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Direct numerical evidence of the Phillips initial
stage and its antecedent during wind-wave
generation
Tianyi Li 1 & Lian Shen 1✉

How wind generates ocean surface waves is a classic fluid mechanics problem, and it is

commonly believed that the resonance mechanism between wind and surface waves, first

proposed by Phillips in 1957, is responsible for the early stages of wind-wave generation.

However, there has not been any conclusive study to fully validate this theory. We present

the results of a combined theoretical and computational study of the initial response of a calm

water surface to turbulent wind and an analysis in terms of the Phillips theory on wind-wave

generation. We address a nascent stage of wind-wave generation after the sudden impact of

a turbulent wind on a calm water surface but before the initial stage described by Phillips. We

show that in such nascent stage, the wave energy grows over time following a quartic law.

We provide direct numerical evidence of the resonance mechanism during the initial stage

and clarify its role in the formation of the heterogeneous wave energy distribution in the

spectral space.
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Determining the manner in which wind generates waves
has been a profound problem of great interest to the
scientific community for over half a century1–3 and has

attracted more and more attention in recent years4–7. A com-
prehensive understanding of wind–wave interactions is crucial to
many areas of research, such as global climate change, ocean
environment, and offshore engineering research8–11. The pre-
sence of ocean waves influences the flow motions in the upper
ocean and the exchange of soluble gases (e.g., carbon dioxide)
between the atmosphere and the ocean12. Wind blowing is a
major source for the evolution and growth of ocean waves, of
which the amplitude and patterns are distinct at different stages
of wave growth13.

Extensive efforts have been applied toward understanding the
mechanisms of wind–wave interactions over decades. Most stu-
dies focus on interactions between wind and prescribed surface
waves of finite amplitude when ocean surface waves have already
been generated by the wind; these momentum and energy
transfer processes have been thoroughly studied in theoretical,
computational, and experimental approaches3,14–19. However,
information about wave evolution in the early stage of the wind-
wave generation process remains elusive. A fundamental question
to be addressed is how surface waves arise from a calm water
surface exposed to turbulent wind.

In 1957, Phillips proposed a theory to model the role of tur-
bulent wind in the growth of surface waves from an initially flat
water surface2. A key observation is the different time scales of
the wave motions and air pressure fluctuations at the water
surface. The wave motion time scale, quantified by the inverse
angular frequency Λ−1(k) at wavenumber k, shows the dispersive
nature of surface waves. The time scale of air pressure fluctuation
development, denoted by Θ, is longer than the time scale of
surface wave motions in water, i.e., Θ >Λ−1. When the elapsed
time of surface wave development is less than Θ, i.e., t <Θ, air
pressure fluctuations at the air–water interface are advected
downstream at the convection velocity according to Taylor’s
frozen turbulence hypothesis20. When the timescale is much
longer than Θ, i.e., t≫Θ, the turbulent structures in the airflow
change, and the space–time correlation in air pressure fluctua-
tions should be taken into account when modeling the long-term
behavior of the pressure and wave fields.

Phillips theory predicts two main stages in wave generation
after a turbulent airflow blows over a calm water surface, namely,
an initial stage and a principal stage. The initial stage corresponds
to the times between the wave motion time scale Λ−1 and air
pressure fluctuation development time scale Θ, i.e., Λ−1 < t <Θ.
During this stage, the air pressure fluctuations excite surface
waves through a resonance mechanism2. Resonance takes place
between surface waves on water and turbulent air pressure fluc-
tuations when the convection velocity of air pressure fluctuations
matches the wave phase velocity at a certain wavenumber, which
leads to an initial excitation of surface deformation. For the
surface wave components that satisfy the resonance condition, the
surface wave energy grows quadratically over time. The principal
stage occurs when the elapsed time far exceeds the pressure
fluctuation development time scale, i.e., t≫Θ. Air pressure
fluctuations decorrelate with themselves over time, upon which
Taylor’s frozen hypothesis breaks down21,22. The wave energy
asymptotically grows linearly over time2,6. After the wave
amplitude grows further and begins to affect the airflow, the shear
instability mechanism associated with the critical layer proposed
by Miles3 and the sheltering mechanism proposed by Belcher and
Hunt14 is responsible for the exponential growth of the wave
energy with time. The exponential growth rate yielded by Miles’
theory can also be obtained using uniform asymptotic
approximations18. Recently, a new theoretical model7 based on

the Orr–Sommerfeld equation and a wave sheltering mechanism
was developed to describe the multistage evolution of water waves
after the emergence of the exponential growth stage. We note that
recent experimental research7,23 also studied the initial stages of
wind-wave evolutions. The initial stage in our study refers to the
specific stage predicted by the Phillips theory2, where the reso-
nance mechanism plays a crucial role.

It is commonly believed that the initial and principal stages of
Phillips theory provide a plausible explanation for the early
evolution of surface waves under a turbulent wind. Some recent
progress has been made in validating and characterizing the
principal stage theory. Numerical simulations4,6 and laboratory
experiments5 have confirmed the linear growth of the surface
elevation variance, which is proportional to the wave energy, in
the period that corresponds to the principal stage in Phillips
theory. With the aid of direct numerical simulations (DNS) of the
wind-wave generation process, we recently proposed a random
sweeping turbulence pressure–wave interaction model6 to quan-
titatively predict the wave growth rate during the principal stage
of Phillips theory. The second-order and high-order moments of
surface elevation exhibit power-law growth with time in this
stage24.

However, no conclusive studies have been conducted on wave
dynamics before the principal stage described by Phillips theory.
A thorough comprehension of Phillips’ initial stage (when the
time scale is between that of wave motion and air pressure
fluctuation development time scale, i.e., Λ−1 < t <Θ) and the
preceding stage (when the time scale is smaller than the wave
motion time scale, i.e., t <Λ−1) can complement current under-
standing of how waves are initially generated by a turbulent wind
on a calm water surface.

In this study, we perform the DNS of the wind-wave genera-
tion process and analyze the results to obtain direct numerical
evidence for the resonance mechanism described in the initial
stage of Phillips theory. We report direct evidence for the
quadratic growth of wave energy near the resonance condition in
the initial stage. We also discover its antecedent, namely, a nas-
cent stage (t <Λ−1), when the wave energy grows quartically over
time. Moreover, this study assesses the contributions of pressure
and shear stress of the airflow at the water surface to the initial
growth of surface waves. Finally, we elucidate the role played by
the resonance mechanism in the development of a heterogeneous
wave energy spectrum from an initially unidirectional field.

Results
The nascent stage of wind-generated waves. In this subsection,
we focus on simulation results that were obtained during the
nascent stage preceding the initial stage described in the Phillips
theory. The initial stage in Phillips theory corresponds to
Λ−1 < t <Θ2. We first focus on the evolution of interface defor-
mation from a flat surface in response to a sudden imposition of
turbulent airflow, before the initial stage, 0 < t <Λ−1, which
remains unclear in Phillips theory. We call this period the nascent
stage. An ideally flat air–water interface is improbable in nature,
but this setup is crucial to understanding the early response of
surface deformation to turbulent airflow and seeking the origin of
wind-generated ocean waves.

The effect of an initial disturbance at the interface and the wave
growth mechanism can be isolated according to the following
analysis. Owing to the small magnitude of the deformation of the
free surface, this deformation can be analyzed using a linearized
surface wave framework. We can consider the free evolution of an
initial wave disturbance and the generation of waves by air
forcing. For the former, the system conserves energy over time
when viscous dissipation is neglected25. If an initial disturbance is
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present, η
��
t¼0 ¼ η0 and ∂tη

��
t¼0 ¼ η00, then the temporal evolution

of the surface elevation η is constrained by
η

�� ��
L2x
ðtÞ≤ η0

�� ��
L2x
þ Λ�1η00

�� ��
L2x
. Here, ΛðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gjkj þ σjkj3=ρw

p
denotes the dispersion relation of surface waves in the Fourier
space, g is the gravity acceleration, σ is the surface tension
between air and water, and ρw is the water density. Λ is treated as
a Fourier multiplier when acting on variables in physical space.
The unit of Λ is s−1, and Λ can be considered as the inverse of the
time scale. To conclude, if there is no air forcing, then the
evolution of the initial deformations is bounded over time by the
functionals of the initial wave field. Therefore, it is acceptable to
consider a flat water surface at the initial time when studying
wind-wave growth. The setup of an initially calm water surface
helps us understand the fundamental mechanism of the very early
stage of wind-wave generation. This numerical setup reproduces
the initial condition of the prominent Phillips theory2 in wind-
wave generation and has also been adopted in other numerical
studies4,19. Similarly, experimental studies7,23 also studied wind-
wave evolution starting from an initially quiescent water surface.
At the very beginning of the wind-wave generation process, the
surface elevation is so small that it can be considered as a small
wrinkle. In this study, we uniformly utilize the term wave to refer
to the surface deformation at various wind-wave generation
stages, which is consistent with the notation in the original
Phillips theory2.

As the wave amplitudes increase from zero, we can further
decompose the surface elevation and water velocity into
components induced by pressure fluctuations and those induced
by shear stress fluctuations at the air–water interface. For finite-
amplitude water waves, it is well understood that the effect of air
pressure on wave growth is more significant than that of air shear
stress at the water surface. Nevertheless, the comparison between
pressure-induced waves and shear stress-induced waves in wind-
wave generation is not trivial, because both arise from a flat
interface. Many theories of wind-wave generation assume that the
shear stress effect is negligible2,3. The validity of this assumption
should be evaluated during the entire early stage of the wind-wave
generation process.

Taking advantage of the numerical scheme, we can control the
forcing effect at the interface for a mechanistic study. The fully
coupled scheme provides both the turbulent air pressure and the
shear fluctuations at the air–water interface. These effects can be
isolated by applying only the pressure or the shear stress on the
water surface. Thus, we can numerically investigate the specific
contributions of air pressure and shear fluctuations to wave
growth. The water waves are generated by turbulent airflow
without any assumptions of preexisting initial disturbances of the
water surface. Figure 1 provides an illustration of the surface
deformation and flow field shortly after turbulent airflow is
imposed over a calm water surface.

Next, we investigate whether the air-pressure-induced waves
indeed consistently dominate the air-shear-stress-induced waves.
We decompose the contributions from the air pressure fluctua-
tions and the shear stress fluctuations to the wave growth based
on linearized water wave theory. First, we focus on air-pressure-
induced wave growth. The governing equation for surface
elevation can be expressed as2 (see Supplementary Note 1 in
the Supplementary Material for the detailed derivations):

∂ttηþ Λ2η ¼ � 1
ρw

D0pðx; tÞ; ð1Þ

where ρw denotes the water density and D0 is the Dirichlet-to-
Neumann operator. Given a function f(x) and its Fourier

transform bf ðkÞ, D0f(x) is defined as cD0f ¼ jkjbf . We consider
the t→ 0 limit of Eq. (1), which corresponds to the early response

of surface waves after a turbulent wind blows over a calm water
surface. The limiting behavior of the surface elevation in the
spectral space, η̂, leads to power-law growth of surface elevation
variance, jη̂ðk; tÞj2 ¼ ð4ρw2Þ�1k2jp̂j2t4 þ Oðt6Þ. Keeping the
leading-order term and taking the inverse Fourier transform,
we obtain a quartic power law for surface elevation variance in
the nascent stage,

η2p

D E
¼ jD0pj2

� �
t4

4ρw2
: ð2Þ

In the original Phillips theory2, a time-dependent response factor
was introduced to separate a quartic function of time from the
wave energy spectrum component in the initial stage when the
time is larger than the wave period (see Eq. (3.5) in ref. 2). Our
present analysis indicates that this response factor has a finite
limit that does not depend on the time in the nascent stage and
the quartic growth dominates when the time approaches zero.

We next analyze the evolution of shear-induced waves. Owing
to the low viscosity of water, viscous diffusion due to the external
shear stress occurs within a thin boundary layer underneath the
water surface, and diffusion is much faster in the vertical than the
horizontal direction. Under these conditions, the linearized shear
stress balance at the free surface is ∇h ⋅ τ=− ρwνw∂zzw, where
∇h= (∂x, ∂y) is the horizontal nabla operator, τ is the shear stress
exerted on the water surface, νw is the water viscosity, and w is the
vertical velocity. In the framework of linear wave theory, we
include the vertical diffusion term in the w-momentum equation
and introduce the shear effect into the wave evolution equation
(see Supplementary Note 1 in the Supplementary Material for
detailed derivations):

∂ttηþ Λ2η ¼ � 1
ρw

∇h � τðx; tÞ: ð3Þ

Equation (3) describes the wave dynamics subject to the shear
stress fluctuations of airflow and is consistent with the recent
spectral theory of viscous surface deformation26 when the viscous
damping effect is neglected. Taking the limit as t→ 0, we obtain

Fig. 1 Three-dimensional air–water interface deformation and air velocity
field. This illustration depicts the instantaneous flow field shortly after the
wind-wave generation process starts (t ¼ 0:015H=uaτ). The contours on
two representative vertical planes show the streamwise velocity ua in the
air domain. The horizontal contours show the wave elevation η.
Normalization is based on the air domain height H and air friction velocity
uaτ . The computational domains on the air and water sides have the same
size (Lx, Ly, Lz)= (2π, π, 1), which is normalized by the air domain height H.
The x-axis corresponds to the airflow direction, and the (x, y) plane is
horizontal and periodic in both x- and y-directions.
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quartic power-law growth of the shear-induced surface deforma-
tion variance,

η2s
� � ¼ j∇h � τj2

� �
t4

4ρw2
: ð4Þ

We further validate the above theoretical analysis of the wave
dynamics in the nascent stage using the numerical simulation
results. Figure 2 shows a comparison of the above analytical
solutions, Eqs. (2) and (4), with the DNS results for the pressure-
induced and shear-induced waves. The DNS results confirm that
hη2pi and hη2s i both follow quartic power-law growth in the
nascent stage. In the current numerical simulations, a smaller
time step is utilized compared to the previous literature on wind-
wave generation4, with the present time step being only one-fifth
of the previous value. This reduction in time step can accurately
capture wave growth dynamics in the very early stage. Our
numerical simulations reveal a consistent trend of quartic growth
of surface elevation variance during the interval tuaτ=H ¼
ð0; 0:01Þ in the nascent stage. This stage contains more than
three hundred time steps in our simulations. The quartic growth
law remains evidently prominent during the nascent stage. For
the first thirty largest wavenumbers in the range of klc= (0.056,
1.68) that the DNS can resolve, the inverse of wave angular
frequencies normalized by the air friction velocity and domain
height, i.e., Λ�1uaτ=H, varies between 0.115 and 0.011. Therefore,
the duration for this nascent stage varies between 0.1 and 1 times
the inverse of wave angular frequencies for different wavenum-
bers. As shown in Fig. 2, in the fully coupled simulation, the
surface elevation variance also follows a quartic growth behavior
during the nascent stage, taking into account the combined effects
of pressure and shear stress. The pressure-induced quantity can
be considered the dominant component of surface elevation.

From the beginning of the wind-wave generation process, the
pressure-induced surface elevation variance is consistently more
than 50 times larger than the shear-induced surface elevation
variance. The conducted DNS method resolves all turbulence
scales but has challenges in simulating larger length or velocity
scale problems (i.e., larger Reynolds number) owing to the
computational cost. Nevertheless, this result holds as the
Reynolds number further increases. In wall-bounded turbulence,
the statistics of wall pressure fluctuations normalized using the
wall units slightly increase with increasing Reynolds number27,

while the statistics of wall shear stress fluctuations in the wall
units are invariant with the Reynolds number28. We numerically
examined an important assumption in Phillips theory2: the early
development of surface waves is a passive response of the water
surface to the air pressure forcing, and the contribution from the
turbulent shear stress is assumed to be negligible. From the results
shown above, we conclude that such an assumption is still valid in
the limit where the elapsed time approaches zero.

The resonance mechanism in the initial stage. Next, we focus on
the wave evolution characteristics in the initial stage of Phillips
theory and provide numerical evidence of the existence of its
initial stage. In the initial stage, when the time scale is
Λ−1 < t <Θ, a resonance mechanism is assumed to be responsible
for the wave growth according to Phillips theory2. Despite the
theoretical achievement that has been well-known for decades,
comprehensive experimental or numerical evidence to validate
this mechanism remains elusive to date. In the initial stage,
pressure fluctuations are convected with velocity U according to
Taylor’s frozen turbulence hypothesis. In Fourier spectral space,
the governing equations of water waves in the presence of a
turbulent wind can be expressed as

∂tt η̂ðk; tÞ þ ΛðkÞ2η̂ðk; tÞ ¼ � 1
ρw

expð�ik � U tÞp̂ðk; 0Þ; ð5Þ

resulting in jη̂ðk; tÞj2 evolving as2:

jη̂ðk; tÞj2 ¼ k2jp̂j2
2ρw2Λ4ðα2 � 1Þ2 α2 � 2ðαþ 1Þ cosðΛðα� 1ÞtÞ�
þ 2ðα� 1Þ cosðΛðαþ 1ÞtÞ � ðα2 � 1Þ cosð2ΛtÞ þ 3

�
:

ð6Þ
Here, the variable α= k ⋅U/Λ denotes the ratio of the convection
velocity of turbulent pressure fluctuations projected in the k-
direction to the wave phase velocity. In Eq. (6), jη̂j2 is con-
tinuously dependent on α∈ (0,∞). Note that α= 1 is a point of
continuity. At α= 1, the wave’s phase speed equals the pressure
convection speed, and the wave energy spectrum component
grows as jη̂j2 � t2, which was first predicted by Phillips2. For
α= 1+ ϵ, where ϵ is a small perturbation, we obtain:

jη̂ðk; tÞj2 ¼ k2jp̂j2
8ρw2Λ4 2Λ2t2 þ 1� 2Λt sinð2ΛtÞ � cosð2ΛtÞ� �þ OðϵÞ:

ð7Þ
Equation (7) above directly indicates the quadratic growth of
jη̂ðk; tÞj2 associated with the resonance mechanism in the
initial stage.

Next, we provide an elucidation of the resonance mechanism
from the dynamic perspective of the temporal global maxima of
wave energy spectrum components. As shown in Eq. (6), the wave
energy spectrum components jη̂j2 at different wavenumbers
consist of three harmonic functions with distinct oscillation
periods. We focus on a critical time tc when jη̂j2 reaches its global
maximum for the first time. Equivalently, at time t= tc, the three
harmonic terms in Eq. (6) simultaneously reach their maxima.
Near the resonance curve χ(k)= k ⋅U−Λ(k)= 0 where α
approaches 1, the coefficients of harmonics cosðΛðα� 1ÞtÞ and
cosð2ΛtÞ vanish, but the term �2ðαþ 1Þ cosðΛðα� 1ÞtÞ remains
and can reach its maximum at t= π/(Λ(α− 1)) for the first time.
As such, near the resonance curve χ(k), the critical time tc can be
approximately expressed as tc= π/(Λ(α− 1)). Note that tc is
singular at α= 1. For a wave whose wavenumber is located closer
to the resonance curve χ(k), more time is required for the wave
energy spectrum component to reach its maximum. Before the
time reaches tc, the wave energy spectrum component grows over

Fig. 2 Wave growth behavior in the nascent stage. Initial growth of
pressure-induced (blue) and shear-induced (green) surface elevation
variance 〈η2〉, normalized using the air domain height H and the capillary
length scale lc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ=ðρwgÞ

p
on the left and right y-axes, respectively. The

wave growth of the fully coupled simulation when both pressure and shear
fluctuations are considered is shown in the magenta line. Solid lines and
dashed lines represent the direct numerical simulation (DNS) results and
theoretical predictions, respectively.
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time overall, and its amplitude exhibits oscillatory behavior owing
to the modulations by the other harmonics.

When α is far from 1, that is, when k is far from the resonance
curve χ(k)= k ⋅U−Λ(k)= 0 in the spectral domain, the wave
energy spectrum component jη̂ðk; tÞj2 does not monotonically
increase over time. Furthermore, using number theory, we prove
(see Supplementary Note 2 in the Supplementary Material for
details) the existence of a corresponding critical time at which the
energy jη̂ðk; tÞj2 decreases below a threshold that can be preselected
to be arbitrarily small. We obtain the following general upper
bound on a Diophantine approximation from number theory29.
There exists an infinite number of relatively prime integer pairs
(pi, qi), i 2 Zþ, such that jðαþ 1Þ=2� pi=qij< 1=q2i . For any
arbitrary δ > 0, there exists an integer pair (pi, qi) satisfying the
following two conditions: jðαþ 1Þ=2� pi=qij< 1=q2i and
qi > 2πðρwÞ�1kjp̂jΛ�2jα2 � 1j�1δ�1=2. Thus, by perturbation ana-
lysis, we obtain the upper bound of the wave energy spectrum
component jη̂j2 at T= πΛ−1qi,

jη̂ðk;TÞj2 < δ þ Oðδ2Þ: ð8Þ
Equation (8) indicates that when k is far from the resonance curve,
the wave energy spectrum component can decrease to any
arbitrarily small value at some time.

Next, we present the numerical evidence for wind-generated
resonance waves and nonresonance waves in the initial stage. Figure 3a
depicts the wavenumbers at which the wave energy spectrum
component jη̂j2 grows over time according to the DNS results. The
blue shading denotes the least-squared fitting results of the power
index β assuming the wave energy spectrum component behaves as a
power-law function of time, i.e., jη̂j2 � tβ. The wave components for
which the energy grows quadratically over time are distributed around
the resonance curve, which is represented by the red dotted line in the
figure. The convection velocity of pressure fluctuationsU is computed
from the wavenumber–frequency spectrum of air pressure at the water
surface. U lies along the x-direction, and its magnitude is expressed as
U ¼ k�1

x

R j~pðkx; ky;ωÞj2ωdkydω=ð
R j~pðkx; ky;ωÞj2dkydωÞ, where

~pðkx; ky;ωÞ denotes the space–time Fourier transform of p(x, y, t).
The resonance curve χ(k)= 0 is obtained by solving k ⋅U=Λ(k).
Figures 3b, c illustrate two representative wavenumbers (kxlc, kylc)=
(0.06, 0.22) and (1.18, 2.69), at which the wave energy spectrum

components grow over time and the values for the ratio α are 0.9 and
1.2, respectively. The orange dashed lines indicate quadratic
growth. Figures 3d, e show two examples of wavenumbers (kxlc,
kylc)= (0.06, 4.37) and (2.86, 0.34), at which the ratio α is far
from 1, being 0.05 and 2.7, respectively. For these two cases, the
wave energy spectrum components do not grow but oscillate
over time. At certain times, the amplitude of jη̂j2 can reach very
small values. The DNS results shown in Fig. 3 provide direct
evidence of the resonance mechanism in the initial stage of
Phillips theory2. Our numerical results demonstrate a consistent
quadratic growth pattern of the wave energy spectrum
components around the resonance curves. This pattern is
particularly noticeable within a range of kx and ky values where
the wavenumber is not excessively large. The underlying reason
for this phenomenon is attributed to the pressure fluctuation
spectrum, in which the magnitude of the pressure fluctuation
component decays as the wavenumber increases. In regions
with high wavenumber values, the pressure fluctuation magni-
tude diminishes significantly. Consequently, the waves resulting
from these pressure fluctuations are much smaller than those in
regions with low wavenumber values.

The above results show that the temporal evolution of wave
energy spectrum components at different wavenumbers exhibits
heterogeneous features in the initial stage of wind-wave
generation. A thorough understanding of the overall wave growth
behavior over time is also crucial. A qualitative study of the
evolution of surface elevation variance for all of the wave energy
spectrum components combined, 〈η2〉, was first conducted by
Phillips2. In physical space, the surface elevation variance can be
evaluated via integration over the wave energy spectrum from the
Plancherel theorem30. By adopting the uniform Jacobian
determinant approximation in a resonance curve-based orthogo-
nal coordinate transformation, Phillips predicted that the overall
evolution of surface elevation variance is a linear function of time.
We obtain the numerical evidence that the surface elevation
variance grows linearly over time in the initial stage, as shown in
Fig. 4. Shemer23 experimentally observed a linear wave energy
growth in the initial wind-wave generation process. Our
numerical approach further reinforces the conclusion and
examines the resonance mechanism associated with the initial
stage of the wind-wave generation process2.

Fig. 3 Spectral variations in the temporal growth of wave energy in the initial stage. a The blue shading represents the magnitude of the index β
assuming power-law growth of the wave energy spectrum component, i.e., 〈η2〉 ~ tβ, at wavenumber (kx, ky). The red dashed line shows the resonance curve
χ(k)= 0. b, c Show two examples in which jη̂j2 (blue line) evolves quadratically, and the orange dashed line illustrates the trend jη̂j2 � t2. d, e show two
examples in which jη̂j2 oscillates over time. The titles of (b–e) denote the value of the wavenumber (kx, ky) in each plot.
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Formation of the heterogeneous wave energy spectrum. In this
section, we focus on the time evolution of the surface wave energy
spectrum. A variety of factors affect the wind-wave spectrum in
oceans, such as wind speed, fetch distance, and ocean swells. The
Joint North Sea Wave Observation Project (JONSWAP) spectrum
and Pierson–Moskowitz spectrum are two well-known para-
meterizations of the ocean wave spectrum for a developing wind
sea and fully developed wind sea, respectively31,32. Nevertheless,
until now, there has not been a comprehensive explanation of the
formation of the wind-sea spectrum during the wind-wave gen-
eration process. Here, we describe how an initial surface wave
spectrum changes from an omnidirectional spectrum to a het-
erogeneous spectrum in the early period of wind-wave
generation.

We obtain the expression of surface elevation variance in the
nascent stage (Eq. (2)) in a perturbative manner when t is near
zero. Equation (2) indicates that the surface wave spectrum solely
depends on the air pressure spectrum and not on the wave
dispersion. When the elapsed time is longer than the wave motion
time scale in the initial stage, wave dispersion emerges in the
evolution of the wave behavior. The surface elevation spectrum
can be viewed as an air pressure spectrum altered by a
modification coefficient associated with wave dispersion. Here,
we show that the wave energy spectrum component jη̂ðkÞj2 has an
upper bound over time when it is far from the resonance curve. In
the expression for jη̂ðkÞj2 in the initial stage (Eq. (6)), owing to
the periodicity of the cosine function, we have:

jη̂j2ðk; tÞ< 1
ρw2

k2jp̂j2CðkÞ: ð9Þ

Here, the modification coefficient CðkÞ ¼
0:5Λ�4ðα2 � 1Þ�2ð2jαþ 1j þ 2jα� 1j þ jα2 � 1j þ α2 þ 3Þ has
the following piecewise expression:

CðkÞ ¼ 4ððk � UÞ2 � Λ2Þ�2
α< 1

Λ�2ðk � U � ΛÞ�2 α> 1

(
ð10Þ

The value of C(k) indicates the discrepancy between the
distributions of the wave energy spectrum jη̂j2 and the
premultiplied pressure fluctuation spectrum k2jp̂j2. When the
wavenumbers are far from the resonance curve, C(k) is reduced

(Fig. 5d), resulting in the heterogeneity of the wave energy
spectrum. Next, we compute the wave energy spectrum at
different times during the simulation, as depicted in Figs. 5a–c.
Initially, as shown in Fig. 5a, the spectrum is spatially
omnidirectional according to the wave dynamics in the nascent
stage. The evolution of wave energy spectrum components is
primarily related to air pressure fluctuations. As time progresses,
the influence of wave dispersion on the distribution of wave
energy spectrum components becomes evident in the initial stage
(see Figs. 5b, c). In the wavenumber space, the wave energy begins
to be accumulated near the resonance curve where the convection
velocity of air pressure fluctuations match the wave phase
velocity, depicted by the red curve in Fig. 5c, d. Figure 5d
visualizes the distribution of the modification coefficient C(k) (see
Eq. (10)) in the wavenumber space, representing the hetero-
geneous characteristics arising from wave dispersion. To
conclude, the distribution of the wave energy spectrum gradually
changes over time, and we observe the formation of spatial
heterogeneity along the resonance curve in the initial stage of the
wind-wave generation process.

Conclusions
In this study, we conducted DNS of turbulent airflow over an
initially calm water surface to investigate how surface waves are
initiated. The results show that the shear-induced surface wave
fluctuations are consistently bounded by the pressure-induced
wave fluctuations when the air–water interface is distorted by the
airflow. Moreover, we discover a nascent stage that occurs before
the Phillips initial stage. We theoretically predict that the wave
elevation variance growth would follow a quartic power law
during the nascent stage, and the DNS results confirm this pre-
diction. The motions of surface deformation are governed solely
by turbulent airflow when the time elapsed is much shorter than
the wave motion time scale. The nascent stage describes the
inceptive growth of surface deformation in a perturbative man-
ner. Considering the fact that the magnitude of initially generated
surface waves is small, we focused on the linearized
Navier–Stokes equations and the stress balance on the air–water
interface to explain our numerical findings to the limit of t= 0.
The analytical solutions can quantitatively describe the numerical
results back to the time t= 0. This combination of numerical
simulations and analytical analysis establishes a comprehensive
and self-consistent framework to prove laws about the earliest
stages of wave development.

Our simulation provides direct numerical evidence of the
resonance mechanism during the initial stage of Phillips theory
when the elapsed time is longer than the wave motion time scale
but shorter than the air pressure fluctuation development time
scale. During the initial stage, the wave energy spectrum com-
ponents close to the resonance curve in the spectral space evolve
quadratically over time. Wave energy spectrum components far
from the resonance curve oscillate over time and can reach
arbitrarily small values at certain times. When the wavenumber is
located away from the resonance curve, the magnitude of the
wave energy spectrum component is bounded by a finite value
based on Eq. (9). The DNS results show that the overall growth of
surface elevation variance exhibits linearity over time, which
agrees with the qualitative hypothesis of the initial stage in
Phillips theory2. As a result of the resonance mechanism, the
omnidirectional waves formed in the nascent stage evolve during
the initial stage to a heterogeneous wave field in the spectral
space. Although evidence has been previously reported in the
literature for the subsequent principal stage in Phillips theory2,
the critical layer mechanism3, and the sheltering mechanism14,
the direct evidence of the resonance mechanism during the initial

Fig. 4 Overall growth of surface elevation variance 〈η2〉 in the initial
stage. The surface elevation variance 〈η2〉 has all of the wave energy
spectrum components combined and is normalized using the air domain
height H and the capillary length scale lc on the left and right y-axes,
respectively, in the initial stage. The blue line denotes the DNS results, and
the black dashed line shows the linear regression, with the coefficient of
determination R2= 0.996.
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stage in Phillips theory and the study of the preceding nascent
stage are reported in the present paper. The present study focuses
on examining the nascent stage and the initial stage of wave
evolution. As time increases, wind-generated waves undergo the
principal stage2 and the exponential growth stage3, as discussed in
our previous study6 which utilized the same physical parameters
in the simulation setup. Our study is supportive of the prominent
Phillips theory of wind-wave generation2 during the wind-wave
generation process starting from a quiescent water surface till
dominant surface waves have been generated.

Methods
Numerical scheme. We conduct numerical simulations using a
wave-surface-fitted DNS code developed by our group, which has
been extensively used and validated in the previous wind–wave
interaction studies16,33–36. In the DNS, the air and water motions
are governed by the continuity equation and incompressible
Navier–Stokes equations:

∇ � u ¼ 0; ð11Þ
∂u
∂t

þ u � ∇u ¼ � 1
ρ
∇pþ νΔu: ð12Þ

Here, u denotes the velocity vector, p denotes the pressure, ρ
denotes the density, and ν denotes the kinematic viscosity of air
or water. The computational space is divided into a water domain
and an air domain, with their adjacent boundary being the
dynamically evolving air–water interface. The air friction velocity
is 0.08 m s−1. The physical properties of air and water are set to
their values at sea level and a temperature of 15 °C. The air
domain height is set to be 0.0489 m, and the streamwise and
spanwise domain lengths are 0.307 m and 0.154 m, respectively.

These choices were made based on the resolution requirement of
DNS, i.e., directly resolving the Kolmogorov scale in the physical
problem.

In each domain, Eqs. (11) and (12) are synchronously solved
on a curvilinear grid fitting the air–water interface33. In the
simulation, a grid of 3843 elements is adopted to discretize both
the air and water domains. The continuity of the velocity and the
balance of stresses across air–water interface are enforced through
an efficient iteration scheme, and the fully nonlinear kinematic
and dynamic boundary conditions are imposed at this interface33.
The computational domain is discretized using a hybrid
pseudospectral and finite-difference method. The second-order
Adams–Bashforth scheme is used to discretize the convective
terms, and the Crank–Nicholson scheme is applied to the viscous
terms. A fractional step method is adopted for the time
advancement of the Navier–Stokes equations37. At each time
step, the evolution of surface elevation is calculated using a
predictor–corrector method, which is iteratively integrated with
the Navier–Stokes solver. The overall numerical accuracy is
second-order in both space and time. This choice of the second-
order accuracy scheme is recognized as a robust and reliable
method for computational fluid dynamics38. The scheme chosen
is suited for the research of wind–wave interaction and has been
used and validated in previous studies6,35,36. Especially for the
early stages of wind-wave development with small wave
amplitudes, the scheme conserves mass and momentum accu-
rately. For example, during the initial stage of wind-wave
generation, the relative mean surface elevation normalized by
its instantaneous maximum magnitude, defined as hηi=maxðηÞ, is
less than 4 × 10−8. Constant shear stress at the top boundary of
the air domain is applied to drive the airflow. We use a no-slip
velocity boundary condition at the bottom of the water domain.

Fig. 5 Temporal evolution of wave energy spectrum components in the wavenumber space. a, b, c Contours of the wave energy spectrum component
jη̂ðkÞj2 at tuaτ=H ¼ 0:01;0:1 and 0.9, respectively. d Contours of the modification coefficient C, where the contour color is kept the same when log10C> � 1
to avoid singularities. The red line is the resonance curve χ(k)= 0.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01430-7 ARTICLE

COMMUNICATIONS PHYSICS |           (2023) 6:314 | https://doi.org/10.1038/s42005-023-01430-7 | www.nature.com/commsphys 7

www.nature.com/commsphys
www.nature.com/commsphys


Periodic boundary conditions are adopted in horizontal direc-
tions. Details of the computational schemes, parameters, and
validations are available in Li and Shen6.

Data availability
Data are available from the corresponding author upon reasonable request.

Code availability
Codes for analyzing data and generating plots are available from the corresponding
author upon reasonable request.
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