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Data-driven detection of critical points of phase
transitions in complex systems
Peng Tao 1,2, Chenghang Du3, Yi Xiao 2✉ & Chen Zeng 3✉

Detecting the critical points of phase transitions and their driver factors in complex systems

from data is a very challenging task. In these regards, the dynamic network biomarker/marker

(DNB) method derived from the bifurcation theory is currently very popular, but a unified

criterion to pick the most appropriate DNBs is lacking. Here, we propose a giant-component-

based DNB (GDNB) method inspired by the percolation theory, that directly selects the

largest DNB as the transition core to reflect the progress of the transition. We test the

effectiveness of this scheme to detect transitions on three distinct systems, differing in terms

of interactions and transitions: Monte Carlo simulations of the 2D Ising model, molecular

dynamics simulations of protein folding, and measured gene expression time course in mouse

muscle regeneration. These results suggest that the GDNB method inherits all the advan-

tages of the DNB method, while it improves the interpretability at a reduced computational

complexity.
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Phase transitions are ubiquitous in almost all fields such as
physical systems1,2, biological systems3–5, climate systems6,
and economic systems7. It describes the process of a system

changing from a stable state to another stable state, such as from a
healthy state to a disease state in a biological system. There exists
a critical point during the two steady-state transitions, and many
interesting phenomena occur at this critical point such as critical
opalescence8. Accurately pinpointing this critical point and
identifying associated factors driving the phase transition may
allow us to predict and even control this phase transition, thus it
is of great importance to formulate a framework to develop
heuristics for transition detection. Since, for a complex system, it
is usually difficult to construct a concise model description but
relatively easy to obtain the measurement of the system, it is
imperative for a useful method to detect the critical points from
the measurement data directly.

At present, several methods have been developed based on
such concepts as eigenvalue spectrum9, critical slowing-
down10–15, dynamic network biomarkers/markers (DNB)16–25

and machine learning (ML) based methods26–29. In this article,
we mainly focus on the DNB and ML methods. According to the
bifurcation theory, phase transition can usually be divided into
three states, namely, before-transition state, pre-transition state,
and after-transition state (Fig. 1a). It can be proved that at pre-
transition state, at least one group of variables meets the following
three conditions16: (1) the fluctuations or standard deviations of
the variables in the group increase significantly; (2) the correla-
tion between any two variables within the group increases; and
(3) the correlation between the variables within the group and the
variables outside the group decreases. Therefore, Chen et al.16

formulated a composite index (or DNB score) integrating these
three conditions to quantify early-warning signals of complex
diseases, e.g., the onset of cancers. Later, this method was further
used for detecting the tipping points of phase transitions in non-
disease systems, and considerable success was also reported30.
This evidence shows that the DNB method is a powerful model-
free algorithm because it can effectively distinguish the before-
transition state and pre-transition state which is essentially the
limit of the before-transition state before the tipping point.
However, this method has certain difficulties in practical appli-
cations. First, the DNB method usually requires two sets of data
for comparison. It performs a statistical analysis on the two sets to
screen for possible variables for subsequent correlation analysis,
such as comparing the gene expression data of control and case
samples to select the differentially expressed genes as candidate
genes for DNB. Thus, this algorithm is not suitable for the
situation where there is only one set of data. In addition, after
clustering the variables selected by specific criteria, a multiple of
potential groups satisfying these three conditions may be
obtained, so a more serious issue is how to rank these groups in
relevance. In the original DNB method, domain-specific knowl-
edge is heavily relied upon to choose the group with a higher
likelihood of an imminent phase transition, which is not suitable
when prior knowledge is lacking. Like the DNB method, machine
learning-based methods also have similar problems with prior
knowledge (see Methods for details).

On the other hand, in statistical physics, one of the most
important features of the water-to-ice phase transition is the scale
invariance, that is, there are many pieces of ice of different sizes in
the water, and the largest one (the so-called giant component in
network science) reflects the progress of this transition. Inspired
by this fact, we propose the giant-component-based DNB
(GDNB) method, which has two main advantages over DNB,
namely, (1) it does not need two sets of data for comparison since
relative fluctuations are used to screen for candidate variables;
and (2) it does not need prior knowledge to screen for multiple

possible candidate DNBs, as we select the giant component to
represent the phase transition. In order to illustrate the effec-
tiveness of the GDNB method, both simulated data and real data
are used for validation.

Results
GDNB algorithm flow. To better understand the analysis process
and results, we first introduce the entire workflow of the GDNB
algorithm. Data preprocessing is excluded since it is a necessary
step common to all data-driven algorithms. The input data used
by GDNB can be regarded as an array fxijkg with ði ¼
1; 2; � � � ;m; j ¼ 1; 2; � � � ; n; k ¼ 1; 2; � � � ; sÞ (Fig. 1b), where m
represents the number of observation points of the system on the
reaction coordinate, e.g., if the reaction coordinate is time, then m
is the number of time points, n is the number of variables
included in the system, and s is the number of repetitions at each
observation point. When the input data is given, the GDNB
algorithm completes the analysis through the following three
steps:

1. Find out the variables with relatively large fluctuations at
each observation point (Fig. 1c).
Similar to the DNB algorithm, we use the standard
deviation to describe the fluctuation of each variable in
the system. However, because the GDNB method does not
have reference data, an adjustment needs to be given to the
scale of the variable. Here we use relative fluctuations, a
term in statistical physics, to describe the changes of
variables with different scales, which is defined by

RFij ¼
1
�xj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑s
k¼1ðxijk � �xjÞ2

q

; ð1Þ

where �xj ¼ 1
m ´ s∑

m
i¼1∑

s
k¼1xijk. The one-sample Student’s

t-test (ttest_1samp in Python package scipy) is used to select
the variables (candidate variables) with significantly large
fluctuations by setting a significance level, e.g., p ¼ 0:05. The
group of the selected variables at ith observation point is
denoted as Fi.

2. Cluster the selected variables for each observation point
(Fig. 1d).
This step is the same as the DNB algorithm, in which the
selected variables at ith observation point are hierarchically
clustered based on the absolute value of the Pearson’s
correlation coefficient (PCC) between any pair of selected
variables ðg; hÞ, which is calculated by

jPCCgh
i j ¼ j ∑s

k¼1ðxigk � �xigÞðxihk � �xihÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑s
k¼1ðxigk � �xigÞ2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑s
k¼1ðxihk � �xihÞ2

q j; ðg; h 2 Fi; g≠hÞ;

ð2Þ
where �xig ¼ 1

s ∑
s
k¼1xigk and �xih ¼ 1

s ∑
s
k¼1xihk. The number of

the clusters could be determined by a threshold between 0
and 1 (see Methods).

3. Select the largest cluster as the transition core for each
observation (Fig. 1e).

This step is the essential difference between the GDNB and
DNB algorithms. In this step, the DNB algorithm may find
multiple dominant groups (transition cores) that meet the three
criteria at one observation point, making the algorithm require
sufficient prior knowledge to filter out inapposite groups. Inspired
by the water-to-ice transition, for the ith observation point, we
directly select the largest cluster or giant component (denotes as
Gi and its size as GCi) as the transition core, which not only
makes the computation more efficient, but also makes our
algorithm easier to understand and explain.
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Fig. 1 The workflow of the giant-component-based dynamic network biomarker (GDNB) method. a A three-state model, before-, pre- and after-
transition states, is used to describe a sudden phase-transition (red solid line), in which the first and last states are stable while the pre-transition state is
unstable. The pre-transition state is the limit of the before-transition state before the critical or tipping point and the aim of the GDNB method is to detect
the early-warning signal (the peak of the blue solid line) of the transition and corresponding driver factors based on measurement data. b The input data of
GDNB is {xijk}, a 3D array, which consists of m observations on n variables with s replicates (i= 1, 2, …, m; j= 1, 2, …, n; k= 1, 2, …, s). c The first step is to
select the variables with significantly high fluctuations as candidates at each observation point. d The second step is to cluster the variables selected from
the first step according to their correlations. e The last step is to find the largest cluster of each observation point as DNB, which is used to further
characterize the phase transition at this point.
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Through these three steps, we can obtain the transition core at
each observation point. To further quantify the strength of the
early-warning signals for the ith observation point, we also
introduce a composite index (CI) defined as

CIi ¼ GCi ´RFi ´ jPCCij; ð3Þ
where

RFi ¼
1

GCi
∑j2Gi

RFij ð4Þ

and

jPCCij ¼
2

GCiðGCi � 1Þ∑p;q2Gi;p≠q
jPCCpq

i j: ð5Þ

Clearly, this CI is a production of three factors, that is, the size,
average relative fluctuation, and average correlation of the giant
component. The larger the CI, the stronger the signal. Note that
the proposed form of the CI is a linear multiplication of the three
factors, but a nonlinear form could also be adapted, such as
ffiffiffiffiffiffiffi

GC
p ðRFþ 1ÞjPCCj. Next, to demonstrate the underlying working
of the GDNB method, we first apply the GDNB method to detect
the known transition of the 2-dimensional (2D) Ising model.

Application to the 2D Ising model. The Ising model is a classic
statistical physics model, which was first proposed in the 1920s by
Wilhelm Lenz31 and has been widely used to describe the phase
transitions of various systems because of its simple form and
universal applicability32. Therefore, we first verify our algorithm
on this model. The 2D Ising model can be described by the
following energy function

E ¼ 1
2
∑j2Ni

∑iJ ijsisj þ∑iHisi; ð6Þ

where s stands for the spin with two possible values of +1 or −1,
Ni is the set of the nearest neighbors of si (Fig. 2a), Jij is the
coupling coefficient of si and sj, and Hi is the external magnetic
field on si.

Below we take the 10 × 10 Ising model (n= 100) as an example
to apply the GDNB method. First, we used the Monte Carlo (MC)
method to simulate the model at 41 different temperatures (or
observation points m= 41, see Methods). The temperature T was
increased from 1 to 5 with an interval of 0.1 (using the reduced
unit J/kB, where kB is the Boltzmann constant), and 100 snapshots
were generated under each temperature (s= 100). Figure 2b
compares the index curve of the phase transition of GDNB and
three machine learning-based methods (supervised learning (SL),
prediction-based method (PBM) and learning by confusion
(LBC), a detailed description of these methods can be found in
Methods) on the Ising model (10 independent experiments for
each). It can be seen that the critical temperature (Tc) predicted
by GDNB (the maximum of its index) agrees with the theoretical
value33 (about 2.3, red dashed line), while the critical tempera-
tures predicted by SL and PBM are 2.1, lower than the theoretical
value. The critical temperature predicted by LBC (the local
maximum of its index) is also consistent with the theoretical
value, but it requires prior knowledge to exclude the larger local
maxima at both ends (see Methods). Next, we clarify how the
GDNB method works. As shown in Fig. 2c, d, at low temperatures
(e.g., T= 1), there are fewer spins selected as candidates, and the
correlations between these candidates are not strong. While at
high temperatures (e.g., T= 5), although the fluctuations are
significantly high, the dynamics of these spins are not related. In
contrast, when the temperature is 2.3, there is a large group of
spins that not only show abnormally large fluctuations, but also
have a strong correlation within the group, which can serve as a
giant component percolating the entire system (Fig. 2d).

Below we further compare the performance of the GDNB
method and the three ML-based methods under 2D Ising models
with different sizes (L × L, L= 10, 20, 30, 40, 50 and 60) and
different external noise intensities (Hi � Nð0; σÞ). Figure 3a
compares the critical temperatures predicted by GDNB and the
other three ML-based methods (each case was repeated 10 times).
It can be seen that, when L increases from 10 to 60, the critical
temperatures predicted by GDNB, PBM and LBC are similar, and
all of them fluctuate around the theoretical value (red dashed
line), while SL quickly loses accuracy when L > 30. In addition, we
also consider a smaller Ising model (L= 5), and GDNB can still
accurately predict the critical temperature in this challenging
scenario (Supplementary Fig. S1). Figure 3b shows the predicted
phase transition temperature of the 10 × 10 Ising model (results
for the 30 × 30 Ising model can be found in Supplementary
Fig. S2). It can be seen that, as σ increases from 0.001 to 0.5, the
critical temperature Tc predicted by GDNB always fluctuates
around the theoretical value. Compared to the three ML-based
methods, the robustness of GDNB is significantly better than that
of SL and PBM, and only slightly weaker than that of the LBC
method. Considering that the LBC method relies on a priori
knowledge, that is, it requires artificial selection of the local
maximum solution that is closest to the theoretical value, the
performance of GDNB is very promising. Next, we investigate the
computational efficiency and scalability of GDNB. Figure 3c
compares the time required by GDNB and three ML-based
methods to solve Ising models of different sizes on the same
hardware (two Intel Xeon Gold 6226 R CPUs @ 2.90 GHz). As
shown in the figure, since the workflow of GDNB is simple and
the operation with the highest computational load is just
clustering variables, it runs very fast. In contrast, other ML-
based methods need to train neural networks, which involve a lot
of matrix operations, so they run significantly slower than GDNB,
especially the LBC method that needs to train a neural network
for each temperature, resulting a very high time complexity. In
addition to computational efficiency, another common problem
of ML-based methods is the need for prior knowledge, for
example, SL requires to know in advance which temperatures
correspond to different phases (for the Ising model, T= 1
corresponds to the ferromagnetic phase, T= 5 corresponds to the
paramagnetic phase). Moreover, when we only observe one phase,
machine learning methods usually fail, for example, when we only
observe data from T 2 ½1; 2:5�, the three ML-based methods
cannot be used or cannot accurately find the critical point, but as
shown in Fig. 3d, the GDNB method still works normally. These
results further prove the superiority of GDNB.

Application to protein folding trajectory. Protein folding refers
to the process of spontaneously forming a three-dimensional
structure from a one-dimensional amino acid sequence, which is
also a phase transition from disorder to order34. Although the
Deepmind35 team has recently been able to use deep learning
methods to achieve high-precision protein structure prediction,
the protein folding mechanism remains elusive. As an indis-
pensable tool for studying protein folding mechanisms, molecular
dynamics (MD) simulations can follow the dynamics of a struc-
ture at the atomic resolution36. However, the trajectory obtained
by MD simulations is a sequence of atomic coordinates, thus
cannot directly show the folding mechanism. Considering that
the protein folding process is a phase transition process, it is
natural to ask if we can use the GDNB method to find the
transition core as the folding nucleus from the folding trajectory,
which may help us to elucidate the folding mechanism.

Here we apply the GDNB method to the MD simulation
trajectory of the villin headpiece subdomain HP35, a small
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protein with only 35 residues. As shown in Fig. 4a, its topological
structure is quite simple, with only three α-helices. Therefore, the
folding mechanism of this tiny protein has been extensively
studied theoretically and experimentally37–42. We extracted a
trajectory of 10 ns from a complete simulation trajectory of
~150 μs produced in our previous study37 and then divided it into
10 identical time windows (m= 10), each of them containing 50
snapshots (s= 50). Figure 4b shows the change curves of the
root-mean-square-deviations (RMSDs) of the whole protein and
the two segments (N- and C-segment, as defined in Fig. 4a). By
defining a successful folding event as the overall RMSD
(comparing to the native structure) is less than 2 Å, it can be
seen that HP35 successfully folded at about 5 ns. Taking into

account that the spatial structure of the protein remains
unchanged under translation and rotation operations, the
coordinate data were converted into internal distance data, that
is, the distances between the Cα atoms of different residues were
used to represent the spatial structure. Since there are 35 residues
for HP35, after conversion, a structure can be represented by 595
distances (35 ´ 342 , n= 595, Supplementary Fig. S3). After applying
the GDNB method to this trajectory, we found the CI curve
remains at high values from 2 to 5 ns, with the highest value at
2 ns and the second highest value at 4 ns (Fig. 4c top and Fig. 4d).
As shown in Fig. 4e, these two time points correspond to the
helix1 of HP35 changing its orientation from pointing out of the
paper to pointing upward and from pointing upward to pointing

Fig. 2 Application to the 2D Ising model. a The 2D square-lattice Ising model is composed of some spins, whose values can only take +1 and −1. Only
adjacent spins can affect each other, e.g., the spin in the center and the spins pointed by arrows. b The computed average index (10 independent runs, error
bar stands for the standard deviation) of phase transition of GDNB and three ML-based methods (supervised learning (SL): cyan triangles; prediction-
based method (PBM): orange squares; learning by confusion (LBC): purple stars; GDNB: blue circles). The theoretical critical temperature (~2.3) is given by
a red dashed line. c Hierarchical clustering results at T= 1.0, 2.3, and 5.0, respectively (red: +1; blue: −1). Rows and columns represent the significantly
highly fluctuating spins and snapshots of MC simulations, respectively. d The schematic diagram of phase transition at different temperatures. The spins
with high fluctuations and spins in the transition core are colored in gray and red, respectively. A giant component appears at T= 2.3.
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into the paper, respectively. With the completion of the rotation
of helix1, indicating HP35 entered the folded state, the transition
core almost disappears after 6 ns (Fig. 4c bottom and Fig. 4e). It
should be pointed out that HP35 has two types of folding
pathways, one is the hierarchical folding pathway introduced
above, and the other is the collaborative folding pathway37. Our
GDNB method is not only suitable for the first one, but also for
the last, as shown in Supplementary Figs. S4 and S5.

Application to gene expression data. Up to now, we only ver-
ified the effectiveness of the GDNB method on the simulation
data, and below we further demonstrate it on the real data, i.e.,
gene expression data, which records the regeneration process of
mouse muscle after cardiotoxin injection, consisting of expression
data of more than 10,000 genes at 27 time points (two samples for
each, Fig. 5a shows the heatmap of the expression data)43. The
process of muscle regeneration can be described by the schematic
diagram in Fig. 5b. Once the muscle is injured, a large number of
quiescent satellite cells around the myofibers are activated and
proliferated to produce a large number of myoblasts, then
immature multinucleated myofibers (also known as myotube) can

form based on the differentiation and fusion of these myoblasts.
After that, the nucleus of satellite cell migrates to the sub-
sarcolemmal position, which makes the immature myofiber
mature, marking the completion of the muscle regeneration. If we
perform hierarchical clustering on the expression data according
to 27 time points, it can be found that these time points are
roughly divided into three clusters (Fig. 5c). The cyan cluster
contains 5 time points, that is, days 0, 16, 20, 30, and 40.
Therefore, it is reasonable to assume that the damaged muscle
was recovered on day 16. In addition, the red cluster consists of 2
time points, days 0.5 and 1, and the remaining time points belong
to the yellow cluster. However, the meaning of this classification
is not yet clear, more in-depth analysis is required.

Considering that there are only two samples at each time point,
it is impossible to perform a reasonable calculation on the
standard deviations or fluctuations. Therefore, we also included
the samples before and after the time point under consideration
for statistical analysis, that is, 3 consecutive time points or 6
samples were used as the replicates (s= 6). Consequently, 27 time
points were reduced to 25 (m= 25). After preprocessing (see
Methods), 10,123 genes (n= 10,123) were used to do the
following analysis. Figure 5d shows the results of the GDNB

Fig. 3 Comparison of the performance of GDNB and ML-based methods. a The critical temperatures predicted by GDNB and the three ML-based
methods under Ising models with different sizes (supervised learning (SL): cyan triangles; prediction-based method (PBM): orange squares; learning by
confusion (LBC): purple stars; GDNB: blue circles). The theoretical critical temperature (~2.3) is given by a red dashed line. This color scheme is also used
in (b) and (c). b The critical temperatures predicted by GDNB and the three ML-based methods under different external noise strengths. c The runtimes of
GDNB and the three ML-based methods to solve Ising models with different sizes. d The computed index of phase transition of the GDNB method under
three Ising models. In this figure, error bars indicate the standard deviation of 10 independently repeated experiments.
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Fig. 4 Application to protein folding trajectory. a The sequence and cartoon representation of HP35. Helical regions are colored in red and structural
elements are annotated. b The time courses of RMSDs of whole protein (top) and two segments (bottom). c Hierarchical clustering results at 2 and 7 ns,
respectively. Rows and columns represent the significantly high fluctuating distances and snapshots of MD simulations, respectively. d The time courses of
GC, RF, |PCC| and CI. e The schematic diagram of phase transition at different time points. The coloring scheme is the same as in Fig. 2 and the distances in
DNB (pink dashed lines) are mapped on the 3D structures.
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algorithm and it can be seen that CI has 4 distinct peaks
(indicated by arrows). The first peak appears on day 0.5 (the cyan
arrow). In order to explore the underlying biological function of
this peak, GO functional enrichment analysis was performed on
the giant component or DNB at this time point. As shown in
Fig. 5e (left), the top 10 most relevant functions are listed and
most of these functions are related to inflammation or immune
response, which is consistent with previous studies44,45. In
addition, after injury, the quiescent SCs activate and proliferate,
which is marked by the down-regulation of myostatin (Mstn) that
inhibits the activation of SCs46. From Supplementary Fig. S6, it
can be seen that Mstn does exist in the transition cores of time
points days 0.5 and 1. The second peak of CI is on day 2 (the

yellow arrow) and the functional analysis of the core genes at this
time point indicates that the most significant functions are related
to muscle tissue development and cell cycle (middle of Fig. 5e).
This result is not difficult to understand because the activated SCs
proliferate, differentiate, and fuse to form myotubes and further
to form immature myofibers at this stage, which is characterized
by the significant up-regulation of Myrf5, MyoD, MyoG and
Pax747,48, which can also be validated from Supplementary
Fig. S6. The third peak of CI appears on day 4.5 (the purple
arrow) and the main function of the DNB at this time point is
also related to the development of muscle tissue. In addition,
compared with the functional annotations on day 2, this time
point is also related to the development of myofibers, which is

Fig. 5 Application to gene expression data. a The heatmap of the expression data of mouse muscle regeneration. b The schematic diagram of four stages
of the regenerative model of muscle after injury. c 27 time points are clustered based on the expression data in (a). d The time courses of GC, RF, |PCC|
and CI. Four distinct peaks are indicated by arrows with four colors, and the corresponding four stages of muscle regeneration are shown in dashed boxes.
e The results of GO functional enrichment analysis at days 0.5, 2 and 4.5, respectively. Only the top 10 significantly enriched GO terms are listed.
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consistent with the maturation process of myofibers in Fig. 5b.
The last peak of CI appears on day 14. According to the clustering
results in Fig. 5c, after day 14, the muscle regeneration process
has been finished, so the main function of this time point should
not be directly related to the muscle, and the GO enrichment
analysis results further verify our conjecture (Supplementary
Figs. S7 and S8). To better understand these results, we introduce
the temporal-specific pattern defined by Dadgar et al.43 as the
gold standard, that is, dividing the time course into 4 stages (the 4
dashed boxes in Fig. 5d), which are myoblast proliferation (days
1–3), myotube formation (days 3.5–4.5), myofiber maturation
(days 4.5–14) and adaptation stage (days 20–40), respectively. It
can be seen that, except for the critical point found in the
maturation stage, which is located at the first time point of this
stage, the critical points found by our GDNB method in the other
three stages are all earlier than the corresponding actual time.
Considering that the data we used for each time point contains
that of previous and subsequent time points, the early-warning
signals detected by the GNDB method agree well with the facts.

Discussion
Aiming at narrowing down the candidates in the widely used
DNB method, we proposed an improved method GDNB based on
the percolation theory. Compared with the DNB method, GDNB
has two major advantages. First, the GDNB method does not
need to compare two sets of data observed under different con-
ditions, it uses relative fluctuations to select variables that may be
in the DNB. Inspired by the water-ice transition in statistical
mechanics, the largest DNB is selected from all possible dominant
groups to represent the current transition level, which provides a
plausible solution for the problem in the DNB method, that is, it
does not have a unified standard to choose candidate DNBs. Since
the traditional DNB method cannot handle data without a
reference dataset, we did not directly compare GDNB with the
DNB method, but it can still be found that the GDNB method is
effective and powerful through verification on three representa-
tive datasets with diverse features (Table 1). Similar to the DNB
method, GDNB is also model-free, however, the meaning of the
DNBs found by our method might be unclear since there is no
reference data. For example, for gene expression data, additional
function annotations are needed to understand the function of
these DNBs. Fortunately, this problem is not difficult to solve by
utilizing some powerful databases, e.g., GO49 and KEGG50.

On the other hand, it can be seen from the application to gene
expression data that another difficulty of the DNB method is its
dependence on the number of samples because a large number of
samples are needed to accurately calculate the standard deviation
or fluctuation. However, obtaining enough samples is not easy in
some fields, such as clinical medicine. Therefore, one of the main
development directions of the current DNB method is how to use
only a single sample to find DNB51–53. For example, in the
landscape DNB (lDNB) method proposed by Liu et al.54, a
reference sample library is constructed in advance, and then a
sample-specific network is obtained by comparing the target

sample with the reference sample library, and the DNB score (or
CI in this paper) of each gene in the network can be calculated.
After selecting the highest k scores and averaging them to get the
overall DNB score, the early-warning signal based on a single
sample can be detected. Since GDNB and lDNB are trying to
solve the problems of the DNB method from different aspects, the
idea of 1DNB can be further integrated into the GDNB method,
which may be implemented in our future work.

Finally, two promising directions might be pointed out. First, a
large number of researches related to DNB methods consider only
the first-order correlation (nodes-based network). However, it has
been shown that the second-order correlation (edges-based net-
work) may be more robust55,56. The last point is that it is widely
known that the correlation is not equivalent to the causality, but
this is not reflected in the DNB-based methods, which should
benefit from the advance of causal science57–59.

Method
Relation between DNB and GDNB. The original DNB theory16

focuses on the following dynamical system

Zðkþ 1Þ ¼ f ðZðkÞ; PÞ; ð7Þ
where ZðkÞ ¼ ðz1ðkÞ; � � � ; znðkÞÞ represent observed data describ-
ing the dynamical state of the system, P are parameters repre-
senting slowly changing factors, which drive the system from one
state (or attractor) to another, f ¼ ðf 1; � � � ; f nÞ are generally
nonlinear functions of ZðkÞ (note that f can contain random
noise). For such a dynamical system (usually with a large number
of variables and parameters), provided that the system driven by
some parameters approaches the critical point, theoretically, the
system can be expressed in a very simple form, i.e., one- or two-
variable equations in an abstract phase space around a codim-1
bifurcation point16. The GDNB method, as a variant of DNB,
retains the above theoretic foundations of the DNB method, while
introducing the concept of giant component from percolation
theory and applying it in the models of statistical physics.
Therefore, in our view, it can be said that GDNB is a bridge that
simultaneously connects the bifurcation theory, percolation the-
ory and statistical physics.

Machine learning-based methods. Machine learning based
methods have been widely used to identify phase transitions from
data in recent years. As ref. 29 classified, there are three main
types of ML-based methods: supervised learning (SL), learning by
confusion (LBC), and prediction-based method (PBM). SL
assumes that there are two clear phases A and B, and the regions I
and II are deep inside them. A predictive model is trained on the
data from the two regions with the labels 1 and 0, respectively,
using a cross-entropy (CE) loss. The model is then tested on all
the data. The index for phase transitions in SL is the negative
derivative of the prediction with respect to the tuning parameter,
and the critical value is estimated by the global maximum. In
LBC, predictive models are trained on all the data. The labels are
assigned by splitting the parameter range into two adjacent

Table 1 Dataset summary.

Datasets Space Interaction Source Transition type

Ising model Real 2D space Short-range interaction Simulated data single-transition
Protein folding pathway Real 3D space Short- and long-range

interaction
Simulated data two single-transitions in

parallel
Gene expression of muscle
regeneration

Abstract genomic space Unknown function interaction Real data multiple-transitions in series

This table provides a summary of the characteristics (including space and scope of interactions between variables) of the datasets used in this work.
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regions I and II, and labeling them as 1 and 0, respectively. For
each split, a different predictive model is trained using a CE loss.
The model is then evaluated on all the data points. The mean
classification accuracy, or the index for phase transitions in LBC,
is expected to have a local maximum at the critical point. PBM
trains a predictive model on all the data to estimate the tuning
parameter value for each input. The model uses a mean-square-
error loss function and is tested on all the data points. The mean
prediction as a function of the tuning parameter is obtained by
averaging over the predictions for all the data. The index for
phase transitions of PBM is the derivative of the mean prediction
with respect to the tuning parameter, and the critical value is
estimated by the global maximum. In this work, for these three
methods, we applied a three-layer perception ([L × L, 100, 100,
d]) to train simulation data, in which the conformation of the 2D
Ising model is flattened into a one-dimensional vector as the
input (length is L × L), and the output dimension d for SL and
LBC is 2, 1 for PBM. ReLU60 was used as the nonlinear activation
function. In order to accelerate the convergence of the training
process, the network parameters were optimized using the
Adam61 optimizer, the learning rate was set to 0.001, and the
weight decay was set to 0.01. The batch size for training was set to
100, and the maximum number of training epochs was 20.

Monte Carlo simulation of 2D Ising model. An L × L matrix
(L= 10, 20, 30, 40, 50, 60) was randomly generated (elements are 1
or −1) as the initial configuration of the Ising model. The Monte
Carlo simulations for a given temperature T consist of the following
steps. (1) Randomly select a spin to flip (1 to −1, or −1 to 1); (2)
Calculate the energy difference ΔE before and after the flip
according to Eq. (6); (3) If ΔE ≤ 0, then accept the flip, otherwise,
accept the flip with a probability proportional to e−ΔE/T; and (4)
Repeat steps 1-3 until a sufficiently large number of simulation steps
is reached. The Ising models of different sizes were simulated at 41
temperatures (from 1 to 5, with an interval of 0.1). In order to make
the simulations reach equilibrium, the number of simulation steps
ranged from 100,000 (L < 30) to 10,000,000 (L ≥ 30). 100 snapshots
were extracted at even intervals from these simulated trajectories as
input to the GDNB method (Supplementary Fig. S9 compares the
results of different snapshot numbers, and the prediction results
have converged at 100 snapshots.). For each model, 10 replications
were conducted with different random number seeds.

Folding trajectory of HP35. The details of HP35 folding simu-
lations are given in the literature37, from which a 10-ns folding
trajectory was extracted and then divided into 10 1-ns windows,
each window contains 50 snapshots. To facilitate subsequent
analysis, the three-dimensional coordinate data of the structure
was converted into internal distance data, that is, the Cα atom
distances between different residues. Since HP35 has 35 residues,
for each structure, 595 distances were calculated (35 ´ 342 ).

Gene expression data for muscle regeneration. The gene
expression data can be found in the literature43 (or GEO database
with accession ID GSE469). The original expression data recor-
ded the expression data of 12,422 genes at 27 time points, with
two samples at each time point. 1135 records without gene
symbols were filtered out and the expression data in the rest
records were transformed to a logarithm scale with base 2.
Because the expression levels of some genes are relatively low, this
not only leads to negative numbers in the expression data after
processing, but also makes the noise easy to cover the original
expression signals. Therefore, in the logarithm scale, the genes
with average expression values <7 were deleted. Finally, to

calculate fluctuations more accurately, we considered not only the
2 replicate samples at the current time point, but also the samples
at the previous and next time points, so 6 samples were used to
calculate the relative fluctuations for each time point. In addition,
we also calculated the case where the samples from the previous
two and the next two time points (a total of 10 samples) are
included at the same time. As shown in Supplementary Fig. S10,
compared with 6 samples, the overall trend of the CI curve of
10 samples is consistent, but smoother (i.e., the time resolution is
reduced), which may cause some key phase transition points to be
missed, such as the peak of the CI curve near day2 disappeared.

Parameters of GDNB. The GDNB algorithm has two main
parameters. The first parameter is a p-value (PVcut) to select the
variables with significantly high fluctuations. For the 2D Ising
model and the folding trajectory, the parameters were set to 0.05
and 0.01, respectively. For gene expression data, an extremely small
p-value (e.g., 1e−10) may still produce thousands of potential genes
for some time points, which makes it difficult to analyze the
functions of DNBs. Therefore, a simpler and more intuitive trun-
cation scheme was adopted, that is, the top 500 genes with the
largest relative fluctuations were selected at each time point. The
second parameter of the GDNB algorithm is the threshold of the
absolute value of the PCC during clustering (PCCcut), which should
be between 0 and 1 (Note that PCC can be replaced by Spearman’s
rank correlation coefficient, but this has no significant impact on
the results, see Supplementary Fig. S11). If this value is too small,
the existing transition core may not be detected, while too large may
result in many false-positive results. Generally speaking, the lesser
the number of samples, the larger this value should be. In the three
examples of this work, i.e., Ising model (s= 100), protein folding
pathway (s= 50) and muscle regeneration (s= 6), the thresholds
were set to 0.6, 0.05, and 0.02, respectively. Although there is no
precise scheme to determine these parameters, the performances of
our method are robust for different combinations of these para-
meters, as illustrated with the example of the Ising model (Sup-
plementary Fig. S12). If there is only one variable in DNB, then RF
and |PCC| were directly set to 0.

GO function enrichment analysis. In this paper, GO function
enrichment analysis (including biological process, molecular
function and cellular component) was performed to identify the
functions of DNBs. Before analysis, all symbols of genes were
converted to Entrez ID. All functional analyses were based on the
R package clusterProfiler62, and the significantly enriched GO
terms were chosen with p-value (<0.05) under the FDR
correction.

Data availability
All datasets used in this study are available at https://github.com/PengTao-HUST/
GDNB.

Code availability
The Python code for this study is available at https://github.com/PengTao-HUST/GDNB.
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