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Quiet point engineering for low-noise microwave
generation with soliton microcombs
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Low-noise microwave signals can be efficiently generated with microresonator-based dis-

sipative Kerr solitons (microcombs). However, the phase noise level in integrated micro-

combs is presently several orders of magnitude above the limit imposed by fundamental

thermorefractive noise, resulting from residual pump laser frequency noise transduction to

the soliton repetition rate. This effect can be substantially reduced by accessing a quiet point

(QP) in the parameter space, where the transduction is compensated by the dispersive wave

(DW) recoil, which conventionally relies on accidental mode crossings. Here we present a

method to deterministically engineer the QP, both in terms of spectral width and position, and

we discover a continuum of possible QPs within the soliton existence region. Using two

controlled mode crossings, we obtain regions where the QPs interact with each other,

extending the noise suppression range. Our work demonstrates a promising way to reach the

fundamental limit of low-noise microwave generation in integrated microcombs.
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The discovery of dissipative Kerr solitons (DKS)1 in driven
dissipative Kerr nonlinear resonators, has heralded a new
method to synthesize coherent and broadband optical

frequency combs, with compact form factor, wafer scale manu-
facturing compatible techniques, and mode spacings that can
access the microwave to THz. The dynamics of such DKS in
microresonators is described by the Lugiato-Lefever equation
(LLE)2. It is by now well understood that microcombs give rise to
a plethora of coherent nonlinear dynamical states, i.e., “dissipative
structures”, including platicons, zero dispersion solitons, and
solitons in unusual dispersion landscapes3,4, that challenge the
understanding of “classical” bright solitons. DKSs can crucially be
generated in photonic integrated microresonators based on sili-
con nitride5, a foundry level, mature photonic integrated circuit
technology, that has been the basis of numerous system level
demonstrations, including massively parallel6, dual-comb 7 and
chaotic LiDARs8, neuromorphic computing9,10, as well as optical
frequency synthesis11 and optical clocks12.

Microcombs also enable low-noise microwave generation by
detecting the repetition rate of the soliton pulse stream. Such
optically generated microwaves are attractive due to the low input
power13 and potentially low phase noise that can be generated.
More broadly, microcombs can be employed in a variety of
applications, such as microwave photonics, Radar14, 5G/6G15 or
wireless communications16. In contrast to optical frequency
division, which employs phase stabilized femtosecond laser fre-
quency combs, the phase noise of the generated microwaves in
the case of microcombs is determined primarily by transduction
of laser phase noise to the soliton group velocity. There have been
numerous demonstrations of the soliton stream-based low-noise
microwave generation 17–24, ranging from sources in the K and X
microwave band using integrated Si3N4 microresonators25 to the
THz domain26. Despite achieving phase noise on par with mid-
range commercial microwave generators based on quartz oscil-
lators, the fundamental limit of the repetition rate noise, as given
by thermorefractive noise (TRN)24,27,28, is still several tens of
decibels below the best experimentally demonstrated noise per-
formance photonic chip-scale microcombs. While soliton
microcombs have achieved lower noise, this has so far only been
possible in bulk polished crystalline resonators, that have sig-
nificantly lower TRN levels, and do not show Raman self-
frequency shifts29. In contrast, for chip-integrated microcomb
platforms, such as those based e.g., on silica, silicon nitride, etc.
the presence of the Raman self-frequency shift-related transduc-
tion noise limits achieving the fundamental thermodynamical
limit24,27,28. One way to reduce this noise has been the observa-
tion of quiet points21,30, which exploit a cancellation due to the
interplay of the Raman self-frequency shift and the recoil from
the DW generation via avoided mode crossing (AMX) induced
soliton Cherenkov radiation5,31,32. However, this technique relies
on accidental AMXs and therefore is fixed to a certain mode
number μ and shift Δμ by design. The strength of the AMX is a
fixed parameter that is usually not controlled21,22. Moreover, the
width of the QP has been reported to be substantially narrower
than the linewidth of the microresonator cavity, implying possible
second-order transduction effects.

In this work, we report on a deterministic approach (i.e.,
precise control over the AMX position) to QP engineering and
demonstrate a substantial increase in noise suppression band-
width. We predict that with such improvements it is possible to
reach the fundamental thermodynamical limit of phase noise, and
thereby substantially improve the ability to synthesize low-noise
microwaves directly from optical integrated microresonators. Our
approach is directly realizable within currently demonstrated
silicon nitride integrated microresonator technology using the
Vernier configuration33,34 or by corrugating the microresonator

circumference which enables the mode-by-mode dispersion
control35.

Results
To understand the transduction of phase noise to the soliton (i.e.,
DKS repetition rate ωrep) we consider Raman scattering and the
DW recoil as the main noise transfer mechanisms (cf Fig. 1a), and
aim to reduce the repetition rate susceptibility to the
laser detuning fluctuations δω, i.e., minimize j ∂ωrep

∂δω j /
j ∂
∂δω ðΩRaman þ ΩDWÞj22. To introduce the presence of a DW, we
consider a simplified model of AMX, characterized by a single-
mode displacement at position �μ and strength Δ�μ, in the inte-
grated dispersion profile, as shown in Fig. 1b. As expected, the
corresponding spectrum of the generated DKS has a typical sech2

shape, frequency shifted by Ω and with spectral enhancement at
�μ, due to the DW (Fig. 1c). To qualitatively explain the noise
reduction mechanism, we start by separately analyzing the Raman
and DW contributions to the DKS repetition rate response. We
consider the simplest case of sinusoidal frequency modulation of
the pump detuning around a constant value δω as presented in
Fig. 1d–i. In the presence of the Raman effect only, the DKS’s
group velocity is in-phase with the detuning change (c.f. Fig. 1d).
In the nonlinear dispersion relation (NDR) representation36, the
DKS dynamics has a butterfly-shaped profile, revealing the
transfer of the laser detuning modulation to the DKS group
velocity vg (i.e., the tilt of the DKS line in Fig. 1e) that directly
reflects the repetition rate change37. Equally, the NDR repre-
sentation clearly shows the comb-line dependent frequency noise
multiplication mechanism induced by the repetition rate
variation38,39 (i.e., phase noise multiplication). In the presence of
an AMX, the laser detuning dependence of the DKS’s group
velocity can exhibit the opposite sign as shown in Fig. 1f.
Represented in the NDR, the soliton forms a similar butterfly
shape with enhanced photon occupancy at the displaced mode
(Fig. 1g). These two effects, combined together, can then coun-
teract due to the opposite dependence, resulting in the reduction
of the detuning noise transfer (Fig. 1h, i). In the following, we
identify a QP by reconstructing the group velocity manifold vg as
a function of δω and parameters of the AMX i.e., mode index �μ
and its displacement from the unperturbed dispersion profile Δ�μ,
further computing its extrema along the laser detuning direction.
In general, this problem does not have an analytical solution, but
we can efficiently reconstruct the desired dependence using a
semi-analytic approach based on the Newton-Raphson method,
which we describe in detail below.

Mean-field model for noise transduction. We model the DKS
dynamics in the microresonator using the LLE with a modified
dispersion profile and a Raman scattering term. In the normalized
units, the generalized LLE takes the form:

∂ψ

∂t
¼� ð1þ iζ0Þψ þ i

2
∂2θψ þ ijψj2ψ þ f

þ vg∂θψ � iΔ�μψ�μe
i�mθ � iτψ∂θjψj2:

ð1Þ

Here we use a standard normalization of the LLE1 (see “Methods”
for further details) which rescales fast time (intracavity angle ϕ)
term as θ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ=2D2

p
φ. In this way, the mode index becomes

non-integer m ¼ μ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2D2=κ

p
, where μ –is an integer mode index, κ

is the total loss rate, and D2 is the second-order integrated dis-
persion. Terms in the second line of Eq. (1), that extend the
conventional form of the LLE, represent group velocity change vg,
modification of the Dint by the AMX at the mode �μ, and the
Raman scattering, respectively. This formulation of the LLE is
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essential for the stationary solution search with the Newton-
Raphson algorithm, as explained in “Methods”.

QP achieved with a single-mode displacement. To investigate
the DKS group velocity response to the detuning variations ζ0, we
look for a single-soliton equilibrium solution ψDKS and its relative
group velocity vg for the parameter set ðf ; ζ0; �μ;Δ�μÞ using the
Newton-Raphson approach for Eq. (1) described in details in
“Methods”. To reduce the dimensionality of the parameter space,
we fix the pump power f2= 6, j�μj ¼ 21, and sweep the detuning
value within the soliton existence range (given by π2f2/81 in the
unperturbed case) and the Δ�μ in the vicinity of the DW reso-
nance. As a result, we obtain a soliton solution and the corre-
sponding group velocity vg for every point on the
ðΔ�μ; ζ0Þ-subspace, both for blue- (�μ<0) and red-side (�μ>0) mode
shifts (cf. Fig. 2).

First, we focus on the blue-sided displacement (i.e., �μ<0). The
presence of the shifted mode results in the generation of the DW
(see Fig. 2a), whose strength depends on the phase matching
condition with the DKS. The acquired group velocity due to the
recoil increases in the vicinity of the DW resonance as shown in
Fig. 2b. After a given value of detuning, the DW destabilizes the
DKS and the equilibrium state cannot be achieved anymore (the
absence of the soliton solution is depicted in black in Fig. 2b).

Increasing the normalized mode shift strength Δ�μ, we observe
that the effect of the DW on the soliton is substantially reduced
and the soliton existence range approaches the value estimated
for the unperturbed LLE (see white dashed line in Fig. 2b). Next,
we compute the group velocity directional derivative ∂ζ0vg shown

in Fig. 2c. As a result, we observed a family of solutions with
∂ζ0vg ¼ 0 that correspond to the QPs. Crucially, due to the lack of
control, prior experimental works have reported only a slice
(vertical line cut) of the map for the fixed Δ�μ as depicted in
Fig. 2d. Dashed lines represent the interpolated group velocity as
a function of detuning ζ0 for two values Δ�μ ¼ �6:85;�5 while
the solid lines represent the response ∂ζ0vg on a logarithmic scale
(directly reflecting the noise transduction). For both values Δ�μ

there are two points with zero derivative ∂ζ0vg . We followed the
same procedure for the red-side mode displacement �μ>0 (same
side as for the Raman frequency shift) and observed similar
behavior for the soliton states, group velocity, and its derivative
(Fig. 2e–h). Qualitatively, the soliton profile and its existence
range remain the same as in the previous case, but the QP line is
shifted now toward the higher mode-displacement amplitudes
where the soliton existence range is narrowed.

Two-mode displacement for enhanced QP engineering. Next,
we investigate the region where the two QPs (for displaced modes
on the blue and the red side of the pump) can co-exist and
interact. First, we fix the displaced mode index �μ ¼ �21 and the
displacement strength Δ�μ ¼ �5:00 scanning the displacement
Δ��μ, of the mode �μ0 ¼ ��μ for different detunings ζ0. The Newton-
Raphson results for the single DKS state are shown in Fig. 3a–d.
As in the case of a single-mode displacement, the DKS coexists
with a single-period DW background (the periodicity is given by
j�μj). In this case, we discovered that the single-soliton solution
exists for Δ��μ<� 7. For large negative displacements
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Fig. 1 The concept of the quiet point engineering using coupled resonators. a Schematic of the phase-noise reduction in a microresonator. The auxiliary
cavity is required to control the DW recoil in order to balance the effect of Raman scattering. The active control can be established by adding a heater or
actuator to the auxiliary cavity. b Example of the considered integrated dispersion profile with shifted resonance for a single spatial mode (i.e., localized
AMX); the shifted mode number is �μ ¼ 15 and the resonance is shifted from the perfect parabolic profile by Δ�μ ¼ �4. c Power spectral density of stable
soliton solution both in the presence of Raman scattering and AMX for the integrated dispersion given in (b); the presence of Raman scattering and AMX
results in a detuning-dependent frequency shift Ω of the soliton spectrum responsible for the pump phase noise transduction. The modification of the
integrated dispersion profile by AMX leads to the generation of DWs via the soliton Cherenkov radiation. Real-space (d, f, h) and Fourier-space (e, g, i)
soliton dynamics driven with a sinusoidal detuning (ζ0ðtÞ ¼ 4þ 0:4 cosðαtþ φÞ; α ¼ 0:0033;φ ¼ �200) in presence of Raman scattering only (left),
AMX (center) and both (right) for the dispersion profile in (b).

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01437-0 ARTICLE

COMMUNICATIONS PHYSICS |           (2023) 6:318 | https://doi.org/10.1038/s42005-023-01437-0 | www.nature.com/commsphys 3

www.nature.com/commsphys
www.nature.com/commsphys


(Δ��μ � �20), �μ0 is out of resonance and the QP detuning value
corresponds to the one in Fig. 2c. Reducing the displacement
jΔ��μj, the soliton starts being resonant also to mode �μ0 resulting in
an effective bending of the QP line, converging to the single-mode
one for red-shifted mode (Fig. 2f). While in the case of a single-
mode displacement, the QP line is always tilted (see Fig. 2c, g)
which narrows down the noise suppression region for a fixed value

of Δ�μ, displacing two modes, we are crucially able to engineer a flat
susceptibility over a wide range of laser detunings ζ0. We refer to
this state of the system as engineered QP (EQP). The flat sus-
ceptibility region is achieved at Δ��μ ¼ �12:52 (cf. Fig. 3c). In
Fig. 3d, we compare vg and its susceptibility ∂ζ0vg for the single-
mode displacement (green lines in Fig. 2d) with the case in Fig. 3c
(gray lines). The latter clearly shows a flatter response profile that

Fig. 2 Quiet point identification via group velocity detection and dynamics in the 2D space of detuning-mode crossing strength. a–d Simulation results
obtained with the Newton-Raphson algorithm for ðΔ�μ; ζ0; �μ ¼ �21; f2 ¼ 6; τ ¼ 5 � 10�3Þ, i.e., in presence of Raman scattering and single-mode resonance
shift. a Single-soliton solution for ðΔ�μ ¼ �5; ζ0 ¼ 4:73Þ (blue star). The single-mode shift leads to a periodic modulation of the constant background with
period 2π

j�μj. b single-soliton group velocity vg in ðΔ�μ; ζ0Þ-plane. The black area indicates the region of parameters where the method does not converge. The
white dashed line highlights the existence range of the single DKS solution. The colormap shows how the soliton existence range is reduced in the presence
of a higher value of the group velocity related to the increasing intensity of the DW that perturbs the DKS state. c 10 log10j ∂vg∂ζ0

j as a measure of the DKS
repetition rate susceptibility to the variation of laser detuning. The smallest value of the susceptibility is obtained for a continuous line of operating point in
the ðΔ�μ; ζ0Þ-plane, here called the QP line (dark blue). d Comparison of the susceptibility (solid) and group velocity (dashed) profiles for two different
sections of the QP line [green and light blue lines in subplot (c)]. e–h Similar results for opposite mode displacement, i.e.,
ðΔ�μ; ζ0; �μ ¼ 21; f2 ¼ 6; τ ¼ 5 � 10�3Þ.

Fig. 3 Quiet point engineering. a–d Newton-Raphson simulations for a dispersion profile with two modes displaced: �μ and �μ0 ¼ ��μ, i.e.,
ðΔ��μ; ζ0; �μ ¼ �21;Δ�μ ¼ �5; f2 ¼ 6; τ ¼ 5 � 10�3Þ. a Equilibrium DKS solution for the EQP, i.e., ðΔ��μ ¼ �12:52; ζ0 ¼ 5:41Þ (blue star). b Value of the group
velocity in the subspace of parameters ðΔ��μ; ζ0; f

2; τ;Δ�μÞ and (c) its detuning directional derivative ð10log10j ∂vg∂ζ0
jÞ. d Comparison of detuning response

between single-mode displaced quiet point QP1 (green line, see Fig. 2c) and engineered quiet point (EQP1) with second mode displaced (gray line in
subplot c). e–h Similar plots for the case for �μ ¼ 21, Δ�μ ¼ �10:7, �μ0 ¼ �21, Δ��μ ¼ �3:74.
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can be practically beneficial for accessing the QP regime. The
effect of this is depicted in Fig. 3d, which shows an order of
magnitude broadening of the QP detuning bandwidth. We repeat
the same procedure, fixing the mode �μ ¼ 21 with Δ�μ ¼ �10:7 and
shifting the mode �μ0 ¼ ��μ by Δ��μ. Simulation results in Fig. 3e–h
show qualitatively similar behavior, with shorter DKS existence
range (defined by the fixed mode �μ ¼ 21, see Fig. 2f). However, in
this case, we find two QP families for a single DKS solution. The
flattest response is achieved at Δ��μ ¼ �3:74 (see Fig. 3g, h). In
this way, we observe that careful control over the two-mode dis-
placement can extend the noise suppression region of the QP in
the parameter space.

Linear stability of the solutions. Having derived above the
equilibrium value of the DKS group velocity and its relative
soliton state, for different mode shifts and having observed QP
lines in various configurations using the Newton-Raphson
method, a crucial question arises that we answer next: are the
observed states stable and/or is there any additional instability
region? To estimate the stability of the equilibrium solutions, we
perform linear stability analysis, numerically investigating the
eigenvalues λ of the Jacobian operator associated with (1) for each
particular soliton state found in the previous section (see
“Methods”). In particular, we focus on the eigenvalues with the
greatest real part, since, if positive, those are responsible for the
linear growth of any perturbation around the equilibrium. The
real part of the latter (max<fλg) are plotted in Fig. 4a–d. We
observe that the soliton solutions are linearly stable almost
everywhere in the considered subspace, and in particular at the
QPs. We observed instability regions close to the area where the
soliton solution does not exist. In those regions there exists at
least one eigenvalue with a positive real part. From the actual
structure of the spectrum of the Jacobian, computed for the quiet
point states (Fig. 4e–h) we find that these instabilities are due to
the transition to the Hopf bifurcation. In this region of parameter
space, those will be responsible for the transition from stable
solitons to breathing states.

Dynamical simulation of the phase noise transfer. To compare
the phase noise performance of different operating points, the
dynamical evolution has been simulated with the step-adaptative
Dormand-Prince Runge-Kutta method of Order 8(5,3)40. We
perform the direct dynamical simulations of the LLE adding a
realistic noise to the detuning term measured experimentally
from the Toptica CTL 1550 laser having a standard deviation of 5
kHz (standard deviation of the phase noise δϕ is 0.1 rad, see
“Methods”). In this way, we simulate two DKS operating points:
QP1 (see Fig. 2b) and EQP1 (see Fig. 3b). The difference between
the phase noise transfer performance at different operating points
can be clearly seen in Fig. 5a, b and from the calculated δϕ: for the
former, we obtain δϕ= 4.26 ⋅ 10−7 rad, while for the latter the
computed value is δϕ= 2.93 ⋅ 10−7 rad. A series of numerical
experiments confirm the conclusion obtained with the stationary
solver analysis.

We estimate the transduction of the phase modulation (PM)
noise from the pump to the DSK repetition rate as PM2PM =
Sϕ=S

in
ϕ at 10 kHz offset, where Sϕ is the phase noise power spectral

density of the soliton and Sinϕ —the phase noise power spectral
density of the pump laser. Changing the central frequency of the
pump by the value of 10−3κ, we clearly observe that the overall
EQP1 performance increases by 0.5 dB for 3 ⋅ 10−3κ
(δϕ= 3.00 ⋅ 10−7 rad), while in the case of QP1, we observe > 28
dB of the transduction enhancement (δϕ= 33.63 ⋅ 10−7 rad).
Corresponding single-sideband (SSB) phase noise power spectral
density is depicted in Fig. 5c. As one can see, the fluctuations of
the central frequency of the pump laser do not visibly affect the
performance of the system at EQP1.

Next, we verify that in the case of the noisy pump lasers
(standard deviation of 8% κ/2) EPQ leads to a significant noise
reduction due to the larger noise suppression region. We
employed the same phase noise data, scaling it to obtain the
detuning fluctuation of the order of the width of the standard QP,
i.e., 8% κ/2. In the parameter regime outside of the QP region the
influence of the pump fluctuations on the DKS dynamics is visible
directly from the spatiotemporal diagram (see Fig. 5d). To
distinguish the performance of QP1 and EQP1, we can use the

Fig. 4 Linear stability of the quiet points. a–d Value of the real part of the Jacobian eigenvalue (λ) with highest real part, in the parameters subspaces
considered in Figs. 2b, f and 3b, f respectively. The analysis shows there are regions within the DKS existence range in which the soliton solutions are
linearly unstable (colored regions) but those do not include the analyzed QP that is consequently considered stable. e–h Detail on the spectrum of the
Jacobian for the cases in (a–d). The spectrum shows that the instabilities arising in the colored regions are due to the Hopf bifurcation, considered the
presence of pairs of conjugated modes approaching ℜ{λ}= 0.
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NDR to represent its effect (Fig. 5e). We observe a clear
suppression of the noise multiplication in the case of EQP1. This
confirms our predictions based on the group velocity variation
obtained with the stationary solution solver.

Conclusions
In summary, we have demonstrated a method to increase the
effectiveness of QPs, that are central to achieving low phase noise
soliton microcombs for microwave generation. Our work shows
that engineering QP introduced via two dedicated and con-
trollable AMX enables one to create broader regions of enhanced
noise suppression. Our work is directly implementable using
current technology and provides an approach to the enduring
challenge of obtaining thermal noise-limited micro-wave gen-
eration from integrated soliton microcombs, which in contrast to
crystalline resonators employ materials such as silicon nitride or
silica, that do exhibit a Raman self-frequency shift.

These results were obtained via a semi-analytical approach,
based on the Newton-Raphson method, which studied the phe-
nomenology of QP in the presence of Raman scattering, DW, and
detuning noise, within a simplified model of AMX. This allowed
us to obtain several insights (1) QPs can be achieved by placing
AMX on both blue- and red-detuned sides of the pump. This
highlights the fact that not the absolute value of the frequency
shift must be compensated, but its derivative over the laser
detuning. (2) By controlling the mode displacement, QP can be
placed at an arbitrary laser detuning within the soliton existence
range. (3) Engineering the interaction of two QPs leads to the
increased bandwidth of the noise suppression and in the case of a
noisy pump laser to further reduction of the noise transfer. (4)
The EQPs predicted in this work are linearly stable and char-
acterized by more than 28 dB reduction of the PM2PM coefficient
with respect to a generic QP described in the literature when a
detuning deviation of the order of 0.03% of κ is introduced. We
anticipate that other arrangements of the mode displacements can
lead to similar or better performance of the EQP. We also believe
that the detuning-dependent variation of the repetition rate can
be completely eliminated by further controlling the integrated
dispersion profile for example by corrugating the microresonator
circumference35, which is however outside the scope of this work.

Methods
Mean field model. The modified LLE, presented in the main text,
which accounts for the Raman scattering and effect induced by
the AMX:

∂ψ

∂t
¼� ð1þ iζ0Þψ þ i

2
∂2θψ þ ijψj2ψ þ f

þ vg∂θψ � iΔ�μψ�μe
i�mθ � iτψ∂θjψj2;

ð2Þ

where t ¼ t0=2τph is the time normalized to photon lifetime
τph= 1/κ, κ= κ0+ κex is the total linewidth of the cavity com-
posed of the internal linewidth κ0 and the coupling to the bus
waveguide κex. The normalized laser-cavity detuning is
ζ0= 2δω/κ, the fast time is defined as θ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ=2D2

p
φ with D2 as

the GVD and φ∈ [−π, π] as the azimuthal coordinate inside the
cavity. �μ indicates the shifted mode number and ψ�μ is the
amplitude of the displaced mode. We point out that, due to the
normalization of the fast time coordinate, the mode numbers m
are not integers, however, they are related to the actual comb line
index μ by a simple multiplication factor, i.e., m ¼ μ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2D2=κ

p
.

Thus, referring to an integer �μ, we imply the comb line index �μ is
associated with the displaced mode. The normalized pump power
is f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8κexg0=κ

3
p

sin where g0 is single photon Kerr frequency
shift and sin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pin=_ω

p
and where ∣sin∣2 is the laser photon flux.

The last two terms in Eq. (1) describe the single-mode AMX and
the Raman scattering respectively. The normalized mode dis-
placement is defined as Δ�μδμ;�μ ¼ 2ðDintðμÞ � D2μ

2=2Þ=κ, with δμ;�μ
as Kronecker delta, and the normalized Raman shock time is
τ ¼ τRD1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ=2D2

p
.

The single-mode AMX term comes directly from the modified
dispersion profile (e.g., Fig. 1b) as follows from:

F�1 ðμ
2

2
þ Δ�μδμ;�μÞψμ

� �
¼ � 1

2
∂2θψ þ Δ�μψ�μe

i�mθ;

where F�1½:::� stands for the inverse Fourier transform. We
simulate a system with the following parameters: κ/(2D2)= 76.923,
τRD1= 0.0006.

Newton-Raphson method for the QP. The stationary solitons
state and their respective value of group velocity have been
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computed from Eq. (1) applying the Newton-Raphson method.
This method is used to compute the solutions of a nonlinear (in
principle vectorial) equation of the form of:

FðΦÞ ¼ 0; ð3Þ
by applying the following iterative scheme:

Φkþ1 ¼ Φk � J�1ðΦkÞFðΦkÞ
Φ0 : Initial guess

(
ð4Þ

where J�1 is the inverse of the Jacobian matrix of the function

F41,42, i.e.:

Ji;j ¼
∂Fi

∂Φj
ð5Þ

If the initial condition has been chosen correctly and the Jacobian
remains invertible, the algorithm will converge to the desired
solution Φ⋆, fixed point of (4), i.e.:

Φ? ¼ Φ? � J�1ðΦ?ÞFðΦ?Þ ð6Þ

and so characterized by F(Φ⋆)= 0.
In our case, we exploit the method to find stationary single-

soliton solutions, ψ, of Eq. (1) and the corresponding group
velocity vg by adding it explicitly as an optimization variable. In
this case Eq. (3) is set as the following:

Fðψ;ψ�; vgÞ :¼
gðψ;ψ�; vgÞ
g�ðψ;ψ�; vgÞ
<f∂θψgjθ¼θmax

264
375 ¼ 0 ð7Þ

where g(ψ, ψ*, vg) is the r.h.s of Eq. (1). To implement the iterative
algorithm from Eq. (4) for Eq. (7), we define Ψ≔ (ψ, ψ*, vg) and
rewrite the function F(Ψ) as a formal matrix product:

FðΨÞ ¼ eFðΨÞΨ �
eF1;1 eF1;2 eF1;3eF2;1 eF2;2 eF2;3eF3;1 eF3;2 eF3;3

2664
3775

ψ

ψ�

vg

264
375 ð8Þ

where eFðΨÞ is a 3 × 3 matricial operator defined by the following
equations : eF1;1 ¼ �1� iðζ0 � 1

2 ∂
2
θ þ Δ�μe

i�μθF̂ �μÞeF1;2 ¼ iψ2ð1� τ∂θÞ � iτψ∂θψeF1;3 ¼ eF2;3 ¼ ∂θeF2;2 ¼ ðeF1;1Þ�eF2;1 ¼ ðeF1;2Þ�eF3;1 ¼ eF3;2 ¼ 1
2

R
Rdθδðθ � θmaxÞ∂θeF3;3 ¼ 0

F̂ψ ¼ R
dθψe�iμθ ¼ ψμ

F̂�1
ψμ ¼ ∑μψμe

iμθ ¼ ψ

F̂ �μψ ¼ ∑μδμ;�μF̂ψ ¼ ψ�μ

In this way, the iterative equation in (4) can be rewritten as:

JΨkþ1 ¼ ðJ � eFÞΨk ð9Þ

that can be numerically solved for Ψk+1.

Thus, the Jacobian in the rotating frame takes form:

JðΨÞ ¼ eFðΨÞ þ
Δ̂ðΨÞ 0 0

0 Δ̂
�ðΨÞ 0

0 0 0

264
375 ð10Þ

where:

Δ̂ðΨÞ :¼ 2ijψj2 þ vg∂θ � iτð∂θjψj2 þ jψj2∂θ þ ψ∂θψ
�Þ: ð11Þ

We implement the differential operators appearing in the
matrices entries using the discrete Fourier transform matrix
(DFT matrix43), which allows us to express those operators in the
Fourier space where they are represented algebraically.

To control the numerical convergence of the algorithm, we use
the standard measure: ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k Ψkþ1 �Ψkk22
k Ψkk22

s
<10�6 ð12Þ

where ∥ ⋅ ∥2 is the L2-norm. To avoid discretization problems,
(especially for the computation of the correct spectrum of the
Jacobian), we discretized the envelop function ψ in Nψ= 210

number of points.
Finally, some comment on the choice of the initial condition

Ψ0 is required. Despite its power, this method, being the simplest
of its kind, suffers from a small convergence radius. That means
the initial condition must be already very close to the actual one.
To overcome the problem, we used a numerical DKS solution
from dynamical simulations as a guess solution with zero group
velocity. For the subsequent points, we used instead as seeds the
converged solution from the closest point in the detuning
direction.

Dynamical simulation of the noise transduction. The dynamical
simulations have been carried out with the step-adaptative Dor-
mand-Prince Runge-Kutta method of Order 8(5,3)40, hard seeded
an approximate DKS solution. The input pump phase noise has
been obtained from a linearization of the data of the power
spectral density data of Toptica CTL 1550 Laser, Sinϕ . In particular,
it has been implemented through a detuning noise term ζ0(t)
obtained as:

ζ0ðtÞ ¼ αF̂ tð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2Sinϕ ðνÞ

q
eixðνÞÞ; ð13Þ

where a uniformly distributed random phase x(ν) has been added
to each frequency to obtain a random realization of the detuning
noise and coefficient α normalizes the standard deviation of the
pump detuning. We used the following simulation parameters1:
n0= 1.9, n2= 2.4e−19, m2/W, FSR= 95.4 GHz, ω0/2π= 192
THz, waveguide dimensions: 1.5 × 0.85 μm, κ0/2π= 100MHz,
κex/2π= 100MHz, τR= 1 fs, D2/2π= 1.3 MHz.

Output field in real units for the case of critical coupling
(κex= κ0):

Poutðϕ; tÞ ¼ _ω0
κ2ex
g0

jf � ψj2 ð14Þ

Spectrogram:

PμðtÞ ¼ F̂ μPout ð15Þ
where F̂ μ is the operator taking the μth Fourier component of a
function (the power in this case), as defined in the previous
section. The phase of the first comb line (repetition rate phase):

ϕðtÞ ¼ arg P1ðtÞ
� �

; ð16Þ
where arg P1ðtÞ

� �
denotes the phase of the first complex Fourier

component of the detected optical power. The spectrum of
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phase noise:

SϕðνÞ ¼ jF̂ νϕðtÞj2 ð17Þ
The transduction coefficient has been computed as:

PM2PM ¼ 10log10
Sϕ
Sinϕ

ð18Þ

We point out, in this analysis we assume an ideal photodetector,
neglecting its actual response function. As for the Newton-
Raphson method, we discretized the fast time axis (i.e., azimuthal
coordinate) in Nψ= 210 points while the slow time in Nt= 20,000
points. In addition, in order to obtain a sensitivity of the order of
the kHz, we simulate the soliton dynamics for 1 ms. TRN phase
noise limit is calculated using methods and parameters presented
in studies of Si3N4 microresonators27. The comparison of the
phase noise performance of different DKS states and calculated
TRN noise limit is shown in Fig. 6.

Data availability
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