mode, is expected to arise at the domain boundary for each Dirac
cone47, which explains the matching number of TPDWSs with
c1 ≠ c2 and band crossing points with c1= c2. The agreement of the
two numbers also strongly resembles those in the quantum valley
Hall effect in 2D, where the number of in-gap TPDWSs also
matches that of bulk Dirac cones12. Below, we provide a com-
prehensive demonstration of the existence of one TPDWS

corresponding to each Dirac point and their analytical solutions
characterizing the spatial decay observed in both the toy model
analysis in Fig. 2 and the experimental observation in Fig. 5.

Jackiw Rebbi mode corresponding to dirac point at k= π/a. Setting
c1= c+m/2, c2= c−m/2, andc01 ¼ c02 ¼ ηc, and expanding
matrix C0ðk ¼ π=aþ δkÞ for small δk and m, we get:

C0ðπ=aþ δkÞ � c
0 �m� ið1� 3ηÞaδk

�mþ ið1� 3ηÞaδk 0

� �
¼�mσ1 þ cð1� 3ηÞaδkσ2;

ð33Þ
where σi are Pauli matrices. In the above equation, m is the mass of
the Dirac particle. Now, we create a domain wall at x= 0 with
phase c1 > c2 in the region x < 0 and c1 < c2 in the region x > 0.
Hence, m(x) > 0 for x < 0 and m(x) < 0 for x > 0, indicating the

location dependence of mass m. Since the translation symmetry is
broken due to the presence of the domain wall, we can replace δk
with− i∂x. We seek a zero frequency domain wall eigenmode ψ(x):

C0ψðxÞ ¼ 0

) ð�mðxÞσ1 � cð1� 3ηÞaiσ2∂xÞψðxÞ ¼ 0

) σ1ð�mðxÞσ1 � cð1� 3ηÞaiσ2∂xÞψðxÞ ¼ 0

) ð�mðxÞ1þ cð1� 3ηÞaσ3∂xÞψðxÞ ¼ 0:

ð34Þ

Now, there are two cases: (i) (1− 3η) > 0, and (ii) (1− 3η) < 0. The
eigenmodes corresponding to these two scenarios are discussed below.

1. ð1� 3ηÞ>0 : Plugging the ansatz ψðxÞ ¼ f ðxÞð 1
0
Þ, where f(x)

is a scalar function, we obtain the following differential
equation for f(x):

∂xf ðxÞ ¼ � mðxÞ
cð1� 3ηÞa ) f ðxÞ ¼ c0e

1
ca

R x

0
dx0mðx0 Þ=ð1�3ηÞ

; ð35Þ

where c0 is a constant. Note that f(x) decays exponentially away
from x= 0, since mðx>0Þ

cð1�3ηÞa < 0 and mðx<0Þ
cð1�3ηÞa > 0. Recall that the zero

frequency domain wall mode is at k= π/a, the full expression of the
mode is:

ψπ=aðxÞ ¼ ψðxÞeiπx=a ¼ c0e
1
ca

R x

0
dx0mðx0Þ=ð1�3ηÞeiπx=a

1

0

	 

: ð36Þ

2. ð1� 3ηÞ< 0 : Plugging the ansatz ψðxÞ ¼ f ðxÞð 0
1
Þ, where f(x)

is a scalar function, we obtain the following differential
equation for f(x):

∂xf ðxÞ ¼ � mðxÞ
cð1� 3ηÞa ) f ðxÞ ¼ c0e

� 1
ca

R x

0
dx0mðx0Þ=ð1�3ηÞ

: ð37Þ

Similarly, f(x) decays exponentially away from x= 0 since
mðx>0Þ
cð1�3ηÞa > 0 and mðx<0Þ

cð1�3ηÞa <0. The zero frequency domain wall mode

CðkÞ ¼

c1 þ c2 þ 2c0 �c1 0 �c0e�ika 0 �c2e
�ika

�c1 c1 þ c2 þ 2c0 �c2 ¼ 0 �c0e�ika 0

0 �c2 c1 þ c2 þ 2c0 0 0 �c0e�ika

..

. . .
. ..

.

�c2 2c2 þ 2c0 �c2
�c0eika 0 0 c1 þ c2 þ 2c0 �c2 0

0 �c0eika 0 ¼ �c2 c1 þ c2 þ 2c0 �c1
�c2e

ika 0 �c0eika 0 �c1 c1 þ c2 þ 2c0

2
666666666666664

3
777777777777775

ð32Þ
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being at k= π/a leads to the full expression of the mode being:

ψπ=aðxÞ ¼ ψðxÞeiπx=a ¼ c0e
� 1

ca

R x

0
dx0mðx0Þ=ð1�3ηÞeiπx=a

0

1

	 

: ð38Þ

Jackiw Rebbi mode corresponding to dirac point at

k ¼ ± 1
a arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þηÞð3η�1Þ

p
�1þη

	 

. For simplicity, we will show here

the existence of zero modes for η= 1 (this is what is considered in
Fig. 2e–g), but the procedure applies to any η ≥ 1/3. For η= 1, the
Dirac point is at k= ± π/2a. Away from the inversion symmetric
point, when c1= c+m/2 and c2= c−m/2, expanding the matrix
C0ðk ¼ ± π=2aþ δkÞ for small δk and m:

As in the case of k= π/a, we create a domain wall at x= 0 with
phase c1 > c2 in the region x < 0 and the phase c1 < c2 in the region
x > 0, implying the position-dependence of massm(x), i.e.,m(x) > 0
when x < 0 and m(x) < 0 when x > 0. Since the translation sym-
metry is broken due to the presence of the domain wall, δk→− i∂x.
We seek a zero frequency domain wall eigenmode ψ(x):

C0ψðxÞ ¼ 0

) ½�mðxÞðσ1 � σ2Þ=2� 2caið± σ1 þ σ2Þ∂x�ψðxÞ ¼ 0

) ðσ1 � σ2Þ½�mðxÞðσ1 � σ2Þ=2� 2caið± σ1 þ σ2Þ∂x�ψðxÞ ¼ 0

) ½�mðxÞ1þ 4caσ3∂x�ψðxÞ ¼ 0:

ð40Þ

Plugging the ansatz ψðxÞ ¼ f ðxÞ 1
0

	 

, where f(x) is a scalar func-

tion, we obtain the following differential equation for f(x):

∂xf ðxÞ ¼
mðxÞ
4ca

) f ðxÞ ¼ c0e
1
4ca

R x

0
dx0mðx0Þ

; ð41Þ

where c0 is a constant. Notice that f(x) decays exponentially away
from x= 0 since mðx>0Þ

4ca < 0 and mðx<0Þ
4ca > 0. Recalling that the zero

frequency domain wall mode is at k= ± π/2a, the full expression of
the mode is:

ψ ± π=2aðxÞ ¼ ψðxÞe ± iπx=2a ¼ c0e
1
4ca

R x

0
dx0mðx0 Þe ± iπx=2a

1

0

	 

: ð42Þ

The SFT plots of the JR zero modes perfectly match the ones
obtained from our supercell toy models presented in Fig. 3, with Eq.
(36) plotted in Fig. 3a, and Fig. S4u in Supplementary Note 2, and
Eqs. (38) and (42) in Figs. 3b, S3, and S4v in Supplementary Note 2.

Jackiw Rebbi mode parity and hybridization. In principle, the
analytical solutions of JR modes in the SSH model all stay at
ω=ω0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc1 þ c2 þ 2c0Þ=m

p
[and ω2= 0 if we plot the eigenva-

lues of C0ðkÞ]. This is because, to get the JR modes, an effective
long-wavelength (around the Dirac point) approximation is used,
and a domain wall is created by simply flipping the sign of m
from one side of the domain wall to the other. However, such a
treatment overlooks the microscopic details at the domain wall of
the actual system, i.e., the way the two domains are connected. In
the spring-mass system as shown in Fig. 2a, b, the TPDWSs are
not at the mid-gap frequency (i.e., ω=ω0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc1 þ c2 þ 2c0Þ=m

p
).

There are two mechanisms behind the shift of their energies.
First, to obtain the mid-gap TPDWS frequency, the dynamical

matrix must present chiral symmetry, requiring the conservation
of total spring constants for each mass, including the domain-wall
mass. However, this is unachievable if one simply mirrors one
side of the mass-spring chain about the domain wall since the
spring constants about the domain-wall mass never equal ones
about other masses, as shown in Fig. 2a, b, as well as in many
other studies including only NNs, such as Fig. 3 in ref. 59. Hence,
the energy of the domain wall mode can shift up (down) from the
mid-gap frequency if the domain wall mass is connected by stiff
(soft) springs on both sides. Nonetheless, such a frequency shift
can be avoided by adding an additional spring to the domain wall
mass to achieve chiral symmetry, as presented in Fig. S4a, b in
Supplementary Note 2. Their eigenvalues, ω2=ω2

0, after removing

the diagonal elements using Eq. (13), are strictly symmetric about
ω2=ω2

0 ¼ 0, similar to the zero− energy in electronic systems, as
shown in Fig. S4c, d.

Second, even if we force the dynamical matrix to be chiral
with an additional spring at the domain wall as in Fig. S4a, b,
three JR modes in the case of strong TNNs can still hybridize
with one another, shifting the TPDWSs from the mid-gap due to
band hybridization dictated by parities of the JR modes. For
example, in the case of SC1 with c0 ¼ 1 shown in Fig. S4a, the JR
mode due to the Dirac cone k= π is parity odd under inversion.
The other two JR modes are not eigenstates of the inversion
operator. However, the hybridization of these modes creates a
cosine and a sine function, the former of which is parity even
and the latter parity odd. When combined with the one at k= π,
we get two antisymmetric eigenmodes with a displacement
amplitude of zero at the domain-wall mass (i.e., two parity-odd
modes) and one symmetric with a non-zero amplitude domain-
wall mass displacement (i.e., one parity-even mode). This is
evident from the SC1 TPDWSs shown in blue in Fig. S4d, where
two have zero amplitudes at the domain wall mass (because, in
total, there are two parity-odd TPDWSs, i.e., SC1-E1/3) shifted
symmetrically up/down from ω2=ω2

0 ¼ 0, while the other one,
SC1-E2, located exactly at ω2=ω2

0 ¼ 0 presents a nonzero
domain-wall-mass amplitude (the parity-even mode). The
scenario is the opposite for SC2, in which the JR mode at
k= π is even under inversion. Thus, there is only one
asymmetric TPDW with a zero displacement amplitude at the
domain wall mass (i.e., one parity-odd mode, SC2-E2) located at
ω2=ω2

0 ¼ 0 and two symmetric ones with a non-zero-amplitude
domain wall mass displacement (i.e., two parity-even modes,
SC2-E1/3) with frequencies shifted up/down symmetrically
about ω2=ω2

0 ¼ 0.
An important point to note here is that only JR modes of the

same parity can hybridize due to symmetry constraints. For
example, in SC1 of Fig. S4a, the two odd modes hybridize, and
one of the resulting hybridized modes shifts up in frequency, and
the other one shifts down. Since the even mode cannot hybridize
with the other two, it remains in the middle. Similar results also
hold (albeit with parities flipped) for SC2. In either case, the JR
mode at k= π always ends up mixing with one of the other two
modes with the same parity with frequency shifts. Thus, these two
shifted TPDWSs always present a peak at k= π in their SFT plots,
as shown in Fig. S4v. On the other hand, the other mode at
ω2=ω2

0 ¼ 0 not mixed with the one at k= π has SFT peaks only
located at the other two Dirac points in the IBZ.

C0ð±π=2aþ δkÞ � 0 2ð± 1� iÞcaδk�mð1 ± iÞ=2
2ð±1þ iÞcaδk�mð1� iÞ=2 0

� �
¼ �mðσ1 � σ2Þ=2þ 2caδkð±σ1 þ σ2Þ:

ð39Þ
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The shifting of the zero-frequency(energy) boundary/domain-
wall modes (after removing the diagonal elements) to finite
frequencies is not unique to the SSH model, instead, it is a generic
feature that arises in most known 0D topological modes in
various types of topological insulators (such as corner modes in
2D higher-order topological insulators), whose energies are also
sensitive to local perturbations near the localized modes49,50.

Topologically protected domain-wall states beyond equal
third-nearest neighbors. The Berry connection proposed in this
work provides a generalized paradigm to predict the number of
TPDWSs and their wave properties. The equal TNN scenario
discussed in Results and Discussion is an example when the
winding number fails, while the Berry connection succeeds in
predicting the number of TPDWSs. In cases when the effect of
TNN difference dominates, as in Fig. S5a in Supplementary
Note 3, the Berry connection makes the same prediction of the
TPDWSs as the winding number does, however with additional
wave information. For example, with c01 ¼ 3c� Δc0 and
c02 ¼ 3cþ Δc0, where Δc0 ¼ 0:1c, the winding number difference
between the two gauges presented in Fig. S5d is one, yet ΔB(k)
shows two peaks and one valley from k= 0 to 2π, corresponding
to three distinct edge modes similar to the scenario in Results and
Discussion. With an enhanced c0 difference, such as when
Δc0 ¼ 0:3c, we obtain three distinct peaks in ΔB(k) in IBZ at
k= 1.23, π, and 5.05, as presented in Fig. S5b, c, corresponding to
the three Dirac points predicted with Eq. (17) with η= 3. Inte-
gration of these three local peaks all yields one, suggesting three
TPDWSs existing in the bulk bandgap. These three TPDWSs also
coincide with the winding number of three due to the all positive
signs of the local peaks of ΔB(k). The contour plot of the off-
diagonal element of C0ðkÞ expressed in Eq. (13) also shows
winding numbers of -1 and 2 for the two gauges presented in
Fig. S5e, yielding a difference of 3 between the two phases. Thus,
these three TPDWSs are expected using either the Berry con-
nection or the winding number calculation. Their existence can
be confirmed by conducting a supercell analysis in the same
manner described in Supercell Analysis of the Su-Schrieffer-
Heeger Model. The band diagram, mode shapes, and the SFT of
the TPDWS and bulk modes are presented in Fig. S5f-l. As can be
seen from the SFT plots in Fig. S5l, peak locations of the TPDWSs
all match those in the ΔB(k) plot presented in Fig. S5b, indicating
consistent TPDWS wavelengths predicted with Berry connec-
tions. The evolution of ΔB(k) with Δc0 also suggests the break-
down of the winding number prediction fails when Δc0<0:2c due
to the flip of the peak and valley in ΔB(k) at k= π due to a
winding number difference of one (shown in Fig. S5d) as opposed
to three from both the ΔB(k) calculation and the supercell
analysis.

Moreover, the Berry connection calculation is also applicable to
lattices beyond TNN interactions. For example, with identical
TNNs (c0) and fifth nearest neighbors (FNNs), c″, and
nonidentical NNs (i.e., c1 ≠ c2), the winding number difference
is still one, as shown in Fig. S6a in Supplementary Note 3.
However, the Berry connection ΔB(k) reveals three peaks and two
valleys with local integrals ± 1, Fig. S6b, suggesting five TPDWSs
existing in the bulk bandgap. Indeed, from the supercell analysis
with a similar setup as shown in Figs. 2a and S5a, five edge modes
emerge within the bulk bandgap, Fig. S6c, with their mode shapes
presented in Fig. S6d-j. SFT of these five TPDWSs in Fig. S6k
reveals that all of them are a hybridization of five wavelengths
with wave numbers corresponding to the locations of peaks and
valleys shown in Fig. S6b. One can prove in a similar fashion that
as long as the differences in BNNs are sufficiently small, the
winding numbers of two gauges will always yield zero and one,

inconsistent with the actual number of TPDWSs, which can,
nonetheless, be conveniently captured by the ΔB(k) calculation.

Experimental fabrication and characterization. The specimens
are 3D-printed (Stratasys F170 FDM3D Printer) using acrylonitrile
butadiene styrene (ABS) with the following parameters: Young’s
modulus E= 1.5 GPa, Poisson’s ratio μ= 0.35, and density
ρ= 1250 kg m−3. As presented in Fig. 5d, each unit cell contains a
pair of masses (green cubes) with side length Wm= 6mm, con-
nected by 5mm-nearest-neighboring (NN) struts with alternating
radii, r1= 3.52 mm (blue) and r2= 1.47mm (yellow), to enable
stiffer and softer NN interactions, respectively. Strong (weak)
TNNs are established by a combination of red squared frames with
side lengthW= 16mm, heightH= 4mm (3.2 mm), and thickness
t= 1.33mm (1.07mm), and bars with radius r3= 2.43mm
(1.28mm) connecting the masses and frames. Mode shapes of the
three (one) edge modes and two bulk modes with strong (weak)
TNNs modeled by COMSOL Multiphysics with these material
properties and structural dimensions are presented in Fig. S7 in
Supplementary Note 4. As we can see from Fig. S7a, the three
TPDWSs in the lattice with strong TNNs, from high to low fre-
quencies, are asymmetric, symmetric, and symmetric manners
about the domain wall, while the one with weak TNNs, as shown in
Fig. S7b is asymmetric about the domain wall. The Symmetries and
locations of the deformed frames all match well with the ones
obtained from experiments presented in Fig. 5i, j.

Data availability
The datasets generated during and/or analyzed during the current study are available
from the corresponding author on reasonable request.

Code availability
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