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Single-shot, coherent, pop-out 3D metrology
Deepan Balakrishnan 1,2✉, See Wee Chee1,3, Zhaslan Baraissov1,3, Michel Bosman 4, Utkur Mirsaidov1,2,3,4 &

N. Duane Loh 1,2,3✉

Three-dimensional (3D) imaging of thin, extended specimens at nanometer resolution is

critical for applications in biology, materials science, advanced synthesis, and manufacturing.

One route to 3D imaging is tomography, which requires a tilt series of a local region.

However, capturing images at higher tilt angles is infeasible for such thin, extended speci-

mens. Here, we explore a suitable alternative to reconstruct the 3D volume using a single,

energy-filtered, bright-field coherent image. We show that when our specimen is homo-

geneous and amorphous, simultaneously inferring local depth and thickness for 3D imaging is

possible in the near-field limit. We demonstrated this technique with a transmission electron

microscope to fill a glaring gap for rapid, accessible 3D nanometrology. This technique is

applicable, in general, to any coherent bright field imaging with electrons, photons, or any

other wavelike particles.
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Reconstructing three-dimensional (3D) information about a
sample from two-dimensional (2D) projections is an
important class of problems in optics. Though 3D imaging

finds applications in various fields, from medicine to robotics,
rapid large-scale 3D reconstruction is especially critical for
nanoscience and nanotechnology. Since the dimensions of a
nano-object define its properties and functionalities, rapid
structural feedback is important for designing fabrication and
synthesis strategies, failure analyses, reverse engineering, and
counterfeit verification1–3. Further, large-scale 3D nanometrology
is useful for investigating nanometer-scale features on millimetre-
scale objects (e.g., nanophotonic structures on butterfly wing
scales and integrated circuit components)4–7. However, existing
nanometrology tools cannot satisfy the demands of the semi-
conductor industry as it moves toward 3D power scaling to make
denser and more energy-efficient compute and storage
components8,9.

One route to 3D reconstruction is tomography, which is made
possible due to the emergence of computing. Over the years,
tomographic techniques improved along with computing power
as they are heavily reliant on computation10–13. Consequently,
today, X-ray computed tomography and electron tomography are
widely used tools for 3D structural analysis at the nanometer
scale14–18. However, the time required to acquire a full-tilt series
typically limits the resolvable dynamics to a few seconds, which is
insufficient for imaging deformation dynamics that require mil-
lisecond resolution19,20. More important for extended samples
common in the fabrication of electronic components, where there
is usually a high aspect ratio between at least one pair of
dimensions, collecting a full tilt-series is challenging either
because of occlusion by the sample holder at high tilt angles or X-
ray/electron absorption when viewing down the extended
dimension. Ptychographic X-ray laminography, a coherent ima-
ging technique, still requires a series of tilt images4 and can only
be performed at large bright X-ray facilities such as synchrotrons
and X-ray free-electron lasers21.

With machine learning, researchers have demonstrated that
using priors as constraints can produce 3D tomography even with
a vastly reduced number of angular views11. This points to the
possibility of achieving 3D metrology with even a single view
when there are sufficiently strong priors. Holography, which
already encodes the depth information of a specimen, provides a
viable direction for this form of single-shot 3D metrology.

Gabor showed in 1948 that shining a coherent wave, be it light
or electron, through a specimen produces a single interference
pattern which encodes the depth information in the recorded
phases22. However, only after the advent of digital image capture
and computational reconstruction did the holographic principle
become widely exploited for various imaging applications23,24.
Similarly, the multislice beam propagation formalism for mod-
elling multiple scattering, well-known since 1957, has recently
emerged as a viable tool for dealing with thicker and denser
samples25–28. Again only after the phenomenal rise of computing
power, more sophisticated algorithms and modelling schemes for
digital holography were developed, where the 3D positions of
thousands of particles (of known morphology) were inferred to
nanometer-scale precision at millisecond rates29–31.

Although these lensless holographic schemes allow a speci-
men’s depth information to be readily inferred, its thickness
information is far less apparent. Without both depth and thick-
ness information, 3D metrology of a general specimen from a
single view is infeasible. Compressive holography techniques
enabled 3D reconstruction from a single 2D hologram for sparse
3D densities32,33. However, for densely packed specimens,
decompressive interference using a forward model is an ill-posed
problem34. On the contrary, estimating the local depth

information and the optical thickness of the scatterer from a
single projection, rather than reconstructing its phase shifts, is
feasible. Here, we show that simultaneously inferring local depth
and thickness for 3D metrology is possible in the near-field limit,
which can be attained by having an objective lens in an in-line
holography setup. This setup is readily described by a transmis-
sion electron microscope (TEM); with field emission guns gen-
erating highly coherent electron beams, TEMs effectively produce
magnified in-line near-field holograms35. Further, direct electron
detectors, because of their linear response and high detective
quantum efficiency at all spatial frequencies, produce high-quality
images36,37.

We present a coherent imaging technique that allows rapid 3D
metrology of amorphous, thin, extended materials from a single
bright field image. We experimentally demonstrated the techni-
que on thicker (200 nm) fabricated specimens to achieve a 3D
resolution of 30 nm. For specimens thinner than 40 nm, sub-10
nm resolution is possible at an imaging dose of 100 e Å−2. We
coin this technique single-shot pop-out 3D metrology, which
simultaneously measures both the thickness and the imaging
depth (i.e., z-position) of the material by utilising both the
absorption and phase contrast information from a TEM image
formed by a partially coherent beam. While the local thickness of
a specimen is routinely measured from its amplitude contrast in
Bright Field -TEM (BF-TEM)38, estimating its local depth along
the optical axis is far less common. Because this method extracts
3D information from a single 2D image, the same field of view
can be re-interrogated rapidly, which allows us to study fast
structural dynamics of materials with nanometer resolution. The
data efficiency of pop-out metrology also supports fast in-situ
inline process control and defect detection in nanofabrication of
3D devices over extended surfaces without physically sectioning
or fracturing the sample as one would in critical dimension
metrology. Finally, this technique can be readily calibrated for the
many TEMs that are commonly found in many manufacturing,
fabrication, and research facilities.

Results and Discussion
Principle of pop-out 3D metrology. Here, we briefly show how
this depth information is encoded within the coherent interference
pattern that is the TEM image, similar to that in inline digital
holographic microscopy. Consider the kinematic linearization (the
first Born approximation) of the dynamical multislice scattering of
a sample comprising a z-stack of N slices of random, amorphous
scatterers25,26 (details in methods). We arrive at Eq. (1) for the
squared amplitude of the Fourier transform of its TEM image

jIdet kð Þj2 / B kð Þ þ Γ kð Þ � ∑
N

n¼1
βn kð Þ þ ∑

N

n¼1
∑
N

m>n
γmn kð Þ ð1Þ

Equation (1) can be decomposed into two key sums, each with
an intuitive interpretation. The dominant sum B kð Þ adds the
single scattering of the electron wavefield from each slice, βnðkÞ,
which arrives at the detector after various path differences.
Crucially, we show that B kð Þ dominates the effective contrast
transfer function (CTF) in our model (Eq. (2)), where the CTF’s
effective defocus is offset by the half-depth of the stack of slices.
Fitting for this offset is key to inferring the depth of the sample.

jIdetðkÞj � A envðkÞ jCTFðkÞj þ noiseðkÞ; ð2Þ
Next, we turn our attention to the double sum Γ(k) in Eq. (1),

which captures the wavefield interference between different pairs
of slices γmn(k). It turns out that Γ(k) tends to average away for
multiple, random, uncorrelated slices (Fig. S1, Supplementary
Note 1). Further, if the slices have comparable scattering
densities, then the summation in Eq. (1) can thus be simplified
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(see methods), and what remains is an effective CTF in Eq. (2),
which also includes the effects of lens aberrations and beam
incoherence (see methods). Note that the visibility of these Thon
rings is strongly affected by the spatial coherence of the electron
source in TEMs39. Moreover, it is important to note that the
accurate estimation of CTF in Eq. (2) is challenging with
detectors with nonlinear response curves (e.g., scintillator-based
detectors). The extension of the pop-out principle to multiple
layers is shown in Eq. (40).

With the sample’s local depth information inferred, we now
infer the sample’s local thickness. This thickness can be calibrated
from the fraction of electrons lost to inelastic scattering (see
methods), a procedure identical to inferring matter concentra-
tions from optical absorbance via the Beer-Lambert law. To
estimate this fraction with BF-TEM, we energy-filter for only
elastically scattered electrons via hardware. The energy filtering
enables us to estimate the sample thickness quantitatively.

Putting both the above depth and thickness inference together
gives us the pop-out principle, which we illustrate in Fig. 1a using
an amorphous specimen of homogeneous density. The speci-
men’s right region is thinner and closer to the back focal plane
than the left region. Hence, the thinner right region elastically
scatters fewer electrons, which makes the right half of the energy-
filtered TEM image appear brighter. Quantitatively, the relative
thickness of these two regions is determined from the log-ratio of
the number of electrons received at each region38.

The depth of the centre of mass of each region in Fig. 1a is
apparent in their local power spectrum (i.e., the squared
amplitude of their Fourier transforms). As predicted by the
CTF in Eq. (2), the Thon rings40 in the power spectrum from the
right region are spaced farther apart compared to those from the
left region. This ring spacing is related to the relative defocus of

each region with respect to the TEM’s plane of zero defocus.
Consequently, each region’s centre of mass depth can be
determined from its defocus parameter from a semi-empirical
fit to these Thon rings13,41–44.

Combining the inferred local sample thickness and its centre of
mass depth in Fig. 1a, we can correctly pop-out a thicker block of
material on the left half of the field of view that is farther away
than the thinner, nearer block on the right. Notice that with only
thickness information alone, it is impossible to correctly place
these two blocks at the correct depth. Repeating this recipe across
small, overlapping patches in the 2D TEM image allows us to
recover a 3D structure of the entire field of view45: the depths of
these overlapping patches are stitched together to reconstruct
how the specimen’s centre of mass depth (i.e., along z-axis) varies
transversely (i.e., along the x-y plane).

A proof of concept for pop-out 3D metrology is shown in
Fig. 1b using a simulated BF-TEM image. Starting from a ground
truth 3D object made of amorphous silicon nitride (bottom left of
Fig. 1b), we used a multislice approach that includes absorption
effects39 to simulate its energy-filtered BF-TEM image. From this
BF-TEM image, we inferred the patch-wise defocus and thickness
maps of the 3D object, which were combined to pop-out the 3D
reconstruction of the object (bottom right of Fig. 1b). Note that
the structure of Fig. 1b cannot be retrieved from thickness
information alone. The astute reader might have realized that
although we illustrated the pop-out metrology principle here for
the BF-TEM, the formalism of Eq. (1) applies generally whenever
the multislice (i.e., beam propagation) description is apt and thus
can be customized to the calibrated CTF of such optical setups
beyond electron microscopy.

It is instructive to compare pop-out 3D metrology with phase
retrieval and depth sectioning used for 3D imaging of

Fig. 1 Illustrating the principle of pop-out 3D metrology with transmission electron microscopy (TEM). a Schematic of bright-field TEM (BF-TEM). A
thinner feature (right half) scatters fewer electrons and forms the brighter right half of the TEM image; it is also placed nearer to the focal plane. Hence its
contrast transfer function (CTF) has fewer Thon rings than the thicker feature, as we can see from the Fourier transforms of the patches p1 and p2 (red
squares). b Applying the pop-out metrology technique to a 2048×2048 pixel simulated BF-TEM image of a 3D model (ground truth). The recovered
average longitudinal centre of mass (defocus map) and the sample thickness map shown in the image were used to reconstruct the 3D volume.
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nanomaterials46–49. The main difference is that these methods
require a through-focal series for 3D reconstruction, while pop-
out 3D metrology uses only a single TEM image.

Factors affecting the resolution of pop-out metrology. Under-
standing which factors limit the resolution for a given specimen
on a given microscope can help us calibrate its key parameters for
optimal pop-out reconstructions. The in-plane (xy) and out-of-
plane (z) resolutions of a pop-out reconstruction depend on the
sample material, sample thickness, range of defocus parameters,
patch size, and total electron dose chosen in the experiment.
Here, we use realistic simulations to study the interplay between
these factors and how they affect both in-plane and out-of-plane
resolutions.

A critical factor in a pop-out reconstruction is the patch size.
Since we determine the sample’s average thickness and centre of
mass depth over an image patch, the size of this patch limits our
xy resolution. Furthermore, the size of the patch is proportional
to the total number of elastically scattered electrons within the
patch, as well as how finely the Thon rings are sampled in the
Fourier domain. Hence, the patch size, in turn, impacts the z
resolution of a pop-out reconstruction: the precision of each
patch’s determined centre of mass depth.

Effect of sample thickness on the resolution. The thickness of a
specimen along the optical axis, Tmax, determines both the first
node of the envelope function (dotted vertical lines in Fig. 2a) and
the number of electron counts received at the detector. The
envelope node suppresses the undulations in the Thon rings,
which diminishes our ability to resolve the specimen’s local depth
(z) from the rings. Similarly, when the received electron counts
are too low for model fitting, we must increase the patch size,
which lowers our xy resolution.

The effects on xy and z resolutions do not change linearly with
sample thickness. Given a fixed incident electron dose, a thicker
sample elastically scatters a larger fraction of the incident
electrons, which imprints clearer Thon rings over the unscattered
beam in the sample’s TEM power spectrum. This is a positive
effect because clear rings allow better fits for the sample’s centre
of mass depth. However, a thicker sample also inelastically
scatters a larger fraction of the incident electrons, which reduces
the number of electrons that reach the downstream image
detector. This has a negative impact because the entire power
spectrum is now noisier, which increases the uncertainty in our
semi-empirical fits for the centre of mass depths. Figure 2c shows
this positive effect dominates over the negative effect at modest
sample thicknesses.

Effect of spatial sampling and patch size on the resolution.
Increasing the image patch size increases the sampling frequency
of the power spectrum, which improves their fit to the semi-
empirical CTF functions (Fig. 2b). This, in turn, improves z
resolution but notably at the expense of xy resolution. For a
decent fit, we adopt a simple criterion for sampling frequency of
at least three intensity maxima within the first node of the
envelope (exemplified by Fig. 2a), and at least eight frequency
samples between maxima (σs= 8) (see methods). To accom-
modate for unforeseen uncertainties in actual experiments, we
recommend having slightly higher sampling frequencies (hence,
larger image patch sizes).

In Fig. 2b, we performed a numerical experiment to analyse the
influence of the image patch size on pop-out reconstructions.
Here, we simulated multislice TEM images of an amorphous
silicon nitride pillar (50 nm tall) on top of two different silicon
nitride substrates (thicknesses of 25 nm or 100 nm). The

corresponding maximum sample thicknesses are Tmax = 75 nm
and 150 nm (pillar on the substrate), respectively, which lead to
minimum image patch sizes of wmin = 18 nm and 27 nm (see Eq.
(39)). Figure 2b illustrates the effect on pop-out reconstructions
of the Tmax = 75 nm sample with sufficiently large patch sizes
(20 nm patch in case i), or with sizes that are too small (12.8 nm
in case ii). When the maximum sample thickness increases to
Tmax = 150 nm (case iii), even the larger image patch of 20 nm
produces a poorer reconstruction as it is less than the minimum
patch size required (27 nm) for Tmax = 150 nm.

Effect of electron dose on depth resolution. The precision and
accuracy of depth and thickness determination are impacted by
the total number of elastically scattered electrons measured at the
detector for each image patch. This number, in turn, depends on
the total incident electron dose and the sample’s thickness.

To study the effects of electron dose, we simulated a series of
multislice TEM images with different specimen thicknesses and
integrated electron dose. Figure 2c shows the depth errors in our
pop-out reconstructions of these images with an image patch size
of 20 nm. This figure illustrates that 5 nm accuracy in z depth is
possible for silicon features that have a thickness less than half of
the inelastic mean free path (in this case, 66.5 nm for SiNx) with
exit doses measured at the detector that are ~100 e Å−2. The error
map plotted against exit dose instead of incident dose to account
for electrons lost to inelastic scattering. The inelastic mean free
path assumed for multislice simulations is 133 nm, which is
calibrated from our experiments3,50. We expected a monotonous
increase in the error values with further thickness increase.
However, the vertical artefacts that show deviation from the
expected trend highlight the limitation of our model. The
precision in the error map (i.e., the standard deviation of the
error calculated over a small range, say 5×5 data points, across
thickness and dose in Fig. 2c) improves as the exit dose increases
dramatically up to 100 e Å−2, with negligible improvement with
further dose increases. Finally, when comparing the reconstruc-
tions in Fig. 2b, it is evident that increasing the patch size lowers
depth errors. However, this lowered error, which improves the z
resolution because of the larger patch size, is at the expense of xy
resolution. Although the studies of xy and z resolutions vs.
electron dose and patch size in Fig. 2 were from idealized
simulations, similar studies can be calibrated for known samples
at actual TEMs. Such calibrations were performed for the
applications shown below.

Pop-out demonstration. The process flow chart in Fig. 3
describes the steps and checks to implement pop-out metrology.
Once the TEM is properly calibrated for capturing images, then
the data acquisition (i.e., scanning a large area for the image
capture, stitching the images, highlighted by the dashed red box
in Fig. 3) and the pop-out reconstruction process can be fully
automated. The pertinent details are elaborated as a checklist in
the methods section.

Dual-layer pop-out metrology. The demonstrations of the pop-
out principle have so far been limited to single-layered specimens.
However, Eq. (40) shows that this principle can be readily
extended to samples comprising multiple layers. This extension is
corroborated in Fig. 4 for a two-layered sample made from a
single type of amorphous material. We first consider a scheme for
estimating the depth of each layer. Notably, the power spectrum
of image patches within this sample exhibits intensity modula-
tions that resembled those from the two layers separately
(Fig. 4a). By modeling this power spectrum as an incoherent
addition of two single-layered CTFs (see methods), we found that
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we can separately estimate the depth of each of the two layers. A
full pop-out reconstruction, however, also requires the thickness
information from both layers, despite measuring only the total
fraction of electrons lost by both layers. Nevertheless, should the
thickness of one of the layers be known (Fig. 4b) or the scattering
from both layers be sufficient to fit the relative thickness between
them (Fig. 4c), the thicknesses of the layers can be deduced.

Figure 4b shows a proof of concept for a dual-layer pop-out
with such a thickness prior. This sample comprises a 25-nm-thick
top silicon nitride membrane (thickness known), and a lower

membrane whose (unknown) thickness linearly increases in one
direction from 2–50 nm. Our dual-layer pop-out principle
correctly reconstructs the entire structure. The radial average of
the fitted CTF from the additive model and the actual Thon rings
from the wedge and membrane are plotted in Fig. 4a, which
closely matches the incoherent additive modeling approach for
multi-layered structures.

Figure 4c shows a proof of concept for estimating the relative
thickness of each of the two layers from the amplitudes of their
respective CTFs in the additive-CTF fitting. This sample

Fig. 2 Factors that limit in-plane (xy) and out-of-plane (z) resolutions. a Plots show the first zero-crossing of the envelope for thin and thick amorphous
silicon nitride specimens. The thicker specimen has a steeper envelope which limits the resolution; hence it needs finer sampling of the spatial frequencies
to fit the contrast transfer function (CTF) accurately. b 3D reconstructions with the case i) optimal defocus-fit patch size (20 nm) for the given thickness
(substrate 25 nm and pillar 50 nm), case ii) insufficient patch size (12.8 nm) for the same thickness, and case iii) 20 nm patch size for a thicker specimen
(substrate 100 nm and pillar 50 nm). The histograms show the spread in defocus values in each case, i.e., the CTF-fitting precision. The same patch size,
which was optimal in case i), is insufficient for a thicker specimen (case iii) as expected. c The error between the fitted and actual defocus is plotted here as
a function of exit dose and sample thickness (given patch size of 20 nm); Increasing the dose improves the defocus fit accuracy significantly at lower doses
until 100 e Å−2 exit dose. Increasing the patch size helps to sample the frequencies finer in the Fourier space; hence it improves the accuracy of depth
fitting. As the patch size (xy resolution) is sufficiently large (20 nm), the accuracy value (z resolution) stays below the patch size.
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comprises two 20-nm-thick silicon nitride membranes with 40-
nm-thick fins such that the total thickness in the projection is
uniformly 80 nm across the specimen. Again, we note that the
structure in Fig. 4c cannot be retrieved from thickness information
alone. Since the amount of material across the layers are
comparable, and we have enough signal from a large patch size
and a high electron dose, our dual-layer pop-out principle correctly
reconstructs the structure using the information from the ratio of
the amplitudes without any thickness priors. Nevertheless, dual-
layer pop-out is evidently more challenging compared to single-
layer pop-out (Fig. S7, Supplementary Note 6).

Experimental demonstrations. We validated the pop-out prin-
ciple in two proof-of-concept experiments. In each case, we
sought to recover 3D features that are challenging to infer directly
from their TEM images, other scanning probe measurements (i.e.,
AFM, SEM, etc.), or tomography (because of their high aspect
ratio). The TEM images were collected with either a brief 2–6 s
exposure or multiple brief exposures without having to rotate the
sample. Taken together, these demonstrations justify why we
coined our method single-shot pop-out 3D metrology.

First, we started with a relatively simple 3D nanochannel that
was etched onto one side of an amorphous silicon nitride (a-SiNx)
substrate3. The leftmost panel of Fig. 5a shows a single-exposure
TEM image of this nanochannel from which we reconstructed the
3D profile using the pop-out principle (the middle and rightmost
panels of Fig. 5a show the top and bottom of the channel). The
linear size of the floating cube (reconstructed voxel size) in this
reconstruction corresponds to the size of the image patch used for
pop-out reconstruction, hence limiting the transverse xy half-
period resolution to 30 nm. Our reconstruction correctly shows
that the specimen’s bottom surface is flat, and that the
nanochannel was etched from the top surface. This flat bottom
side cannot be inferred from thickness information alone.
Incidentally, our reconstruction also shows that the substrate
on which the nanochannel was etched has a small tilt (~5°).

In our second proof-of-principle demonstration, we wanted to
reconstruct more complex 3D features than the first demonstra-
tion, again from a single-exposure TEM image. Here, we imaged
a ~ 80 nm pit that was etched on an amorphous silicon nitride
substrate. A TEM image of this pit and the corresponding pop-out
reconstruction are shown in Fig. 5b, (resolution 40 nm, limited by
patch size used in pop-out). The dark blob in the TEM image
represents the debris from the etching piled near the rim of the pit,
and the irregular etching around the rim causes the lighter petals.
The cross-section shows that both the debris and the petals are on
the top surface where the ion beam used for etching was incident.
Our reconstruction reveals that the hollow region of the pit forms a
double-conical structure: first narrowing as we etch deeper into the
pit, then blowing out to a larger width on the bottom side.
Supplementary Note 5 shows evidence that this double-conical
structure is not an artefact of pop-out reconstruction (Fig. S6).
Moreover, this double-conical shape has also been reported in
nanopore etching on a silicon nitride membrane51. This hidden
feature, which is neither visible from the top surface nor easy to
scan with a probe, is hard to measure using an AFM or SEM.

Combining these proof-of-principle experiments, we expect
single-shot pop-out metrology to be able to rapidly recover the 3D
structure of low-dimensional amorphous materials without rotating
the sample and the usual sample preparation needed for tomography
(e.g., ion milling, microtoming)52. These rapid 3D reconstructions
can resolve nanometer longitudinal and transverse strain dynamics
of micron-sized laminae that are stressed in operando, which
complements atomic-resolution studies of the same but is restricted
to a small region53. In principle, we can image millisecond 3D
dynamics using pop-out metrology on a TEM with a kilohertz
detector. However, as shown above, pop-out is only robust with
sufficient signal per exposed frame. Speculating further, under the
correct conditions and samples, it may even be possible to
implement pop-out metrology with ultrafast electron microscopy
(UEM), which currently achieves femtosecond 4DEM by repeatedly
interrogating a rotating sample with an ultrafast electron pulse20,53.

Fig. 3 Process flowchart for pop-out metrology. A process flow chart that explains the step-by-step process and necessary inputs required at various
steps for pop-out metrology. The dashed red box indicates the data acquisition process.
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Although Pop-out metrology is a viable tool for 3D imaging of
amorphous homogenous-density samples, unlike tomography, it
cannot reconstruct the complete 3D densities of the specimen.
Tomography and pop-out are complementary techniques, but the
latter is not a replacement for the former. Pop-out metrology can
be a viable alternative to tomography when we have specimens
with homogeneous material density or for extended specimens
where the missing-cone problem in tomography is severe (e.g.,
thin and extended samples). However, for general 3D samples
where pop-out is under-constrained, tomography should still be
the de facto 3D imaging option.

Conclusions
Pop-out metrology is a computational wave optics technique that
is applicable to coherent electron, neutron, X-ray, or visible light
beams. At its core, it shows that the Fourier transform of an

image formed by a coherent bright field illumination is essentially
a hologram, and by exploiting the priors from the homogenously
amorphous specimen, the depth information can be extracted
even from a multi-layered specimen. In addition, the local
thickness information can be measured in real space when there
is an objective lens to focus the local absorption contrast on the
image plane. Adding an objective lens with a known aberration
model and a colour filter to remove the inelastically scattered
photons allows pop-out metrology to be implemented in an inline
digital holographic microscopy (DHM) setup, which further
extends DHM’s real-time live imaging capabilities27.

We have experimentally demonstrated that the 3D density dis-
tribution of an amorphous sample that is a few hundred nan-
ometers thick can be recovered to 30 nm resolution using only a
single energy-filtered TEM image. This resolution increases for
thinner samples, where sub-10 nm resolution is possible for

Fig. 4 Numerical validation for dual-layer pop-out metrology. a The radial average of Thon rings from a dual-layer specimen (simulated) and the radial
average of the sum of contrast transfer functions (CTFs) from the defocus values of both layers. Both layers are 25 nm in thickness, and they are 180 nm
apart; the defocus applied on the exit wave is 500 nm. Hence the centre of mass of both layers from the image plane is 512.5 nm and 717.5 nm. b A dual-
layer 3D model is simulated, and the pop-out reconstruction is generated using the prior that the thickness of the top layer is known. c A dual-layer 3D
model is simulated (total dose 20,000 e Å−2), and the pop-out reconstruction is generated using the amplitude ratio between the additive CTFs fitted for
the top and bottom layers. This reconstruction shows that the additive CTF model can also provide relative layer thickness information as well as with
depth information. The resolution voxel size (r.v.) indicates the corresponding reconstruction resolution.
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samples thinner than 40 nm. By automating this process, the field
of view can be extended to several micrometers. Using the pop-out
principle, 3D sample reconstruction is possible without having to
rotate the sample (e.g., tomography or laminography) or destroy it
(e.g., critical dimension metrology). We detailed this pop-out
principle, the key imaging parameters that control resolution, and
described how to generalize to multi-layer structures.

Considering how TEMs are already routinely used to char-
acterize nanostructures in biology, material science, and semi-
conductor fabrication, we speculate that with suitable automation,
this pop-out principle can be useful for fast 3D characterisation of
the structural dynamics within a large field of view. The rapid
feedback afforded by this pop-out technique with little to no
sample modification on many existing TEMs makes it suitable as
a fast screening tool, which fills an important gap amongst
existing nanometer-scale metrology modalities. Furthermore, we
speculate this method to be relevant for imaging nanometer
features of complex structures commonly found in physical and
biological sciences.

Methods
The simulations are carried out using a TEM simulator that was
developed in the programming language Python. All the simula-
tions are generated for a microscope with energy 200 keV, spherical
aberration of 1.2mm, and a detector with pixel size of 6 µm. The
experiments are carried out on a JEOL 2200 TEM equipped with a
DE16 direct electron detector and an omega energy filter with a
20 eV window around the zero-loss peak. The 3D reconstructions
are visualized using the TomViz application54.

Checklist. To optimize the resolution achieved from the pop-out
metrology, the TEM parameters should be calibrated for the

specimen. A checklist is provided here for this calibration, and a
schematic of the process flow is shown in Fig. 3.

1. Ensure that the spherical aberration parameter Cs of the TEM
is known (see Eqs. (1–3)). Otherwise, conduct experiments to
fit the spherical aberration value for the TEM.

2. Ensure that the pixel size of the detector is known.
3. Calculate the resolution limit for the specimen thickness

from Eq. (35) and determine the feasible range of
magnification/resolution for the specimen given this
resolution limit.

4. Calculate the theoretical reconstruction voxel size limit for
the specimen from Eq. (39).

5. Ensure the dose limit for the specimen is known, and fix the
total dose exposure for the experiment. We can now
calculate the window size for the defocus fit, which should
be just large enough to capture the required signal.

6. Before imaging the specimen, capture the electron beam
without any specimen at the chosen magnification values
for different electron doses. The electron beam might vary
for various reasons in a TEM, and the electron dose cannot
be measured accurately at every pixel due to different gain
responses of the detector pixels. This series of images will
help remove all the uncertainties if used instead of the total
electron dose values.

7. Ensure that the energy filter is applied and choose the
proper cutoff threshold for the specimen so that all the
inelastically scattered electrons are filtered out.

8. While capturing the TEM images with the specimen, ensure
that at least three prominent CTF rings are visible at every
part of the TEM image by adjusting the defocus value.

9. Once we are set with the magnification, total dosage, and
defocus value, we start capturing TEM images. For large

Fig. 5 Experimental validations of pop-out 3D metrology. a An energy-filtered bright field transmission electron microscope (BF-TEM) image (total dose
2000 e Å−2) of a specimen with features on one side, i.e., a nano-channel etched on an amorphous SiNx membrane. The top and bottom sides of a
volumetric reconstruction show that the channel is etched only on the top surface, while the bottom surface remains relatively flat. b An energy-filtered BF-
TEM image (total dose 2500 e Å−2) of a specimen with features on either side, i.e., a nano-pit etched all the way on an amorphous SiNx membrane; the
reconstruction shows that all the labelled rim, petals, and the blob of debris are present on the top surface. Although the substrate was etched from the top,
the reconstruction shows that the opening of the nanopit was widened towards the bottom surface. The resolution voxel size (r.v.) indicates the
corresponding reconstruction resolution.
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specimens, capture a series of TEM images by lateral
scanning. These TEM images can be stitched together and
used as a single image during the reconstruction.

10. If the thickness of any part of the specimen is known, we
can use that to calculate the electron mean free path in the
material for the current TEM setting. Otherwise, we have to
image a calibration specimen made of the same material
with the known thickness.

The items in the checklist (except item 9) are all calibration
steps, either routine (1,2,6) or sample-specific (3,4,5,7,8,10). We
should clarify that steps 3 and 8 require us to know the maximum
distance between the top and bottom of the sample; step 10
requires some thickness prior on the sample.

Estimating sample depth from the defocus parameter in the
contrast transfer function. Our method needs to determine the
representative centre of the mass plane of scattering volume
elements in each patch of pixels of the specimen in its TEM
image. As shown below (in the section derivation of semi-
empirical multislice scattering), the depth of this centre of scat-
tering mass plane along the optical z-axis is encoded in spatial
frequency domain k= (kx, ky) as the relative defocus Δf para-
meter of the patch’s Thon rings.

Assuming that a monochromatic electron plane wave of
wavelength λ impinges the sample, the spatial frequency k-
dependent contrast transfer function of its exit wave can be
modeled by the semi-empirical model (Eq. (2)) in its azimuthally
averaged form (k= |k | )55. The CTF, envelope, and noise terms
of the model are defined by

CTFðkÞ ¼ w1 sinð�χÞ � w2 cosð�χÞ; �χ ¼ πλk2ð0:5λ2k2CS � Δf Þ þ Δφ

ð3Þ

env kð Þ ¼ e�ðb1kþb2k
2þb3k

4Þ ð4Þ

noiseðkÞ ¼ n4e
�n1

ffiffi
k

p
þ n5e

�n2k þ n6e
�n3k

2 ð5Þ
In Eq. (2), A is an overall amplitude of elastically scattered

electrons; the env term models the envelope caused by the relative
thickness of the sample and the spatial, temporal coherence of the
electron wave. The noise term models the cross multiplication
term Γ(k) (Eq. (29)) along with the background noise unrelated to
the specimen; CTF is the contrast transfer function, χ is the
aberration function that depends on spherical aberration Cs,
defocus �Δf ( �Δf = Δf + T/2), specimen thickness T, electron
wavelength λ and any known overall phase shifts Δφ (e.g., which
might be caused by a phase plate). The values for the constants w1

and w2 are obtained from the amplitude contrast ratio Q, which is
related to the ratio between the real and imaginary parts of the
scattering potential ϵ (see the derivation section).

To account for astigmatism, the defocus Δf term in the
aberration function can be modified as:

�Δf ! �Δf 0 þ �Δf ast cosð2½Θk � Θast�Þ
� �

; ð6Þ
where �Δf 0 and �Δf ast are the average defocus value and effective
astigmatism which is half of the difference between defocuses in
major and minor axes, Θast is the angle between the major axis
and the x-axis, and Θk is the angle between the scattering vector
and x-axis13,41–43. We compare power spectrums from a
simulated and an experiment micrograph with their correspond-
ing fits which accounted for astigmatism in Fig. S2 (Supplemen-
tary Note 2).

Overall, from our derivation (shown below), we see that �Δf 0 in
Eq. (6) is the relative defocus, or depth, of the sample’s centre of
scattering mass from the focal plane ( �Δf 0 = Δf0 + T/2). From

Fig. 2a and Fig. S1, we can see that the attenuation of CTF by a
sinc-like envelope suppresses the Thon rings, which in turn
reduces the signal for depth estimation. The derivation for this
sinc-like envelope’s node position (Eq. (30)) enabled us to deduce
the sampling criterion and the resolution limit for thicker
specimens (Eq. (39)). In Supplementary Note 3 (Fig. S3), we show
that this sinc-like function can be approximated with a Gaussian
envelope (Eq. (4)).

Notably, the cross multiplication term Γ(k) is negligible for
amorphous specimens since there is no correlation between the
scattering potentials of different slices. This assumption, however,
is not true for general crystalline materials. Hence, an increase in
the crystallinity of the material affects the performance of the
defocus estimation negatively, as experimentally demonstrated by
Supplementary Note 4.2 (Fig. S5).

Thickness estimation. The thickness map of the specimen is
determined from the absorption contrast i.e., from the ratio of
elastically scattered electrons.

T ðx;yÞ ¼ ‘mfp lnðI0ðx; yÞ=Itðx; yÞÞ; ð7Þ
where I0(x, y) is the total electron dose, It(x, y) is the transmitted
unabsorbed electrons detected in a BF-TEM image, and ℓmfp is
the inelastic electron mean free path of the specimen. In Eq. (7), it
is assumed that all the inelastically scattered electrons are
removed before reaching the detector. Inelastically scattered
electrons form an overall background that does not directly
contribute depth or thickness information about the sample.
Hence, an energy filter should be applied to filter the inelastically
scattered electrons; otherwise, an error will be introduced in the
thickness map (Supplementary Note 4). We compare the
experimental results for TEM without and with energy filtering in
Figs. S4 and S5 vs. Fig. 5, respectively.

Since ℓmfp varies with both material and imaging conditions, it
is challenging to calculate ℓmfp theoretically for any specimen.
Hence, we should determine ℓmfp from a BF-TEM image of a
calibrated specimen with the same material with the same
imaging conditions. Since we knew the thickness of a particular
region in the specimen (e.g., the substrate thickness), we were able
to use Eq. (7) to determine the value of ℓmfp. To minimize
spurious thickness changes due to spatial variations in beam
intensity and detector response, a reference TEM image without
any specimen, I0ðx; yÞ, was captured at the same imaging
conditions as Itðx; yÞ.

Depth estimation for multilayer samples. For multi-layered
specimens, the thickness information cannot be readily resolved
for each layer. However, the additive CTF model in Eq. (8) shows
that we can infer the depth information of each layer if both
layers are not too thick.

Idet kð Þ
�� �� � A1env1 kð ÞjCTF1 kð Þ þA2 env2 kð Þ jCTF2 kð Þ

�� ��þ noise kð Þ;
ð8Þ

where An, CTFnðkÞ, and envn kð Þ are amplitude, CTF and envelope
functions for the corresponding top (n= 1) and bottom (n= 2)
layers. Here, the CTF and envelope terms are related to the terms
in Eqs. ((2)–(4)). Since this is an additive model, the sum of
additive noise terms from each layer can be combined into one
term as defined in Eq. (5). We compare the radial profile of Thon
rings from a dual-layer specimen and the additive model (Eq. (8))
in Fig. 4a and this additive model is used to generate the dual-
layer structure in Fig. 4b and c. The amplitudes An from the
additive model can be used in estimating the relative thickness
between the layers, if we have a large enough patch (400 × 400
pixels) and a high enough dose (~20k e Å−2). The relative
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thickness estimated from amplitudes is used to generate the dual-
layer structure in Fig. 4c.

The two-layer cases shown in Fig. 4b and c demonstrated the
practical efficacy of the additive-CTF model: essentially, the
interference of the wavefunction between the different layers can
be ignored with regard to pop-out. Hence, the method can be
extended to multi-layered specimens. However, determining the
practical upper limit on the number of layers for realistic samples
is not straightforward. In general, this limit depends on the
number of distinct Thon rings from each layer. This distinguish-
ability criterion, in turn, depends on the sample’s total optical
thickness, focal range, and signal.

Running window averages of sample thickness and depth. In
principle, the thickness value at every pixel in the image (xy
plane) can be used to pop out material symmetrically along the z
axis on either side of the centre of the mass value of that pixel
(defocus map). Recall that we can only compute the average
defocus for each image patch; hence this creates a resolution gap
between our estimates for thickness versus depth. In practice,
this gap is smaller because we compute a more noise-robust
average thickness over a relatively small multi-pixel window.
This is done for a more noise-robust estimate of the sample
thickness from Eq. (7). Nevertheless, the side length of the pat-
ches used for CTF fitting is still larger than those of the windows
used to estimate the average sample thickness. For example, in
Fig. 5a, we used a CTF-fitting patch size of 30 nm (300 pixels),
while average thickness windows of 7.5 nm (75 pixels). Hence,
the former sets the conservative xy resolution of our pop-out
reconstructions.

For similar noise-robustness in our estimates of sample depth,
we also computed the average defocus map Δf ’ði;jÞ with
overlapping windows with a stride length less than the patch
size. In Fig. 5a, the stride length of 7.5 nm (75 pixels) for the
30 nm patch size provides three overlapping patches between any
two non-overlapping patches. Choosing the stride size similar to
the thickness window size resolves the resolution gap issue.
Nevertheless, we can further determine the resultant running-
window average defocus values for every (x,y) pixel in the image
from Eq. (9).

Δf ðx;yÞ ¼
∑i∑jΔf 0ði;jÞV ði;j;x;yÞ

∑i∑jV ði;j;x;yÞ
; ð9Þ

where Δf ’ði;jÞ is the average defocus calculated from a particular
window indexed by ði; jÞ. V ði;j;x;yÞ, the visitation weights, is an
array of ones and zeros: array element V ði;j;x;yÞ takes on the value
of one only if pixel ðx; yÞ is visited by a particular window indexed
by ði; jÞ.

Although the defocus map Δf ðx;yÞ can be calculated for each
pixel, the pixels within a stride length have the same defocus
value because they all are calculated from the same sets of
windows. The red square in Fig. 6a shows one such group of
pixels that are within a stride length (10 nm) and is covered by
three overlapping patches (cyan, blue, and magenta squares
with dashed lines, each with 30 nm side length). If we defined
the position of this red square as x; y

� �
, then the sum of the

visitation weights ∑i∑jVði;j;x;yÞ for all such stride-length regions
in the entire micrograph is shown in Fig. 6b.

Apart from the shot noise, the crosstalk between the phase
contrast and amplitude contrast affects the thickness and defocus
determination. The phase contrast produces light-dark fringes,
and these fringes are more prominent near the sharp edges of the
specimen. Thus, the number of electrons in the image pixels near
these edges does not correspond to the material thickness.

Similarly, the defocus map would be affected near such edges in
the specimen as the defocus values within the window change
abruptly. As a workaround, the fit-error for the defocus
parameter in the CTF fitting can be used to determine which
defocus values are erroneous (fit-error above a certain threshold)
and are discarded from the visitation weights V ði;j;k;lÞ. In Fig. 6d,
the defocus and thickness values of the red region are calculated
from votes from the three patches (cyan, blue, and magenta).
From Fig. 1b, this red region straddles an abrupt change in the 3D
structure. However, only the blue and magenta patches include
this abrupt structural change, which leads to them having
substantially larger defocus fit errors (see insets in Fig. 6a)
compared to the cyan patch (which does not see this abrupt
structural change). Since the lateral resolution is set by the patch
size of 30 nm side length, the defocus and thickness in the red
region are only informed by its overlapping patches whose
defocus fit errors (used to determine axial resolution) are below
30 nm. Hence, the defocus and thickness values of the red region
are averaged over the values of the qualified patches, as shown in
Fig. 6e. The updated visitation weights in Fig. 6c indicate that
only one patch was qualified for the red region. Figure 6d shows
the unweighted mean defocus and thickness values, while Fig. 6e
shows the visitation-weighted mean defocus and thickness. The
zero-qualified visitation regions in Fig. 6c cause gaps in the final
defocus map Δf ðx;yÞ, which are then filled by the nearest
neighbour interpolation scheme. First, the regions with non-
zero-sum of the qualified visitation weights are filled by the
weighted mean defocus and thickness values. Then the remaining
regions with zero-sum of the qualified visitation weights would
get the weighted mean defocus and thickness values of the nearest
non-zero neighbour stride-length region.

With defocus map Δf ðx;yÞ and thickness map T x;yð Þ at
reconstruction resolution, a 3D model is obtained using Eq.
(10). To obtain an isometric reconstruction, either the defocus
and thickness values should be scaled to match their xy
reconstruction voxel size, or the reconstruction voxel size should
be set to match the units of their values (z axis). Otherwise, the
reconstruction would be anisometric.

Pðx;y;zÞ ¼ 1;Δf ðx;yÞ �
T x;yð Þ
2 ≤ z ≤Δf ðx;yÞ þ

T x;yð Þ
2

0; else

(
; ð10Þ

For thicker specimens, the specimen-depth-based change in
effective magnification should be accounted for in the recon-
struction, especially when there is a significant change (>10%)
between the top and bottom surface of the specimen (Eq. (44)).

Implementation of pop-out metrology. The linear regression for
depth estimates in Eq. (2) is performed using the Levenberg-
Marquardt algorithm implemented in the SciPy package56. The
total computation time required for the pop-out 3D metrology
reconstruction is based on the search space of the CTF fitting,
TEM image size, window size, and step size (for overlapping
windows). The knowledge of predetermined ranges of defocus
and astigmatism values accelerates our parameter regressions by
searching in a much smaller parameter space. When ranges of
defocus and other parameters are unknown, unbounded fitting
can be performed for a single or few characteristic patches from
the image to determine them so that the parameter search space
for the entire TEM image can be narrowed down. Since we
normalize the spectra, the bounds for amplitude are set to a low
non-zero value and one. We use 5 to 20% bounds for the
amplitude contrast ratio, commonly used in the cryo-EM com-
munity for CTF-fitting41,57. The empirical method for finding
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the bounds for the rest of the fitting parameters is described
below.

1. First, we do a coarse grid search on these few characteristic
patches to find the defocus range.

2. Then, we use the appropriate defocus values for these
patches to initialize unbounded fitting to fine-tune the
bounds for envelope and noise parameters.

3. These bounds are set for the 1D fitting of all patches. The
respective fit variances of the parameters from the 1D
fitting are used to set the bounds in the 2D fitting.

Should the determined astigmatism be negligible in these initial
fits, we can avoid 2D fitting to speed up parameter regressions for
other patches (see Supplementary Software 1).

Derivation of semi-empirical multislice scattering. In the
multislice scheme (shown in Fig. 7a), a slab of homogeneous
scattering material of thickness T is partitioned into N thin slabs

along the optical z-axis, each of thickness Δz ¼ T=ðN � 1Þ. The
thinness of each slab allows the scattering potential of its con-
stituent atoms to be projected to a single infinitesimally thin two-
dimensional (2D) slice. Such a projection approximation effec-
tively turns N slabs into N 2D slices.

The multislice scheme alternately applies two operations: (1)
the scattering potential of each slice modifies the electron
wavefunction that is incident upon it; (2) then a free-space
propagator then propagates this modified wavefunction to the
next slice, which in turn becomes the incident wavefunction for
this next slice. This alternating operation takes the incident
electron wavefunction from the first scattering slab through the
final occupied slab. The exiting wavefunction from the final
occupied slab is then propagated to the imaging plane, which
includes the optical aberrations of the microscope’s image-
forming lenses.

Below, we will recast the scattering from multiple slices in the
previous paragraph into that of a single effective slice. We start by
considering the scattering contributions from each of these N

Fig. 6 Visitation weights-based running-window averaging for estimating sample thickness and depth of a local stride-length region. a A simulated
transmission electron microscope (TEM) image showing a stride-length region of interest marked by the red square with three overlapping patches (cyan,
blue, and magenta) that cover the region. The three patches correspond to the three defocus-fitting patches that apply to the red stride-length region. The
inset shows the defocus fit-error values for these three patches. b The sum of visitation weights represents the number of the corresponding patches for
each of the stride-length regions. The red square here shows the same stride-length region as that in panel a. c The sum of qualified visitation weights after
discarding the patches with fit errors larger than the lateral resolution (30 nm). The red square stride-length region only has one qualified image patch.
d The fitted defocus, and the estimated thickness values from the three patches in panel a that cover the red stride-length region. e The defocus and
thickness values are weighted by only the qualified patches for the red stride-length region.

Fig. 7 Schematic illustration of the multislice formalism. a A slab of homogeneous scattering material of thickness T is partitioned into N thin slices, each
of thickness Δz. The slices scatter an incoming electron wave to produce exit wave ϕn after propagating to the rest of the specimen and further to focal
place at distance L. b The same set of slices represented by their position with respect to the centre of the scattering mass z and produce exit wave ϕz.
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slices. In the weak phase approximation, the exit waves of
electron plane waves of wavelength λ after the first few of these
slices (indexed n = 1,2,3,…) are respectively

ψ1 rð Þ ¼ exp is1 rð Þ� � � 1þ is1 rð Þ; ð11Þ

ψ2ðrÞ � ½ψ1ðrÞ � p1ðrÞ�ð1þ i s2ðrÞÞ

ψn rð Þ � ψn�1 rð Þ � pn�1 rð Þ� �
1þ i sn rð Þ� �

; ð12Þ
where pnðrÞ is the two-dimensional (2D) kernel function that
propagates the wavefront from slice n to slice n + 1, and ⊗ is the
2D convolution operator; the scattering potential distribution of
the nth slice is defined by

sn rð Þ � νn rð Þ þ iμn rð Þ � νn rð Þð1þ iϵÞ; ð13Þ
where νn and μn are the real and imaginary parts of the nth-slice’s
z-projected scattering potential. Here, we make the approxima-
tion that the real and imaginary parts of the scattering potential
are related via a multiplicative constant ϵ, which correlates to the
inelastic scattering of the specimen.

For sufficiently thin slices, terms of order jsnj2 can be ignored,
the exit wave after N slices can be generalized as

ψN rð Þ � 1þ∑N
n¼1i sn rð Þ � pN�n rð Þ; ð14Þ

where pN�nðrÞ is the propagator to advance the exit wave through
N � n slices. The result in Eq. (14) essentially ignores multiple
scattering and only accounts for the fact that the exit wave from
farther slices must be propagated over longer distances to match
up with the exit wave at the final N-th slice.

We denote ψdetðrÞ as the wavefunction that is incident on the
image-forming detector, which includes aberrations due to post-
sample optical elements (i.e., objective lens, etc.). The 2D Fourier
transform of this wavefunction is

ΨdetðkÞ � δðkÞ þ∑N
n¼1i exp½�i χðkÞ�SnðkÞPN�nðkÞ; ð15Þ

with SnðkÞ as the Fourier transform of snðxÞ; the Fourier
transform of the propagator pN�nðxÞ is

PN�n kð Þ � exp i N � nð Þθð Þ
� exp i N � nð Þπλk2Δz� �

;where θ � πλk2Δz
ð16Þ

and the aberration function in the post-sample image-forming
lenses is

χ kð Þ � 2π
λ

Cs

4
λ4k4 � 1

2
Δf

� �
λ2k2

� 	
;with k � jkj; ð17Þ

With Δf as the relative defocus of the final N-th slice from the
plane of focus, and Cs as the spherical aberration parameter of the
microscope’s image-forming lenses.

Now, if we defined ϕn kð Þ ¼ Sn kð Þ expð�inθÞ, and eχ(k) = χ(k) −
Nθ, then we can rewrite Eq. (15) as

Ψdet kð Þ � δ kð Þ þ i expð�ieχðkÞÞ∑N
n¼1ϕn kð Þ: ð18Þ

Hence, the probability of detecting electrons on the detector is
(when dropping terms of order ϕ2 or higher because the
scattering from each thin slice is small), which is measured as
intensities on the detector

Idet rð Þ � jψdet rð Þj2 � 1þ i h rð Þ � ∑
N

n¼1
ϕn rð Þ � i h�ðrÞ � ∑

N

n¼1
ϕ�n rð Þ ð19Þ

where h rð Þ is the point spread function in real space, i.e., the
Fourier transform of expð�ieχðkÞÞ.

Fourier transforming this intensity gives

Idet kð Þ ¼ δ kð Þ þ i ∑
N

n¼1
ϕn kð Þ exp �i eχ kð Þ� �� ϕ�n �kð Þ exp i eχ kð Þ� �� �

ð20Þ
where δ kð Þ is the Dirac delta function. Using the approximation
from Eq. (13) into ϕn kð Þ and ϕ�n �kð Þ in Eq. (20), we obtain,

Idet kð Þ ¼ δ kð Þ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ2

p
∑
N

n¼1
νn kð Þ sinðeχ þ nθ � αÞ;where α ¼ arctan ϵð Þ:

ð21Þ
As an instructive curiosity, we can make the rather unphysical

assumption that all slices are identical (i.e., νn kð Þ ¼ ν kð Þ),
although ν kð Þ itself is random. In this case, we can pull out the
ν kð Þ term from the sum in Eq. (21), which can be rewritten as

Idet kð Þ ¼ δ kð Þ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ2

p
ν kð Þ ∑

N

n¼1
sinð�χ � αþ n� N

2


 �
θÞ;

ð22Þ
where �χ ¼ χ � Nθ=2 is the average aberration function as
measured from the middle slice (i.e., n=N/2). The summation
in Eq. (22) can be approximated as an integral (assuming
sufficiently thin slices, Δz ! 0, see Fig. 7b) to give

Idet kð Þ � δ kð Þ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ2

p
ν kð Þ

Z T=2

�T=2
sin �χ � αþ zπλk2

� �
dz:

ð23Þ
Resolving the integral in Eq. (23) gives

Idet kð Þ � δ kð Þ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ2

p
Tν kð Þð Þ sin �χ � α

� � sin ξ=2
� �
ξ=2

;where ξ ¼ πλk2T:

ð24Þ
The resultant power spectrum from Eq. (24) then becomes

Idet kð Þ
�� ��2 ¼ δ kð Þ þ 2 1þ ϵ2

� �
Tν kð Þ
�� ��2 1� cos 2 �χ � α

� �� �� � sin ξ=2
� �
ξ=2


 �2

:

ð25Þ
Critically, the cos 2 �χ � α

� �� �
term in Eq. (25) clearly shows

how the effective defocus of the entire sample is now centred at
the centre of the scattering mass of the sample (i.e., z=T/2) as
shown in Fig. 7. This conclusion was first observed by
Bonhomme et al. 44.

This unphysical (identical, random slice) assumption leads to
the nodes of the squared sinc function in Eq. (25) to occur at

ξ

2
¼ jπ : j 2 Zþ; or

λk2T
2

¼ 1; 2; 3; ¼ ; ð26Þ

which is the result first obtained by Bonhomme et al.44 These
node positions, however, have been later shown by Tichelaar et al.
to be incorrect using tomography58.

If instead we assume that the more realistic scenario where the
scattering potential of different slices νn kð Þ are random and
different, the power spectrum in Eq. (21) now becomes

Idet kð Þ
�� ��2 ¼ 4 1þ ϵ2

� �
B kð Þ þ Γ kð Þð Þ; ð27Þ

B kð Þ ¼ ∑
N

n¼1
βn kð Þ;

BðkÞ ¼ ∑N
n¼1 νn kð Þ

�� ��2sin2ðeχ þ nθ � αÞ; ð28Þ
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Γ kð Þ ¼ ∑
N

n¼1
∑
N

m>n
γmnðkÞ;

Γ kð Þ ¼ ∑
N

n¼1
∑
N

m>n
2 Re½νn kð Þν�m �kð Þ� sinðeχ þ nθ � αÞ sinðeχ þmθ � αÞ;

Γ kð Þ ¼ ∑
N

n¼1
∑
N

m>n
2 Re½νn kð Þνm kð Þ� sinðeχ þ nθ � αÞ sinðeχ þmθ � αÞ:

ð29Þ
The simplification in the last step comes about because the

scattering potential νðrÞ in Eq. (13) is real-valued, hence its
Fourier transform is centro-symmetric: νm kð Þ ¼ ν�m �kð Þ.

To make progress, we approximated νn kð Þ by creating thin
slices of random SiNx. Fig. S1 shows that the cross multiplication
term Γ kð Þ is much smaller compared to the term BðkÞ. Fig. S1 also
shows the one-dimensional angular average of the power
spectrum

�
Idet kð Þ
�� ��2

kj j¼k
. Using such random slices in Eqs.

((27)–(29)), we see that the sinc-like nodes of the angularly
averaged power spectrum occur when

λk2T ¼ 1; 2; ¼ 2 Z: ð30Þ
The node positions in Eq. (30) are consistent with those shown

in Tichelaar et al., which were experimentally validated by the
authors using tomography58. These same node positions were
also proposed by McMullan et al. but with less rigor than the
mathematical exposition presented in this section59.

Importantly, even for the random νn kð Þ case, the effective
defocus of the entire sample in �χ is still centred at the centre of
the scattering mass of the sample (i.e., z ¼ T=2). This has been
verified in the multislice simulations in Fig. S1.

Supplementary Note 1 shows that Γ kð Þ term is numerically
small, and CTF undulations follow sin2 �χ � α

� �
with a sinc-like

envelope caused by the specimen thickness. Apart from the
specimen thickness, there are a plethora of effects such as spatial
and temporal incoherence, specimen motion, charging effects,
beam-induced movement, and stage-drift contribute to the
envelope function. Hence, a Gaussian envelope can be used as a
cumulative envelope function in the model55. The validation for
choosing a Gaussian over a sinc function for the envelope is
provided in Supplementary Note 2.

Since Γ kð Þ term is small and does not modify the undulations
and the node positions, we can rewrite Eq. (27) as

Idet kð Þ
�� �� � A env kð Þj sin �χ � α

� �j þ noise kð Þ; ð31Þ

where A is a multiplicative constant proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ2

p
and

combined multiplicative and additive terms dependent on k are
modelled with env kð Þ and noise kð Þ (Eqs. (4–5)). The depth
information is encoded in the term sin �χ � α

� �
, which corre-

sponds to the CTF function.

sin �χ � α
� � ¼ sin �χ

� �
cos αð Þ � sin αð Þ cos �χ

� �
: ð32Þ

Since α = arctan(ϵ), cos αð Þ ¼ 1ffiffiffiffiffiffiffiffi
1þϵ2

p and sin αð Þ ¼ ϵffiffiffiffiffiffiffiffi
1þϵ2

p . To be

consistent with the literature, the coefficient of cosine term is
written as the amplitude contrast ratio Q, i.e., Q ¼ ϵffiffiffiffiffiffiffiffi

1þϵ2
p andffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Q2
p

¼ 1ffiffiffiffiffiffiffiffi
1þϵ2

p , then we can rewrite Eq. (32) as

sin �χ � α
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Q2
p

sin �χ
� �� Q cos �χ

� �
: ð33Þ

Substituting this in Eq. (31) gives our CTF model shown in
Eqs. ((2)–(3))

Idet kð Þ
�� �� � A env kð ÞjCTF kð Þj þ noise kð Þ;

CTF kð Þ ¼ w1 sin �χ
� �� w2 cos �χ

� �
:

Resolution limit for a thick sample. The patch size for the CTF
fitting (see Eq. (3)) defines the xy resolution of the pop-out 3D
metrology. Many parameters determine the patch size, including
TEM image resolution. Increasing the TEM image resolution
increases the reconstruction resolution. However, for thicker samples,
sinc-like nodes (Fig. S1), as mentioned above, limit our reconstruc-
tion resolution. Due to incoherence and noise, it is hard to obtain
clear undulations beyond the first node (which occurs at λk2T ¼ 1).
Since the resolution and the thickness are inversely proportional in
determining the node position, the lower bound of our transverse
resolution limit klim for our reconstruction is set by the thickest part
of the sample (Tmax), regardless of the defocus parameter Δf:

λk2limTmax ¼ 1; ð34Þ

klim ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=λTmax

p
; ð35Þ

where Tmax is the thickness of the thickest region of the specimen
along the optical axis. The TEM’s magnification should be chosen
correspondingly to achieve an image’s resolution greater than klim.
This CTF fitting should be able to determine the defocus from both
the nearest and the farthest points of the specimen. The point nearest
to the focal plane, whose defocus parameter we denote as Δf , will
have the fewest number of CTF rings in its image’s Fourier trans-
form. In contrast, the farthest point, which we denote here to have
depth Δf þ Δf r from the focal plane, would have the most number
of CTF rings. The aberration parameter eχ klim;Δf

� �
(Eq. (17)) of the

nearest point at klim will be:

Δf ≥Tmax ηþ Cs λ

2T2
max


 �
; ð36Þ

where η ¼ eχ klim;Δf
� �

=π is the number of CTF rings up to klim. To
paraphrase, this last equation gives us the minimum defocus Δf
needed to guarantee at least η CTF rings up to klim.

However, these CTF rings of a patch have to be finely sampled
enough to determine the patch’s average depth. This is equivalent
to requiring that we satisfy a separate sampling criterion for the
farthest point, which comprises ηr CTF rings at klim (i.e.,eχ klim;ΔfþΔf rð Þ

π ¼ ηr). In other words,

�ηr ¼
Csλ

3k4lim
2

� λk2lim Δf þ Δf r
� �

: ð37Þ

The sampling criterion is that we have at least σs frequency
samples (spaced apart by w�1 for patch sizes of side length wmin

pixels) spanning between the ηthr and ηr � 1
� �th

CTF ring.
Because the latter ring occurs at a spatial frequency

kj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ Δf þ Δf r
� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ Δf þ Δf r
� �� �2 � 2λ3Csðηr � 1Þ

q
λ3Cs

vuut
;

ð38Þ
this sampling criterion translates into at least having patches
whose side lengths are

wmin ≥
σs

1ffiffiffiffiffiffiffiffiffi
λTmax

p � kj ð39Þ

Extension to multiple layers. Equation (27) can be trivially
extended to apply to multiple layers. Here we consider the two
layer case and leave the generalization to more than two layers to
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the motivated reader. The power spectrum of a two-layered
sample can be written as

Idet kð Þ
�� ��2 ¼ 4 1þ ϵ2

� �
B1 kð Þ þ B2 kð Þ þ Γ kð Þ� � / B1 kð Þ þ B2 kð Þ þ noise;

ð40Þ
where B1 kð Þ and B2 kð Þ are the partial sums in Eq. (28) of the
material slices within layer 1 and layer 2, respectively. The Γ kð Þ
term in Eq. (40) is identical to that Eq. (29) except it runs over pairs
of slices in both layers, as well as pairs of slices within each layer.
Nevertheless, as Fig. S1 shows, this Γ kð Þ term should vanish for
amorphous materials where the slices are random and uncorre-
lated. Overall, the respective depths of layers 1 and 2 can be
separately inferred from the sum of their B1 kð Þ and B2 kð Þ terms,
which separately describe the CTFs of layers 1 and 2 respectively.

Change in effective magnification at different specimen depths.
When the specimen is thicker or has multiple layers far apart in the
axial direction, the features at different depths would be encoded at
different effective magnifications in the micrograph. Here, we
analyze the influence of this change in effective magnification
concerning the specimen depth in pop-out reconstructions.

MagnificationM is related by the ratio of distances between the
image plane and the focal plane V to the distance between the
specimen to the focal plane U:

M ¼ �V
U

ð41Þ

The negative sign indicates that the image plane and the
specimen are on opposite sides of the focal plane. Differentiating
the Eq. (41) concerning U gives

∂M
∂U

¼ V
U2 : ð42Þ

By substituting U from Eq. (41), Eq. (42) can be written as

∂M
∂U

¼ M2

V
: ð43Þ

The relative change in magnification for a change in the
specimen depth is given by

∂M
M

¼ M
V
∂U : ð44Þ

In the images in Fig. 5, the specimens’ thickness is 200 nm, and
the magnification is 60,000. The distance between the image plane
and the focal plane V would be several hundred millimeters to a
few meters (say, 0.5 m). Substituting these values in Eq. (44) gives
us a 2.4% change in the magnification between the specimens’ top
and bottom surfaces (∂U= 200 nm). The change in voxel size
from the top surface to the bottom is less than 1 nm. Though such
a small difference can be ignored in the reconstruction, when
there is a significant change in magnification/voxel size, the
reconstructed voxels need to be corrected accordingly.

Data availability
Simulated datasets (Figs. 1 and 2) for the purpose of demonstration of the code are
available in Supplementary Software 1 and in Zenodo open data repository60. Other data
underlying the results presented in this paper are not publicly available at this time but
may be obtained from the authors upon reasonable request.

Code availability
Python implementation of the algorithm with simulated datasets for reconstruction in
(Figs. 1 and 2) is available in Supplementary Software 1 and in Zenodo open data
repository60.
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