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Simultaneous emergence of active turbulence and
odd viscosity in a colloidal chiral active system
Joscha Mecke 1,4, Yongxiang Gao 2,4✉, Carlos A. Ramírez Medina 1, Dirk G.A.L. Aarts 3,

Gerhard Gompper 1 & Marisol Ripoll 1✉

Active fluids display collective phenomena such as active turbulence or odd viscosity, which

refer to spontaneous complex and transverse flow. The simultaneous emergence of these

seemingly separate phenomena is here reported in experiment for a chiral active fluid

composed of a carpet of standing and spinning colloidal rods, and in simulations for syn-

chronously rotating hard discs in a hydrodynamic explicit solvent. Experiments and simula-

tions reveal that multi-scale eddies emerge, a hallmark of active turbulence, with a power-law

decay of the kinetic-energy spectrum, a feature of self-similar dynamics. Moreover, the

particles are dragged to the centre of the vortices, a telltale sign of odd viscosity. The weak

compressibility of the system enables an explicit measurement of the odd viscosity in bulk via

the relation between local vorticity and excess density. Our findings are relevant for the

understanding of biological systems and for the design of microrobots with collective self-

organized behavior.
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Active matter consists of agents, which include one or more
building blocks that can convert energy into forces or
torques or are externally driven, leading to an inherent

motion1,2. The interactions among the individual active units can
largely vary making the different systems exhibit an extensive
number of structures, together with the emergence of a broad
range of collective motions. These phenomena can be found
across a wide range of length scales, e.g., in flocks of bird3, traffic
dynamics4, swarming in bacterial colonies5,6, or cluster, swarm
and lane formation in self-phoretic colloids7,8. Understanding the
non-equilibrium physics of active matter is of major importance
in unravelling the processes of life, since all living biological
systems are driven far from equilibrium.

Active micrometre-scaled particles powered by externally
imposed electric-magnetic manipulation serve as promising
candidates for designing agents capable of applications such as
nanomedical drug delivery9,10. A prominent example is given by
particles carrying a magnetic moment exposed to externally
applied magnetic fields9,11–16, which can be used to steer tracer
particles through a solvent9, or be brought into a rotating state by
imposed torques11–17 becoming then an archetypical synthetic
chiral active fluid. Biological examples of chiral active fluids are
membranes with rotating macromolecules18, or Volvox colonies
which have been shown to hydrodynamically interact and orga-
nize in bound states of co-rotation19. Chiral particles are receiving
much attention recently20,21 since they display a plethora of novel
behaviours, which are far from fully explored. For example the
formation of crystals at high rotor densities22, where dislocations
move with whorl-like patterns. Most chiral systems show intrinsic
density inhomogeneities, which can be related to the presence of
an additional term in the system stresses that is odd under mirror
or time-reversal symmetry23–25, which indicates the presence of
the so-called odd viscosity. In soft matter chiral active systems,
odd viscosity effects have so far only sparsely been realized
experimentally26.

Active turbulence refers to the spontaneous collective complex
spatiotemporal motion emerging in systems with active
components27. It has been observed in systems such as bacterial
suspensions28,29, swarming sperm30, or active nematics31,32. In
classical turbulence, kinetic energy is externally inserted into the
system at length scales in which viscous dissipation is negligible,
and inertial effects transport the energy to smaller length scales
where it is viscously dissipated. This is the so-called energy
cascade33. In active turbulence, energy input is linked to the
motion of the microscopic components and inertia is expected
not to play an important role34–36. Self-organization phenomena
of the active components and related instabilities develop corre-
lated flows at various length scales resulting in a descriptively
similar behaviour than inertial turbulence, where energy transfer
across scales is not required, but possible. For both, inertial and
active turbulence, self-similar dynamics are observed with the
formation of vortices over a range of length scales, together with
power-law dependencies of the energy spectrum.

Systems consisting of rotating or spinning particles have shown
to either exhibit active turbulence, or odd viscosity26,37, but not
both. Whether both features may occur simultaneously, and if
they are even related is still an open question, answered affir-
matively in this paper. Here, we report an experimental and
numerical study of ensembles of rotating colloidal rods interact-
ing dominantly via hydrodynamic interactions, where both the
odd viscosity and turbulence can be simultaneously observed and
quantified. We introduce a chiral active system composed of
spinning silica rod-like colloids with a magnetic tip at one end,
with the direction of the magnetic moment perpendicular to the
rod axis (see the “Methods” section). The sedimented colloids
follow an externally applied magnetic field almost

instantaneously, and in a particular frequency range, they precess
perpendicular to the container basis, resulting in an ensemble of
synchronously rotating cylinders with parallel symmetry axes. In
parallel, we conduct large-scale simulations with a model of discs
rotating at a fixed angular velocity Ω, immersed in an explicit
hydrodynamic solvent, and interacting with other discs by steric
interactions38–41 (see the “Methods” section). This assumes that
the relevant interactions between the rotating rods take place only
perpendicularly to their cylinder axes. The fluid in contact with
the colloid’s surface co-rotates with it, generating long-range
hydrodynamic interactions together with two additional stresses
between rotors: rotational and odd. The rotation stress exerted
between pairs of rotors results in their propulsion, which leads to
ensemble dynamics and rich cooperative effects, such as dynamic
vortex formation of different sizes with an energy spectrum
scaling similar to 2D inertial turbulence, all function of the
packing fraction. Odd viscosity is a specific property of chiral
rotor fluids, and therefore absent in usual fluids. The odd stresses
appear orthogonally to the standard shear stresses leading to an
inwards accumulation in the vortices, which are dynamically
formed due to the rotation stresses. The weak compressibility of
our system permits the emergence of clear density-vorticity cor-
relations which allows us to reliably measure the odd viscosity of
the system in bulk. We expect this to become a standard method
to quantify odd viscosity in many other chiral active systems. The
persistent formation of vortices with sizes ranging from a few
particle diameters to almost the whole system size results in a
decay of the energy spectrum with a power-law of approximately
a decade in experiments, and significantly larger in simulations,
enabling us to demonstrate the self-similar dynamics in this case
of exceedingly small Reynolds number.

In the remainder of the paper, we (i) introduce the dynamics of
two interacting rotors, (ii) study the translational propulsion of
rotors in dilute to dense ensembles, (iii) characterize the vorticity
and density fields, which provides a measurement of the system’s
odd viscosity, and (iv) evaluate the active turbulence via the
energy spectra.

Results
Hydrodynamics of rotor pairs. The characterization of the
dynamics of two rotors allows a first quantification of the relevant
interactions in the system. Trajectories of two interacting rotors
are shown in Fig. 1a–d for a duration of Ωt= 30, which corre-
sponds to t= 3 s in experiments. When two rotors approach, they
perform an orbital rotation around their joint centre of mass.
This orbital rotation is fast at short separations, as can be seen in
the trajectories shown in Fig. 1a and c, and slows down with
increasing distance (Fig. 1b and d), becoming Brownian and
independent of each other for even larger separations. This
behaviour can be understood as a result of the advection mutually
generated by the hydrodynamic flows, which become weaker for
increasing distances. The simulated hydrodynamic flow fields of
two rotors placed at a fixed distance are shown in Fig. 1e. The
angular velocity of the pair Ωpair around their centre of mass is
quantified from the measured trajectories and presented in
Fig. 1f, where both show a similar power-law decay as a function
of the separation between the rotors. For an infinitely long iso-
lated cylindrical rotor, the radial velocity profile can be estimated
as uφ(r)= (σ/2)2Ω/r, and for two, the position-dependent flow
field can be calculated as a superposition of the individual flow
fields, yielding to a prediction of the angular velocity Ωpair/
Ω= σ2/(2r2), where the boundary conditions on the surface of the
rotors are disregarded. This quantitative prediction is roughly a
factor of two higher than the experimental results, while it is in
almost perfect agreement with the simulation measurements as
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can be seen in Fig. 1f: the analytical expression for the flow fol-
lows from the infinite cylinder approximation, which is valid for
the 2D simulations.

We further evaluate the hydrodynamic force acting on a rotor,
F⊥, known as the thrust force, which is responsible for the pair
orbital rotation due to the presence of a neighbour, as illustrated
in Fig. 1e. The results are normalized with Fs which assumes the
Stokes drag of the colloid, i.e., ζv, with the solvent friction
ζ= kBT/D, obtained from the diffusion coefficient D of isolated
rotors, the ambient thermal energy kBT, and the velocity imposed
at the colloid surface vs= πσΩ, such that Fs= 4π2ησΩ. We first
assume that F⊥ exactly balances the Stokes hydrodynamic drag,
which can be estimated by using the velocity from the measured
pair angular frequency in Fig. 1f, v⊥ ≃ πΩpairr, and the solvent
friction, such that F⊥ ≃ ζv⊥. Results are shown in Fig. 1g, where a
similar trend for both, experiments and simulations can be

observed. Furthermore, in simulations, the thrust force F⊥ can be
explicitly measured by placing pairs of rotors at fixed positions as
a function of their centres separation r. These measurements are
in excellent agreement with the analytical expression for infinitely
long cylinders in a fluid of vanishing Re42, as shown in Fig. 1g.
The decrease of F⊥ with r indicates that the thrust force is
significant over a long-range since it decays to the strength of
thermal fluctuations Fth= kBT/σ only around r ≈ 10σ, since Fth/
Fs ≈ 0.01 in our case.

Some small differences between experiments and simulations
emerge from two effects present in experiments but not
considered in simulations. In experiments sedimented magnetic
rods rotate in a container of height much larger than the rod
length, such that the induced flow partially escapes into the upper
fluid layers above the rods. Furthermore, the friction between the
solvent and the substrate could also lead to a diminution in the

Fig. 1 Hydrodynamic pair interactions. a–d Trajectories of two interacting colloidal rotors at various separations, with lines colour coding time evolution,
and scale bars 2 μm in experiments and 2σ in simulations (see Supplementary Movie 1); a and b experimental trajectories for a duration of Ωt= 30, where
t= 3 s, c and d simulated trajectories with Ωt= 5, with background points illustrating solvent positions. e Flow field of two colloids placed at a fixed
distance, as calculated from hydrodynamic simulations. All simulation data is time-averaged over tav steps and a number nav of realizations. For averages of
the fluid, there are δav= 10 MPC collisions in between each measuring step, and here tav= 3 × 105 and nav= 54. f Co-rotation angular velocity Ωpair as a
function of the separation of the two rotors: red, experimental results; blue, simulations. For averages of the colloids δav= 103, and here with tav= 3 × 104

and nav= 240. The dashed line is the theoretical prediction Ωpair/Ω= σ2/(2r2). g Forces perpendicular to the line connecting two rotors in units of
Fs= 4π2ησΩ. The dashed-dotted line is the analytical prediction from the Stokes equation in ref. 42, blue squares correspond to the explicitly measured
forces in simulations, and circles are estimates obtained from the angular velocity in f via F⊥= (kBT/D)πσΩ, with up to tav= 6 × 106 and nav= 108 for the
largest separations.
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effective flow experienced by nearby rotors. Both effects are more
pronounced at larger inter-particle distances. The overall
agreement between experiments and simulations is very satisfac-
tory, especially at short distances, where pair interactions are
substantially stronger than the thermal noise.

Conversion of rotation into propulsion. The motion of more
than two interacting rotors is now investigated as a function of

the packing fraction ϕ. Rotor configurations and typical trajec-
tories are shown in Fig. 2a–c for experiments and in Fig. 2d–i for
simulation results. Note that accurate and automatic tracking of a
large population of fast-moving colloidal particles in a dense
suspension represents a significant challenge due to the limited
image acquisition rate, dynamic heterogeneity and blinking of
particles43. Therefore, we typically track 15–30 rotors manually
for each experiment and overlay them onto raw images, with only
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a quarter of the images shown for clarity (see Fig. 2a–c and
Supplementary Movies 2–4). At low ϕ, rotors are far from each
other, displaying merely Brownian motion, as can be seen in
Fig. 2a and d. At medium densities, rotors are more likely to
interact in pairs, triplets, or larger ensembles, and the trajectories
become ballistic and curved, reminiscent of active Brownian
particles (Fig. 2b and e). Two neighbouring colloids rotate around
each other in the same angular direction as the intrinsic rotation.
When additional rotors get in their proximity, they get incor-
porated into the same motion nucleating a rotating group, or
vortex. These vortices grow in size until they start to interact with
neighbouring vortices. The ensemble exhibits therefore rich
vortex dynamics where the rotating groups coalesce or break up
dynamically, and individual rotors vividly interchange between
different rotating groups. Although all colloids are spinning in
sync with the external magnetic field, the resulting vortices rotate
at different speeds, and they can eventually rotate in opposite
directions when they need to adjust to the boundary conditions
imposed by neighbouring vortices. The curvature of the trajec-
tories shown in Fig. 2b and e depends on the configuration of
nearby rotors, i.e., on the size of the rotating group the respective
rotor belongs to. Small groups lead to strongly curved trajectories,
whereas larger groups lead to almost straight trajectories. Cur-
iously, a few experimental and simulated trajectories show a
looping behaviour, resulting from the change of orbiting motion
of one rotor from one to a different partner, triplet, or small
group. For larger densities, the phenomenology is basically the
same, but trajectories are on average longer and some of them
might even exhibit segments bending into different directions,
which occurs when rotors change from one vortex to another.
Figure 2c and f show the system at the highest experimental
trackable density (ϕ=0.14), and Fig. 2g–i, correspond to full
simulation domains where the ensemble dynamics of multi-scale
vortex formation is more obvious.

Each individual rotor is propelled through the system with an
instantaneous linear and rotational velocity, which depends on
the local rotor configuration. On average the motion can be
mapped to that of active Brownian particles, and the averaged
mean squared displacement (MSD) shows the three expected
regimes: purely thermal diffusion at very short times, actuated at
intermediate times, and enhanced diffusion at long times.
Rotational diffusion is related here to the change of direction of
the motion instead of to the change of orientation of the rotor
axis. Experimental and simulation results are shown in Fig. 2j for
several available packing fractions. The measured MSD for each
fixed ϕ are then fitted to that of an active Brownian particle44

which provides well-defined values for the actuated velocity va
and the rotational time τr both in experiments and in simulations,
as summarized in Fig. 2k, l. At low ϕ, the rotors barely interact
with others, and in the limit of ϕ→ 0, there is no propulsion on
average. In fact, at very low densities, the experimental MSD
barely shows active behaviour, rendering a reasonable fit
impossible. This is remarkably different to ordinary active

Brownian particles, which at low ϕ exhibit an active gas phase45

due to their inherent propulsion. With increasing density, the
interactions between rotors become more frequent such that the
active velocity first grows with ϕ. Upon further increase of the
rotor density, the motion is increasingly restricted by steric
interactions, and the effective fluid viscosity experienced by the
rotors also grows, which eventually completely impedes their
motion. These trends qualitatively explain the maximum of va at
intermediate values of ϕ seen in Fig. 2k for both simulations and
experiments. In order to provide a quantitative estimate of this
dependence46, we assume first that the thrust velocity v⊥ of a
rotor is simply due to pair interactions v? ’ πΩpair�r, as shown in
Fig. 1f, and secondly, that the average distance between the rotors
is that of a homogeneous system �r ’ ðσ=2Þ

ffiffiffiffiffiffiffiffi
π=ϕ

p
, such that

v? ’ ðπσΩÞ
ffiffiffiffiffiffiffiffi
ϕ=π

p
. Simultaneously, the rotors dissipate momen-

tum via mutual interactions and the rotor density increases the
effective fluid viscosity experienced by the rotors47 which results
in a decrease of the velocity at high density, as expected also for
active Brownian particles48. The increase in viscosity for a 2D
system of passive colloidal particles in linear order49 is η(ϕ)/
η0= 1+ 2ϕ, although in order to account for the abrupt increase
when approaching the close packing density ϕcp, it is more
appropriate to consider the phenomenological equation
ηðϕÞ=η0 ’ ð1� ϕ=ϕcpÞ�2ϕcp 50. The drag force considered for the
thrust velocity F⊥ ∝ η0v⊥ can then be considered to balance with
the drag of the effective velocity in a dense system Fa∝ η(ϕ)va
which provides a full estimate of the effective active velocity
va≃ η0/η(ϕ) v⊥ in the full density range, as shown in Fig. 2k. This
estimate agrees qualitatively very well with the simulation results,
and perhaps somewhat surprisingly even quantitatively with the
experimental measurements.

The measured τr obtained from the MSD in Fig. 2j and shown
in Fig. 2l corresponds to a rotational diffusion time only in the
dilute limit. At larger densities, this time is related to rotational
diffusion but also to an intrinsic rotation or change of direction,
due to the orbital motion in the vortices. To estimate τr, we
consider the average time a rotor orbits another rotor before
moving into a different orbit. In the regime of small densities, this
time decreases with density; at intermediate densities, the
presence of vortices of multiple sizes leads on average to τr
remaining constant, while for very high densities, where the
rotors are basically not moving, τr rapidly increases. In the limit
of small densities, the time can then be approximated as
τr ’ �r=v? ’ 1=ð2ΩϕÞ. This estimate works for both experiments
and simulations, even at medium densities, as shown in Fig. 2l.

Vorticity and density fields: odd viscosity. To obtain the vor-
ticity experimentally, we track all the particles (up to 104)
between two frames with the assistance of ImageJ, to obtain the
velocity field, and average over 6 realizations. Similar averaging is
also performed in simulations. With the ensemble configurations
and the related velocity fields, the corresponding coarse-grained

Fig. 2 Collective dynamics of hydrodynamically interacting rotors. a–c Fluorescent optical images of rotors at ϕ= 0.008, 0.031 and 0.144 with an overlay
of a few typical trajectories. Here, only a quarter of the full probe chamber is shown (see Supplementary Movies 2–4) and Re ’ 10�5. d–f Simulated rotors
configurations at ϕ= 0.007, 0.04 and 0.14 with all trajectories in grey and few highlighted ones for comparison with experimental images. Trajectories are
all drawn for a time Ωt= 6. Only a part of the full simulation domain is shown and Re ’ 0:09. g–i Full simulation domains with trajectories, showing the
formation of multiscale vortices. Dashed inset frames indicate the domains in (d–f). j Mean-square displacements for experiments (orange triangles) and
simulations (purple bullets) at different packing fractions in a square simulation box of length L= 100σ with periodic boundary conditions. The lines
correspond to the respective least-square fits to the active Brownian particle mean-square displacement. Simulation data was obtained with tav= 7 × 105

and nav= 1, and experiments with tav= 150. k, l Active velocity va, normalized by the rotor surface velocity vs= πσΩ, and rotational diffusion time τr with
values and errors corresponding to the fits in (j). Dotted (black) lines correspond to the analytical prediction va ’ πΩσð1� ϕ=ϕcpÞ2ϕcp

ffiffiffiffiffiffiffiffi
ϕ=π

p
; dash-dotted

lines take into account an additional multiplicative fit factor of 3.3.
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vorticity ω= ∂xvy−∂yvx and local density ϕloc fields can be
computed, as shown in Fig. 3. Areas with positive vorticity cor-
respond to underlying vortices rotating in the same direction as
the imposed magnetic field, areas with negative vorticity appear
for vortices rotating in the opposite direction, which essentially
fill the space in between the positive vorticity areas. Although
qualitatively similar, the vorticity field measured in experiments is
weaker than in simulations, possibly due to the friction with the
substrate.

The corresponding density fields in Fig. 3 also show clear
inhomogeneities. Positive vorticity areas tend to be more
populated than negative vorticity areas, both for experiments
and simulations. This accumulation indicates the presence of a
radial pressure on the rotating vortex originating from a non-
vanishing odd vicosity24,51. As a first quantification of this effect,
the probability density distribution is calculated separately for
areas of positive and negative vorticity, displaying that both
distributions are clearly displaced relative to each other, as shown
in Fig. 4a. For positive vorticity, the maximum of the distribution
occurs for densities larger than the average density, and
conversely for negative vorticity. This means that areas with
ω > 0 tend to attract particles, and that they are depleted from
ω < 0 areas. The separation of the maximum distribution for a
given density is larger for the lower average density in the
investigated cases, which also shows a broader distribution, and
the trend can be clearly seen both in experiments and
simulations.

In order to provide a quantitative characterization of the odd
viscosity, at a coarse-grained level, the rotors can be described
using the continuum theory for chiral active fluids. Then, for an
incompressible fluid, the vorticity spreads diffusively, and the
related stresses are compensated by the pressure. However, if the
system permits weak density inhomogeneities, the stresses due to
a non-vanishing odd viscosity point to the centre of circulation,
which translates (see the “Methods” section) into an increase of
the density linearly proportional to the given vorticity as24

Δρ

ρ
¼ νodd

ω

c2
: ð1Þ

This expression is also valid when the vorticity ω is locally
varying, such that Δρ= ρ(r)−〈ρ(r)〉 is the local density change
with respect to the average density in the system, with c the
propagation velocity of a colloidal density inhomogeneity, and
νodd the kinematic odd-viscosity, i.e., the momentum diffusivity
due to the presence of the odd stresses. Therefore, a circular flow
of vorticity ω > 0 is experiencing stress forces pointing to the
centre of circulation, leading to rotor accumulation in the centre
of the circular flow24. Similarly, a circular flow ω < 0 leads to rotor
depletion in the centre of circulation. The advantage of Eq. (1) is
that it can be directly employed to quantify the system’s odd
viscosity. From data such as in Fig. 3, a histogram relating local
vorticities and local densities can be evaluated, both in
experiment and in simulation. The results presented in Fig. 4b
show a linear dependence between local density changes and

Fig. 3 Vorticity and density fields. Coarse-grained vorticity and local packing fraction fields of the rotor dynamics on a 2D square grid of binning length
l0= 10σ for simulation and experiment. Both, vorticity and density fields for simulations are generated from the same system configuration, such that the
correlation can be directly observed. Similar to the experimental data. Superimposed streamlines and rotor positions are displayed. The packing fraction
used in experiments, and simulations is ϕ= 0.144, ϕ= 0.14, respectively. The simulations have been performed in a square simulation box of length
L= 300σ with periodic boundaries.
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vorticity in the simulations as well as in the experiments. Fitting
the lines in Fig. 4b with Eq. (1) allows the accurate quantification
of νodd/c2 at different densities in the system ϕ, with resulting
values shown in the inset of Fig. 4b. The experimentally measured
odd viscosity is in reasonable agreement with the numerical
results, which reflects that in both systems the two-dimensional
hydrodynamic rotation is responsible for the propagation of the
stresses. In the investigated density range, νodd/c2 decreases with
density, due to the decrease of the compressibility of the system
with increasing density. This decrease of νodd/c2 can also be
observed in the larger separation of the maxima for lower
densities in Fig. 4a. In order to provide a quantification of the odd
viscosity, we need an evaluation of c, the propagation velocity of a
colloidal density inhomogeneity. A lower limit for this value is
given by the colloids’ diffusion which opposes the density
inhomogeneities with corresponding diffusion coefficient D, as

c≃D/σ≃ 0.2 μm/s. In that case, and for the employed system
parameters at a density of ϕ= 0.075, the lowest limit for the odd
viscosity is νodd≳ 1.5 × 10−2 μm2/s. Note that viscous stresses are
transported much faster than odd stresses, and the density
inhomogeneities resulting from the odd stresses can only be
observed in long-lived vortex flow (see Supplementary Movie 5).
To the best of our knowledge, the odd viscosity has not been
quantified in bulk but was only quantified before in a few very
different systems, such as the so-called edge-pumping effect26 in
experiments, via the power spectra of the surface waves,
measuring the deformation of a flexible boundary, or as for a
system of granular rotors, in simulations, measuring the normal
stresses37. The direct relation between vorticity and density
inhomogeneities as expressed in Eq. (1) can be though related to a
much larger range of systems20,21.

Active turbulence. The colloid trajectories in Fig. 2g–i and the
vorticity-density fields in Fig. 3 show the simultaneous presence
of eddies of different sizes, which is clearly reminiscent of
turbulence52. To provide a quantification of the turbulent
dynamics, we investigate the rotor velocity field v(r) and its
corresponding energy spectra Eq as a function of the wave vector
q, defined in Eq.(11) (see Fig. 5).

Energy is injected into the system on the rotor size scale which
determines a limiting maximum wave vector qmax ’ 2π=σ. Since
the colloids only propel when nearby rotors break their local
symmetry, energy propagates because of the hydrodynamic forces
and is then transported across length scales following self-similar
dynamics. On the other hand, the vortex size has a maximum
limit given by the system size, such that the minimum possible
wave vector is qmin ’ 2π=ðL=2Þ. In the limit ϕ→ 0, the amount of
large-scale cooperative motion is almost negligible and energy is
predominantly stored in small vortices such that the energy
spectrum slightly increases towards large q-values. Consequently,
at low densities, energy is not transferred to large-scale motions.
For intermediate ϕ, vortices of all sizes are taking part in the
dynamics. The energy spectrum then follows a power-law decay

Fig. 4 Vorticity–density correlations. a Normalized probability distribution
of the local packing fraction ϕloc of the areas with positive vorticity (solid
lines and solid symbols) and negative vorticity (dashed lines and open
symbols). Lines correspond to simulation results and symbols to
experimental ones. Results for lower volume fraction are shown in magenta
(experiments ϕ= 0.075 and simulations ϕ= 0.08). Higher volume fraction
results are shown in cyan (experiments ϕ= 0.144 and simulations
ϕ= 0.14). b Normalized variation of the local rotor mass density ρ as a
function of the local vorticity ω. The lines indicate least-squares fits
according to Eq. (1) with which νodd can be determined. Averages made
with tav= 1.2 × 104 and nav= 1, and experiments with tav= 1 and nav= 5,
nav= 6 for ϕ= 0.075 and ϕ= 0.144, respectively. The inset shows the
estimates for the normalized odd viscosity as a function of the density for
experiments (red symbols) and simulations (blue symbols), error bars are
the standard deviation of the least-squares fit.

Fig. 5 Energy spectra of the colloid dynamics. Energy spectra obtained
from the power-spectral-density of the rotor dynamics as in Eq. (10)
divided by the mean-square velocity. Blue bullets depict simulation data
whereas red triangles denote experimental data. Dotted and dashed
experimental and simulation lines correspond to comparable densities. The
experimental data is multiplied by a constant factor to match the high-q
simulation values. The minimum and maximum wave numbers are
qminσ=ð2πÞ ¼ 3 ´ 10�3 and qmaxσ=ð2πÞ ¼ 5 ´ 10�1. Statistics here are similar
to Fig. 4. Inset: Averaged flow field in a simplified vortex, rotors arranged in
a circle of radius Rv, with a fixed separation �r between nearest neighbours,
with tav= 105 and nav= 80.
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q−5/3. Approaching qmax, the energy distribution deviates from
the power-law and approaches a constant, which is related to the
particle size. Simulations show the presence of very big vortices in
Fig. 3, and the power law decay in Fig. 5 is valid almost up to qmin.
Experiments in Fig. 3 show that the maximum size of vortices is
clearly smaller than the system size, and the power-law decay is
valid in a smaller range, namely until q1σ/(2π)≳ 0.02. This is
most likely due to the dissipation of energy through the substrate
friction, similar to the truncation of the inverse energy cascade
witnessed in 2D classical turbulence. Here the truncation occurs
at lΓsubs ’ ρv0ðϕÞ=Γsubs, with a linear substrate friction density
Γsubs53. From the value q1, the maximum experimental vortex size
can be estimated to be 50σ, which is consistent with the vortices
in Fig. 3, and implies Γsubs= 7.63 kg m−2 s−1. This approach
might therefore also be a way to quantify the substrate friction,
for which alternatively specific experiments could be also
conducted26. Finally, at very high densities, steric interactions
suppress rotor motion, and the free formation of vortices, such
that it becomes increasingly difficult to measure the energy
spectra. In contrast to bacterial turbulence, there is no dominant
vortex scale that is introduced by the interplay of hydrodynamics,
alignment interactions, activity, and rotational noise34,35,54.

To get a more intuitive insight into the self-similar behaviour
of the system, we consider a simplified picture of a vortex formed
by a few rotors with fixed positions in a circle of radius Rv, as
shown in the inset of Fig. 5. If we approximate the drag on each
rotor induced by the flow of its neighbours, the only contribution
remaining is, due to symmetry, tangential to the circular
trajectory. This is the reason for the emergence of the circular
arrangements, independent of their size, which become then
unstable given the presence of collisions, compressibility effects,
and thermal fluctuations.

Discussion
We have shown that rotating micrometre-sized particles are an
interesting model system of chiral active matter, where the
emergence of turbulence and odd viscosity can be simulta-
neously observed, as demonstrated here in experiments and
simulations. While different types of rotating colloids are
known to convert rotational into translational energy in
symmetry-breaking situations, such as in the presence of
confinement26,40, investigations of this effect in bulk were
fragmentary, and the precise measurement of odd viscosity
effects in low-Reynolds-number soft-matter systems was elusive
until now11,12,46,55. Results of simulations and experiments are
to a large degree in agreement, showing very similar behaviour
and dependence on system variables. Individual rotors behave
similarly to active Brownian particles with their propulsion and
rotational diffusion dependent on the configuration of neigh-
bouring rotors. Translational velocity and rotational char-
acteristic time can be measured and satisfactorily compared
with an analytical prediction, for all the range of available
concentrations. We furthermore present an effective method
that allows the quantitative measurement of the bulk odd
viscosity, shown here for experiments and simulations, and of
use for a wide range of systems, such as roller liquids16,55, chiral
granular gases56, or colloidal Janus asymmetric rotors57,58.

Active turbulence in rotor materials is due to long-ranged
hydrodynamic interactions, which here have been shown to lead
to active turbulent dynamics without the emergence of a
dominant vortex scale, and corresponding energy spectra with
a−5/3 power-law, with the same exponent as predicted by
Kolmogorov for inertial turbulent systems33. The same depen-
dence has also been found in non-chiral active spinner systems
consisting of a mixture of clockwise and counter-clockwise

rotating particles at moderate Reynolds numbers, for a system
of particles approximately three orders of magnitude larger than
ours12, and also for a continuum theoretical approach at zero
Reynolds number36. A recent classification of active
turbulence27 distinguishes the phenomenology of systems with
either polar or nematic order. Active turbulence in polar sys-
tems shows typically a dominant vortex length and the scaling
regimes of the energy power spectra are nonuniversal. Mean-
while, active turbulence in nematic systems is characterized by
universal exponents, together with the continuous creation and
annihilation of topological defects. Spinners might therefore
constitute a separate category of active turbulence since orien-
tational order is not intrinsic to the system, there are no
topological defects, and the scaling exponents seem universal.

The simultaneous emergence of odd viscosity and active tur-
bulence is an inherent property of the system, provided that the
rotors setup is chiral. The hydrodynamic stresses among colloids
include rotational and odd contributions absent in usual fluids59.
Rotational viscosity couples the internal rotation to the transla-
tion of the colloids leading to rich vortical dynamics, while odd
viscosity implies an orthogonal coupling of shear stresses indu-
cing an effective pressure pointing into or out of the centre of
emergent vortices. Moreover, both mechanisms mutually support
each other, since the odd viscosity-induced compactification at
the centre of the turbulence-induced vortices stabilizes them,
enhancing then the turbulent effect. Both rotational and odd
viscosity have the same origin, appear together, and are here
measured from the same system setup such that the simultaneous
emergence of both phenomena is foreseen to be found in other
chiral active systems where the active and odd stresses are
mediated by long-ranged hydrodynamics. However, this could be
hampered if compressibility is negligible, as is the case when
colloids have strong cohesive, repulsive, or simply steric inter-
actions, as those in systems with very high densities, or in com-
pact clusters. We also expect the concepts here discussed to be
useful for various related hydrodynamic rotor systems of biolo-
gical relevance, such as rotating membrane macromolecules,
algae, or sperm, and also for the design of microrobots, and
microrobots assemblies18,19,60,61.

Methods
Experimental setup. Silica rods with a magnetic head (Fe3O4) are
used. The ferromagnetic material is grown on the Janus rods to
impose a permanent magnetic dipole moment perpendicular to
the rod’s long axis62. Directional growth of silica from nano-
particle encapsulated microemulsion droplets63,64 is employed,
followed by seeded growth of silica layers, which is a modification
of the synthesis protocol of bare silica rods65, the Stober process.
A scanning electron microscopy (SEM) image of these match-
stick-like magnetic silica Janus rods is shown in Fig. 6a, where the
inset shows a transmission electron microscopy (TEM) image
highlighting the doping of magnetic nanoparticles at the head.
This resulted in slightly tapered colloidal rods of 3.5 ± 0.3 μm in
length, and a head and a tail of diameters of 0.77 ± 0.08 and
0.61 ± 0.05 μm, respectively, measured from SEM images of ~70
particles. The ζ-potential of these particles are ~−65 mV. Each
rod possesses a permanent magnetic dipole moment at the end
approximately perpendicular to its long axis. These particles were
then suspended in deionized water (Millipore, 18.2 MΩ) and
loaded into a custom sample chamber built by glueing a Teflon
cylinder (internal dimension: 1 cm; outer dimension: 2 cm;
height: 1 cm) onto a piece of the coverslip. The chamber was
cleaned with isopropyl alcohol and DI water thoroughly before
being dried with nitrogen gas. The sample was allowed to rest on
a microscope stage for 10 min until all the particles sediment to
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the bottom. A rotating magnetic field of 150 Gauss at constant
angular velocity was applied by a pair of Helmholtz coils. All
experiments were conducted at room temperature on an inverted
light microscope (Olympus IX73) equipped with a ×60 oil-
immersion lens (NA of 1.42) and the images were captured by a
Ximea colour camera (MQ042Cg-CM). The centroids of rotors
were determined by a standard Matlab routine43.

The magnetic field is generated by two pairs of orthogonally
placed Helmholtz coils hosted on a home-built microscope stage,
Fig. 6b. Under a slowly rotating magnetic field (B= 150 Gauss),
the rod lays flat on the substrate due to gravity, with the long axis
aligned perpendicular to the applied field, Fig. 6c. As a rotating
magnetic field is applied between a certain range of frequency,
typically 2−20 Hz, the rod stands up against gravity and rotates
synchronously with the applied field, Fig. 6c, which we therefore
term a rotor. In this study, we primarily focus on a rotating
frequency of 10 Hz. We first examine the translational motion of
a single rotor or a dilute suspension of rotors when they are far
apart by measuring the mean squared displacements (MSD, 〈r2〉),
which grows linearly with time, Fig. 6d, allowing the

determination of the translational diffusion coefficient D. Typical
trajectories are shown in the inset of Fig. 6d.

Simulation method. The employed numerical method, multi-
particle collision dynamics, is a mesoscopic simulation technique
to simulate fluids that does not rely on the microscopic degrees of
freedom and thus is not in need for calculating all the interactions
between the solvent particles. The method includes hydro-
dynamic interactions and thermal fluctuations. Provided that
suitable parameters are employed, the correct low-Reynolds
number behaviour is reproduced66. The algorithm basically
consists of two alternating steps. In the streaming step, the
positions of the fluid particles are ballistically updated, i.e.,
ri(t+ h)= ri(t)+ vi(t)h. The second step is the collision step, in
which the fluid particles are sorted into square collision boxes of
length a= σ/6 and exchange momentum with all particles in a
given collision box according to a certain protocol. The collision
routine we employ has already been introduced in ref. 67. It builds
on the basic collision routine in which each fluid particle’s relative

Fig. 6 Experimental system and dynamics of single rotors. a An SEM image of ferromagnetic Janus rods; the inset is a transmission electron microscopy
image of the magnetic head of a rod. b Experimental setup with two pairs of orthogonally placed Helmholtz coils for generating a rotating magnetic field.
c State diagram of a single rod under a rotating magnetic field as a function of the frequency and the field strength. Insets show images of rods
corresponding to the three dynamic states observed, horizontal rod rotating synchronously (light green squares), standing rod rotating synchronously (red
circles), and horizontal rod rotating asynchronously (dark green triangles) with applied dynamic magnetic field. Most of the experiments in the later work
are conducted at a dynamic magnetic field of 10 Hz and 150 Gauss (red bullet); Scalebars are 2 μm in a, c, d, 10 cm in b, and 200 nm in the inset of (a).
d Experimentally measured mean squared displacement of a single rotor (red circles) and its fit to 〈r2〉= 4Dτ, with D= 0.171 ± 0.001 μm2/s; Inset shows
typical trajectories of rotors. e Averaged fluid velocity uφ(r) in an axial direction as a function of distance from the colloid centre. Symbols are simulation
results and the solid line corresponds to the analytical prediction, uφ(r)= σ2πΩ/(2r), with tav= 106 and nav= 4. Inset: Simulated 2D fluid averaged velocity
field around a single rotor.
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velocity is rotated by an angle of ±π/2 with respect to the centre of
mass velocity in a collision box, with equal probability. When
studying rotating objects, and to avoid the occurrence of
unphysical torques in the fluid, angular momentum conservation
is necessary. We employ a variant of the collision routine that
conserves linear and angular momentum68 but not energy. The
colloid rotation constitutes a persistent input of energy in the
system, which is compensated by considering a thermostat in
each time step to all collision boxes individually69, becoming also
a guarantee of a constant system temperature kBT. For the fluid,
we employ an average number of particles per collision cell
n= 10 and take the collision time, i.e., the time between two
collisions, as h ¼ 0:02a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ðkBTÞ

p
, yielding a viscosity of

η ¼ 17:9
ffiffiffiffiffiffiffiffiffiffiffiffi
mkBT

p
=a, according to ref. 68.

The rotors are modelled as impenetrable moving and rotating
no-slip boundaries that exchange linear and angular momentum
with the fluid in the streaming step and in the collision step, by
introducing virtual particles39,40. From the mean squared
displacement, the diffusion coefficient in the dilute regime can
be determined to be D ¼ 3:73´ 10�4σ2=ða

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ðkBTÞ

p
Þ. In the

concentrated regime, rotors sterically interact with each other via
a purely repulsive Lennard–Jones potential,

UðlijÞ ¼
4ε a

rij�σ

� �12
� a

rij�σ

� �6
� �

þ ε ; for rij ≤ σ þ 21=6a

0 ; else

8<
:

ð2Þ
The rotors are therefore simulated as 2D impenetrable discs of
diameter σ, and always roughly one collision box of fluid is
between two rotors to ensure proper hydrodynamic coupling.
Thus, after the momentum exchange between colloid and fluid,
the positions of the rotors are updated according to a molecular
dynamics scheme. The mass density of the colloids’ material and
the fluid mass density are taken to be the same. The angular
velocity Ω of the colloids is fixed to Ω0 ¼ 0:01857=ða

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ðkBTÞ

p
Þ,

if not otherwise stated. The interactions of the fluid particles with
the colloid surface generates a co-rotation of the fluid with a
velocity decaying in the azimuthal direction, as shown in the inset
of Fig. 6e. The radial velocity profile quantitatively agrees with the
measurements of the simulated flow, as shown in Fig. 6e. For the
calculation of the packing fraction, we consider the hard cores of
the rotors, that cannot be occupied by fluid, i.e., an ensemble of N
rotors in a square simulation box of length L has a packing
fraction of ϕ=Nπ(σ/2)2/L2. Simulations are performed in a
square simulation box with periodic boundary conditions, with a
box length L= 300σ unless otherwise stated.

Simulation code was developed in CUDA C/C++, NVIDIA
A100 GPUs in the JUWELS supercomputer and is typically used
to simulate 30 × 106 solvent particles and up to 70,000 rotors.

Dipolar magnetic interactions. Provided the use of magnetic
colloids, we experimentally quantify pair interactions parallel to
the line of centres by estimating the effective pair potential as a
function of radial distance70, UðrÞ ¼ �kBT log gðrÞ. Results are
shown in Fig. 7 for a dilute suspension of rotors for three values
of the magnetic rotating frequency. At the lower frequency, the
rotors only display repulsive interactions, while for increasing
frequencies, a weak short-range attraction on the order of 0.2kBT
emerges. This proves that dipolar magnetic interactions between
rotors are negligible in experiments since they should be notice-
able and decrease in intensity with frequency. The measurements
of F∥ in ad hoc simulations, corresponding to Fig. 1g, are shown
in the inset of Fig. 7 to be attractive, but much smaller than the
thermal noise, than F⊥, and of shorter range. These

measurements confirm that the dynamic behaviour of the ferro-
magnetic rotors is dominated by hydrodynamic interactions and
that these are properly accounted for in the simulations.

Dimensionless numbers. The comparison between experiments
and simulations is done via dimensionless quantities. Although
single rotors cannot be considered self-propelled particles, the
magnetic activation can be quantified with the velocity at the
colloid surface, vs= πσΩ, such that we consider the system Péclet
number as Pe= vsσ/D and the Reynolds number Re ¼ vsσ=ν with
D the colloid diffusion coefficient, and ν the fluid kinematic
viscosity. With specified default values, in experiments we are
working with Re � 10�5 and Pe≃ 38, for which the rod-head
diameter has been considered. Meanwhile in simulations, Re ’
0:09 and Pe≃ 20, respectively. Clearly, the input parameters do
not perfectly match, but these dimensionless numbers ensure that
both simulations and experiments are performed in the regime of
low Reynolds and large Péclet numbers, where the same physical
behaviour is to be expected. Note that in classical turbulence
typical macroscopic relevant system lengths are considered in
order to determine the Reynolds number. Meanwhile, here we
consider the microscopic particle diameter σ as the relevant size,
which is the typical choice for active systems. Even in the case
that we would consider the average particle velocity (see Fig. 2k),
and the size of the largest vortex, the relevant Reynolds number
would just be 5–20 times larger, which is still exceedingly small.

Vortex dynamics in Stokes flow with odd viscosity. The Stokes
equation of a chiral active fluid describes the time evolution of the
flow velocity u, in terms of its density ρ, pressure p, kinematic
viscosity ν, vorticity ω= εαβ∂αuβ (where the Einstein notation is
considered, and εαβ is the Levi–Civita sysmbol), and importantly
also by the odd kinematic viscosity νodd, which is proportional to
the field of intrinsic rotation eΩ ¼ Ωh∑iδðr � riÞi, as24,51

ρ∂tuα ¼ �∂α p� ρνoddω
� �þ ρν∂β∂βuα ; ð3Þ

Taking the curl of Eq. (3) leads to the vorticity diffusion equation

∂tω ¼ ν∂β∂βω : ð4Þ

Fig. 7 Effective pair potential. Estimated from the radial distribution
function as UðrÞ ¼ �kBT log gðrÞ at density ϕ= 0.007 for simulations (in
blue) and ϕ= 0.0002 for experiments (in red) at three input spin
frequency values, showing the absence of significant dipolar magnetic
interactions. Statistics similar to Fig. 1, inset same as Fig. 2j. Inset: Forces
parallel to the line connecting the two rotors as measured in simulations,
with error bars indicating the standard deviation of 7 measurements.
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which can be solved with Fourier transform methods. The initial
condition of a line or puntual vortex ω(r, t= 0)=Λδ(r) which
later diffuses due to viscosity can be considered, in order to
account for the internal vortex dynamics of the system together
with Eq. (4). The solution is then

ωðr; tÞ ¼ Λ

4πνt
e�

r2
4νt : ð5Þ

Integrating this expression results in an expression for the velo-
city profile in polar coordinates when incompressibility is
ensured, ∂αuα= 0, leading to

uφðr; tÞ ¼
Λ

2πr
1� e�

r2
4νt

� �
ð6Þ

and ur= 0. These expressions of the flow field together with Eq.
(3) yields to the following relation in the radial direction

0 ¼ ∂r p� ρνoddω
� �

; ð7Þ
and thus p−p0= ρνoddω, with p0≡ p(r→∞). This means, that
the pressure compensates the antisymmetric stress stemming
from odd viscosity in order to satisfy incompressibility. If small
changes in density due to finite compressibility are now
considered52, and assuming

Δp ¼ c2Δρ ð8Þ
with Δp= p−p0 and Δρ= ρ−ρ0, we obtain the expression for the
density accumulation in Eq. (1), also employed for the mea-
surements in Fig. 4b. In this case, c is the propagation velocity of a
colloidal density inhomogeneity and might thus be linked to the
diffusive spreading proportional to the colloids’ diffusion coeffi-
cient D.

Note that Eq. (3) might include two additional terms, one
accounting for rotational friction among the rotors and the other
for the friction between the rotor fluid and the substrate. The first
of which is proportional to the rotational kinetic viscosity νR and
takes the form εαβ∂βρνRð2eΩ� ωÞ, and is the coarse-grained
version of the hydrodynamic coupling of intrinsic rotation and
translational degrees of freedom. The second term is proportional
to the substrate friction coefficient Γsubs and takes the form−
Γsubsuα. However, both terms do not alter the result in Eq. (1), if
incompressibility to arrive at Eq. (7), and eΩ ¼ const:, i.e., a
homogeneous rotor density, is assumed.

Turbulence analysis. To analyse the turbulent dynamics of the
system, we investigate the velocity field v(r) and its corresponding
energy spectra Eq. The formal definition of Eq is

Ekin ¼
1
2
hv2i ¼

Z 1

0
dq Eq ; ð9Þ

with reciprocal space vector q and q≡ ∣q∣. Using the
Wiener–Khintchin theorem to express the correlation function
〈v2〉 in terms of reciprocal variables and assuming isotropy, we
can write

Ekin ¼
1
4π

Z 1

0
dq q hv̂ � v̂�iq ; ð10Þ

where hv̂ � v̂�iq is the two-dimensional Fourier transform of the
velocity correlation function. The integral in Eq. (10) goes over
values of hv̂ � v̂�iq in radially symmetric shells in q-space. In a
discretised version of Eq. (10), the integral is then evaluated as a
sum over the discretised values in equal-q shells, i.e.,

Eq ¼
1

8πΔq
∑

q�Δq<k<qþΔq
hv̂ � v̂�ik : ð11Þ

Calculation of coarse-grained values. Experiments and simula-
tions provide configurations at different times where the rotor’s
positions are well-defined. Additionally, in simulations we obtain
the instantaneous rotor velocities. In order to obtain the necessary
density, velocity, and vorticity fields required in our study a
coarse-grained procedure is applied. Density ρ(r) is obtained by
averaging the rotor’s positions in a grid with a bin size that might
vary, but typically (10σ)2. The bin size should be at least a few
colloid diameters in order to identify coarse grain effects, but not
much larger, since the structure of small vortices would already be
averaged out. Coarse-grained velocities are obtained with two
configurations at close times, v(r, t)= (r(t+ Δt)−r(t))/Δt, with
the time interval has been chosen such that ΩΔt ≤ 2, where in
simulations higher resolution is possible, which is necessary at
high densities due to frequent inter-rotor collisions. The velocity,
and thus vorticity fields are then obtained by averaging the rotor
velocities in each bin. For the calculation of the energy spectra, we
employ a bin size of σ2 in order to obtain the highest resolution in
q-space.
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