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Sudden change of the photon output field marks
phase transitions in the quantum Rabi model
Ye-Hong Chen 1,2,3✉, Yuan Qiu1,2, Adam Miranowicz 3,4, Neill Lambert3, Wei Qin3, Roberto Stassi3,5,

Yan Xia1,2✉, Shi-Biao Zheng1,2 & Franco Nori 3,6,7✉

The experimental observation of quantum phase transitions predicted by the quantum Rabi

model in quantum critical systems is usually challenging due to the lack of signature

experimental observables associated with them. Here, we describe a method to identify the

dynamical critical phenomenon in the quantum Rabi model consisting of a three-level atom

and a cavity at the quantum phase transition. Such a critical phenomenon manifests itself as a

sudden change of steady-state output photons in the system driven by two classical fields,

when both the atom and the cavity are initially unexcited. The process occurs as the high-

frequency pump field is converted into the low-frequency Stokes field and multiple cavity

photons in the normal phase, while this conversion cannot occur in the superradiant phase.

The sudden change of steady-state output photons is an experimentally accessible measure

to probe quantum phase transitions, as it does not require preparing the equilibrium state.
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In quantum systems close to critical points, small variations of
physical parameters can lead to drastic changes in the
equilibrium-state properties1–4. An interesting class of quan-

tum critical systems is provided by light-matter interaction
models5–8, such as the quantum Rabi9,10 and Dicke models11–18

describing the interaction of single or many two-level atoms
(atomic levels g

�� �
and ej i) with a single-model cavity. The

quantum Dicke model exhibits a superradiant quantum phase
transition (QPT) in the thermodynamic limit of infinite
atoms11–17. Such a thermodynamic limit leads to some difficulties
in experimentally exploring the superradiant QPTs19–26. Instead,
by replacing the thermodynamic limit with a scaling of the system
parameters, the quantum Rabi model described by the Hamilto-
nian (hereafter ℏ= 1)

HR ¼ωayað ej ihej þ jgihgjÞ þΩ ej i eh j
� gðaþ ayÞðjgihej þ jei g

� ��Þ; ð1Þ

can also exhibit a superradiant QPT9,10, where ω (Ω) is the
cavity-mode (atomic-transition) frequency, a (a†) is the cavity-
mode annihilation (creation) operator, and g is the light-matter
coupling strength. We assume that the level frequency of the
atomic state jgi is zero. This superradiant QPT has been
experimentally observed27,28 and is attracting increasing
attention29–34. However, one of the most important critical
phenomena in this system, i.e., a discontinuity of the derivative
for the number of bare photons at the critical point, is hard to
observe.

Unlike classical phase transitions, superradiant QPTs can occur
when changing the system parameters at zero temperature5,6,16.
Specifically, when g approaches the critical point, it was
predicted10 that the mean photon number in the ground eigen-
state of HR suddenly increases to infinity. This corresponds to a
QPT from a normal phase (NP), where the ground state of the
cavity field is not occupied, to a superradiant phase (SP), where
the ground state is macroscopically occupied. However, experi-
mentally exploring this critical phenomenon is challenging
because: (i) the time required to prepare this equilibrium state
diverges10; and (ii) these photons are virtual, so cannot be directly
measured7,8. Especially, the difficulty (i) may make transition-
edge sensing protocols35–37 not effective in detecting this kind of
phase transitions.

Here we show how to overcome these problems by introducing
additional low-energy levels in the quantum Rabi model and
driving transitions among these levels. We show that the stimu-
lated emission effect of the whole system can directly reflect the
change of the photon-number distributions of the quantum Rabi
Hamiltonian. The process can be interpreted as a multi-photon
down-conversion induced by stimulated Raman transitions (i.e., a
pump photon is converted into a Stokes photon and multiple
cavity photons, as shown in Fig. 1a)38–41. This parametric down-
conversion process changes abruptly when the superradiant QPT
occurs in the quantum Rabi Hamiltonian. Such a change can be
observed by measuring the real photons continuously released
from the cavity. Note that this parametric down-conversion
process was initially studied by Huang et al. in 2014 for photon
emission via vacuum-dressed intermediate states39. We find that
such a photon emission can be useful in observing quantum
critical phenomena. We predict that the steady-state output
photon rate can reach Φss

out � 4 ´ 10�3ω in the NP, then suddenly
vanishes when tuning the Rabi Hamiltonian into the SP. This
demonstrates a sudden change of the ground eigenstate of the
quantum Rabi Hamiltonian, and indicates the occurrence of the
superradiant QPT.

Superadiant quantum phase transitions
Note that the theory of the superradiant phase transition in the
quantum Rabi model was developed first in 20139 and then in
201510. For clarity, we first review the theory of the superradiant
phase transition in the quantum Rabi model. In the limit of Ω/
ω→∞, following refs. 9,10, we can solve the Hamiltonian HR in
Eq. (1) using a Schrieffer-Wolff transformation1,2:

USW ¼ exp
g
Ω

� �
aþ ay
� �

ej ihgj � jgi eh j� �h i
: ð2Þ

For the transformed Hamiltonian, the transitions between the
ground- and excited-qubit-state subspaces fjnijgig and nj i ej if g
are negligible. Thus, we perform a projection hgjUy

SWHRUSWjgi,
resulting in

Hnp ¼ ωaya� ωg2c
4

aþ ay
� �2 þ Oðg2cω=ΩÞ; ð3Þ

where

gc ¼ 2g=
ffiffiffiffiffiffiffi
ωΩ

p
;

is the normalized coupling strength and Oðg2cω=ΩÞ denotes
negligible higher-order terms. The excitation energy of Hnp is

εnp ¼ ω
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2c

q
;

which is real only for gc ≤ 1 and vanishes at gc= 1, i.e., in the
NP10. The ground eigenstate of Hnp is E0

�� � ¼ SðrnpÞ 0j i, with
SðrnpÞ ¼ exp

rnp
2

ay2 � a2
� �h i

; and rnp ¼ � 1
4
ln 1� g2c
� �

:

ð4Þ
For gc > 1 and

α ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω

ω
g2c � g�2

c

� �r
≥ 0; ð5Þ

after displacing the cavity field with displacement operators

Dð± αÞ ¼ exp ± α ay � a
� �
 �

; ð6Þ
we can employ the same procedure in deriving Hnp to obtain the
Hamiltonian in the SP:

Hsp � ωaya� ω

4g4c
aþ ay
� �2 þΩ

2
1� g2c
� �þ ωα2: ð7Þ

The excitation energy of Hsp is εsp ¼ ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g�4

c

p
and the ground

eigenstate of Hsp is SðrspÞ 0j i, with
rsp ¼ � 1

4
ln 1� g�4

c

� �
: ð8Þ

Thus, in the lab frame, HR has two degenerate ground eigenstates

E0

�� � ¼ Dð± αÞSðrspÞ 0j i #
�� �

±
; ð9Þ

where #
�� �

±
are the ground eigenstates of

H ± ¼ Ω ej i eh j � 2gαð ej ihgj þ jgi eh jÞ: ð10Þ
This is because two different displacement parameters ± α result
in an indentical spectrum9.

Demonstrating the critical phenomenon
The sudden change of �n0 ¼ hE0jayajE0i at the critical point gc= 1
is the most important benchmark of the superradiant QPT.
Specifically, when Ω/ω→∞, the derivative d�n0=dgc is dis-
continuous at the critical point gc= 1 (see Fig. 2a), indicating the
occurrence of the superradiant QPT. However, observing this
critical phenomenon is still challenging in experiments mainly
because: (i) it is difficult to prepare the ground state E0

�� �
at the

critical point; (ii) one cannot adiabatically tune control para-
meters across the critical point27,28 since the energy gap mostly
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closes at the critical point; and (iii) the photons in the ground
eigenstate E0

�� �
are virtual and cannot be directly measured7,8.

Instead, in this manuscript, we propose to measure the sudden
change of the photon number distributions of E0

�� �
, i.e., the

probability amplitudes ckð gcÞ ¼ g
� ��hkjE0i. This is equivalent to

measuring the change of 〈E0∣a†a∣E0〉 because it can be calculated
using the photon number distributions. In the Ω/ω→∞ limit, it
is expected that α→∞ and rsp ≠ 0 when gc > 1. Thus, when gc is
tuned across the critical point, there is a sudden change in the
amplitude c2k:

jc2kðgcÞj �!
gc¼1� � tanhðrnpÞ

h ik ffiffiffiffiffiffiffiffiffiffi
ð2kÞ!

p
2kk!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshðrnpÞ

q
�������

�������
> 0;

jc2kðgcÞj �!
gc¼1þ ðtanh rspÞk exp � α2

2 ð1þ tanh rspÞ
h i

2k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2kÞ! cosh rsp

q H
n
ðxÞ

�������

�������
�!0;

ð11Þ

where HnðxÞ are the Hermite polynomials with

x ¼ α expðrspÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh 2rsp

q : ð12Þ

Such a change is obvious when k is small, because ∣c2k(gc→ 1−)∣
is significant as shown in Fig. 2b. Especially, for k < 5, the com-
ponents of the few-photon states in the eigenstate E0

�� �
of HR

suddenly vanish when gc is tuned across the critical point (see
Fig. 2b). This coincides with the sudden changes of the photon
number �n0 and its derivative d�n0=dgc (see the red-solid curve in
Fig. 2a).

To demonstrate the sudden change of c2k, following the idea
in ref. 39, we introduce a third low-energy level μ

�� �
with

level frequency ωμ < 0 for the atom (see Fig. 1b). We assu-
me that ∣ωμ∣ ≫ ω, so that the state μ

�� �
is far off-

resonance to the cavity bare frequency. The atom-cavity inter-
action becomes

H0 ¼ HR þ ωμ μ
�� �hμj þ ωayajμi μ

� ��; ð13Þ
whose eigenstates jξji can be separated into: (i) the noninteracting
sectors jμni ¼ jnijμi with eigenvalues nω+ ωμ; and (ii) the

Fig. 1 Sketch and atomic level structure of the protocol. a Sketch of the parametric down-conversion process in an atom-cavity system. A pump pulse of
frequency ωp is converted into a Stokes pulse of frequency ωs and multiple cavity photons of frequency ω. b Level structure of the atom. The upper two
atomic levels gj i and ej i are ultrastrongly coupled to the cavity mode with strength g. The lower two levels gj i and μ

�� �
are off-resonantly driven by a

composite pulse of two frequencies (ωp and ωs) and two amplitudes (Ωp and Ωs).

Fig. 2 Sudden change of photon number distribution. a Derivative d�n0=dgc of the virtual cavity excitation number �n0 ¼ hE0jayajE0i calculated for different
frequency rate Ω/ω. b Probability amplitudes ∣c2k∣ of the states 2kj i gj i in the eigenstate E0

�� �
of HR in Eq. (1) when Ω= 106ω approximatively satisfying the

condition Ω/ω→∞. The green- and blue-shaded areas denote the normal phase (NP) and the superradiant phase (SP), respectively.
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eigenstates jEmi of HR with eigenvalues Em (j, n,m= 0, 1, 2,…).
The ground state of the whole system becomes jμ0i, which is the
initial state for the system dynamics hereafter.

Then, as shown in Fig. 1, we employ a composite pulse to drive
the atomic transition μ

�� � $ g
�� �

:

HD ¼ Ωp cosðωptÞ þ Ωs cosðωstÞ
h i

μ
�� �hgj þ jgi μ

� ��� �
; ð14Þ

where Ωp,(s) and ωp,(s) are the driving amplitude and frequency,
respectively. Focusing on the changes of few-photon components
(k < 5), we choose ωp= E0− ωμ and ωs= E0− ωμ− 2lω, for
l= 1, 2,…, resulting in the resonant transitions jμ0i $ jE0i $jμ2li in the subspace fjξjig. Specifically, for weak drivings
Ωp,(s)≪ ∣E2− E0∣, the system dynamics is understood as the
Raman transitions described by the effective Hamiltonian

Heff ¼
1
2

c0Ωp μ0
�� �þ c2lΩs μ2l

�� �h i
E0

� ��þ h:c:; ð15Þ

which is obtained by performing eiH0tHDe
�iH0t and neglecting

fast-oscillating terms under the rotating-wave approximation (see
Supplementary Note 1 for more details). Hereafter, we omit the
explicit gc dependence of all the probability amplitudes ck for
simplicity. The dynamics governed by Heff can be interpreted as a
multi-photon down-conversion process (see Fig. 1a), with an
efficiency controllable by the coefficients c0 and c2l. When the
initial state is μ0

�� �
, the probability amplitude of the state μ2l

�� �
at

time t reads

P2l ¼
c0Ωpc2lΩs

4Ξ2 cos Ξtð Þ � 1½ �; with Ξ2

¼ 1
4

c0Ωp

� �2
þ c2lΩs

� �2� 
:

ð16Þ

Choosing t= π/Ξ, the probability amplitudeP2l and the mean
photon number of the system both reach their maximum values.
Then, as long as Ωp ≠ 0 and Ωs ≠ 0, P2l is measurable because c0
and c2l are significant. Accordingly, the theoretical prediction of
the maximum photon number of the system after a finite-time

evolution is

�nemax ¼ 2ljP2lðtÞj2 ¼ 2l
2c0Ωpc2lΩs

ðc0ΩpÞ2 þ c2lΩs

� �2
�����

�����
2

: ðwhere t ¼ π=ΞÞ

ð17Þ
However, when gc is tuned across the critical point, the needed

evolution time to achieve the maximum photon number tends
infinite due to Ξ→ 0. To avoid such an infinite-time evolution,
we impose t ≤ 106/ω in this protocol when Ξ→ 0. In this limit, we
obtain P2l→ 0 because cosðΞtÞ ! 1 according to Eq. (16).
Therefore, as shown in Fig. 3, we theoretically predict a sudden
change of the mean photon number when gc→ 1, indicating the
occurrence of the superradiant QPT.

This demonstration can be interpreted as a partial quantum
process tomography, which starts at preparing the initial
state jμ0i and fixing gc to a specific value, e.g., gc= 0.999. Then,
turning on the drivings, one can detect the system dynamics
(see the example in Fig. 4a). After the detection, the drives are
turned off and the system is prepared to the state μ0

�� �
. The next

step is tuning gc to another value (e.g., gc= 1.001) through
adjusting the frequencies Ω and ω. Thus, after the energy
spectrum of the system stabilizes, one can turn on the drivings
again and detect the system dynamics (see the example in
Fig. 4b). By repeating these processes, we can know the system
dynamics for an arbitrary gc and demonstrate the critical phe-
nomenon as shown in Fig. 4c, which shows the maximum value
�nmax of the mean photon number of the system in the
evolution. Note that the mean photon number is no longer
�n ¼ hayai, but �n ¼ hX�Xþi, where X+ (X−) is the positive
(negative) frequency component of the quadrature operator
X= a+ a†7,8,42,43. Otherwise, because of 〈E0∣a†a∣E0〉 ≠ 0, an
observation of the stream of photons in the eigenstate E0

�� �
of the

Rabi model would give rise to a perpetuum mobile behavior38,42.
Because these photons can be emitted and detected in a dis-
sipative dynamics, a measurement of the population dynamics is
not necessary.

Using the corresponding input-output theory39,43, we apply

Xþ ¼ ∑
j;j0
hξj0 j aþ ay

� �jξjijξj0 ihξjj; ð18Þ

Fig. 3 Critical phenomenon. Theoretical prediction of the maximum photon number of the system after a finite-time evolution, according to Eqs. (16) and
(17). For Ξ→ 0, we impose t= 106/ω when π/Ξ→∞, to avoid an infinite evolution time in the coherent dynamics. Parameters are: Ω= 106ω,
ωμ ¼ E0 � 2ðnd � lÞ þ 0:25


 �
ω, Ωp= 0.005(E2− E0), and Ωs= 2Ωp. For simplicity, we choose nd= 2+ l in the simulation.
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and X� ¼ Xþð Þy with j0 < j. Here, Eq. (18) describes that a photon
emission from the cavity is associated with the transition from a
high-energy eigenstate jξji to a low-energy eigenstate jξj0 i of H0.
Note that in the subspace fjμnig, we can obtain
∑njμnihμnjXþ∑mjμmihμmj ¼ jμihμj � a. That is, the photons in
the states jμ2li are real cavity photons, thus,

X�Xþjμ2li � jμihμj � ayajμ2li ¼ aya 2lj ijμi: ð19Þ

Therefore, the system has maximum real photons at the
time t= π/Ξ, when the state jμ2li is maximally populated
according to Eq. (16). Figure 4c shows that �nmax reaches a
maximum when gc→ 1−, indicating a rapid increase of the mean
photon number near the critical point. Then, when gc is tuned
across the critical point, the photons suddenly vanish. The inset
of Fig. 4 shows such changes more clearly, where we can see that
�nmax changes sharply when slightly increasing gc from gc= 1 to
gc= (1+ 10−4), demonstrating a sudden change of the photon-
number distributions in E0

�� �
(see also Supplementary Note 1).

Obviously, the actual dynamics of the system shown in Fig. 4c

coincides very well with the effective one shown in Fig. 3. As
an example for l= 2, when gc= 0.99999, the theoretical predic-
tion of the maximum photon number is �nemax ’ 3:89, and
the actual number is �nmax ’ 3:93. When we change gc to
gc= 1.0003, the theoretical prediction becomes
�nemax ’ 0:0018n¯maxe≃0.0018 and the actual number is
�nmax ’ 0:04. Both close to zero, indicating a sudden change of the
mean photon number at the critical point. The sudden change in
�nmax can be easily detected experimentally by measuring the rate
of photons transmitted out of the cavity. Note that numerical
results for actual dynamical evolution in this manuscript are
obtained using the total Hamiltonian Htot=H0+HD without
approximations.

Output photon rate
A proper generalized input-output relation in the ultrastrong-
coupling regime determines the output cavity photon rate38,39 by

Φout ¼ κTr X�Xþρ

 �

: ð20Þ

Fig. 4 Dynamics of the model. Populations of the ground state μ0
�� �

and the four-photon state μ4
�� �

in (a) the normal phase (NP, green-shaded area) for
gc= 0.999, and (b) the superradiant phase (SP, blue-shaded area) for gc= 1.001, calculated for the total Hamiltonian Htot= H0+ HD. c Maximum value
(�nmax at the time t= π/Ξ) over time of the mean photon number in the evolution governed by Htot for l= 1, 2, 3, 4. Parameters are the same as those in
Fig. 3. Here, nd ≥ l is used to tune the driving frequencies ωp and ωs; and for simplicity, we choose nd= 2+ l in the simulation. The eigenvalues E0 and E2 can
be numerically calculated. The level frequency ωμ is chosen so that the state E0

�� �
is the highest level in the dynamical evolution and the state μ

�� �
is off-

resonant to the cavity bare frequency. Thus, the system only has real cavity photons contributed by the state μ2l
�� �

.
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Here, κ is the cavity decay rate and ρ is the density matrix obeying
the following master equation at zero temperature7,8,

_ρ ¼ i ρ;Htot


 �þ ∑
3

ν¼1
∑
j;j0<j

ΓðνÞjj0 D½jξj0 ihξjj�ρ
n o

; ð21Þ

where Htot=H0+HD is the total Hamiltonian and

D½o�ρ ¼ oρoy � 1
2

oyoρþ ρoyo
� �

; ð22Þ

is the Lindblad superoperator. The relaxation coefficients ΓðνÞjj0 can
be written in compact forms as

Γð1Þjj0 ¼ γ1jhξj0 jðjμihgj þ jgihμjÞjξjij2;
Γð2Þjj0 ¼ γ2jhξj0 jðjgihej þ jeihgjÞjξjij2;
Γð3Þjj0 ¼ κjhξj0 jðaþ ayÞjξjij2;

ð23Þ

where γ1,(2) is the spontaneous emission rate of the transition
jgi ! jμi ( ej i ! jgi).

The steady-state output field can remain unchanged for a long
time. This can reduce the difficulties in experiments to measure
the emitted photons. Taking l= 2 as an example, in Fig. 5a, we
show the steady-state output photon rates Φss

out ¼ Φoutjt!1,
which is independent of the initial state. Focusing on Ω/ω= 104

(the black-solid curve in Fig. 5a), the peak value of steady-state
output photon rate can reach Φss

out ≳ 4 ´ 10�3ω in the NP near the
critical point when the dissipation rates are κ= γ1= γ2= 0.01ω.
We can choose ω ~ 2π × 5MHz and Ω ~ 2π × 50 GHz44,45, the
cavity can transmit ~ 1.25 × 105 photons per second, which is
detectable in cavity- and circuit-QED systems. The coupling
strength is g ~ 2π × 250 MHz, and the driving amplitudes are
Ωp≳ 2π × 0.5 kHz and Ωs≳ 2π × 1 kHz, which are feasible in
current experiments7,8,46–49. When the parameter gc crosses the
critical point, suddenly there is no photon released from the
cavity. This indicates the drastic change of the photon number
distributions and the occurrence of the QPT. The curves in Fig. 5a
coincide well with those in Fig. 2a, proving that the steady-state
output field is a good signature of the superradiant QPT.

Finite-frequency effect
As mentioned above, for finite frequencies of Ω and ω, the
higher-order terms Oðωg2c=ΩÞ cannot be ideally neglected but
modify the eigenvalues and eigenstates of HR near the critical
point. The influence of this finite-frequency effect is shown in
Fig. 5. The first-order derivatives of Φss

out versus gc are shown in
Fig. 5b. For Ω/ω= 104 (black-solid curve in Fig. 5b) and Ω/
ω= 106 (red-solid curve in Fig. 5b), we can see deep thin dips
near the critical point of gc= 1, indicating the sudden changes of
output photon rates. For Ω/ω= 102, the phenomenon becomes
less pronounced (see the blue-solid curve in Fig. 5b).

Discussion
Our protocol does not need to control a parameter to adiabati-
cally approach the critical point. Also, we do not need to prepare
the equilibrium state, which is challenging in experiments because
the time required diverges10,35. The critical phenomenon can be
translated to a sudden change of the output photon rate, which
can be easily detected in experiments. Thus, our protocol could be
efficient to observe the critical phenomenon of the sudden change
of photon number distributions in a superradiant QPT. More-
over, unlike dissipative phase transitions19,24,25,50–52, the drivings
and dissipation in this manuscript are only used for quantum
measurements and do not affect the QPT.

Our protocol could be implemented with superconducting
circuits, which have realized the ultra- and deep-strong couplings
between a single atom and a single-mode cavity44,45,53–57. One
can couple, e.g., a flux qubit7,8,46–49, with a lumped-element
resonator via Josephson junctions to reach a coupling strength of
g/2π ~ 1 GHz44,45. To reduce the cavity frequency to ω= 2π × 5
MHz, one can use an array of dc superconducting quantum
interference devices58 instead of the lumped-element resonator
(see Supplementary Note 2). The level structure of the atom can
be realized by adjusting the external magnetic flux through the
qubit loop38,39,59. Moreover, simulated quantum Rabi
models7,8,60–65, which work in the rotating frames of the Jaynes-
Cummings models, can be another possible implementation of
our protocol (see also Supplementary Note 3).
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Fig. 5 Photon output field. a Steady-state output photon rates Φss
out ¼ Φoutjt!1 defined in Eq. (20), and (b) the corresponding derivative d Φss

out

� �
=dgc versus gc

for l= 2. Dissipation rates are κ= γ1= γ2=0.01ω. We choose relatively strong driving fields, i.e., Ωp=0.05(E2− E0) and Ωs= 2Ωp, to achieve relatively large
output photon rates. Strong driving fields may cause small errors (via counter-rotating effects) in obtaining the effective Hamiltonian Heff, leading to oscillations in
Φss

out. These small errors do not affect the observation of the critical phenomenon, i.e., an extremum of d Φss
out

� �
=dgc at gc→ 1+. The blue, black, and red curves are

plotted using frequency ratios Ω/ω= 102, Ω/ω= 104, and Ω/ω= 106, respectively. Other parameters are the same as those in Fig. 4.
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Conclusion
We have investigated a method to observe quantum critical
phenomena: a sudden change of photon number distributions in
a quantum phase transition exhibited by the quantum Rabi
model. We can interpret the system dynamics as a multi-photon
down-conversion process and study the outputs near the critical
point. When the normalized coupling strength gc is tuned across
the critical point, the output of the system changes abruptly. This
reflects a sudden change of the eigenstate E0

�� �
of the quantum

Rabi model. Specifically, for the Rabi Hamiltonian in the NP, a
pump pulse can be converted into a Stokes pulse and multiple
cavity photons, while in the SP, it cannot. One can observe such a
change by measuring the photons emitted out of the cavity
continuously in the steady state. Moreover, for finite frequencies,
we demonstrate that a small frequency ratio Ω/ω may lead to the
disappearance of the critical phenomenon. We expect that our
method can provide a useful tool to study various critical phe-
nomena exhibited by quantum phase transitions without pre-
paring their equilibrium states.

Data availability
The data used for obtaining the presented numerical results as well as for generating the
plots is available on request. Please refer to yehong.chen@fzu.edu.cn.
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