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Linear optical response from the odd-parity
Bardasis-Schrieffer mode in locally
non-centrosymmetric superconductors
Changhee Lee 1✉ & Suk Bum Chung 2,3✉

On the recent report of a field-induced first order transition in the superconducting state of

CeRh2As2, which is a possible indication of a parity-switching transition of the super-

conductor, the microscopic physics is still under investigation. However, if two competing

paring channels of opposite parities do exist, a particle-particle collective mode referred to as

the Bardasis-Schrieffer (BS) mode should generically exist below the pair-breaking con-

tinuum. The BS mode of the CeRh2As2 superconductor can couple to the light, as it arises

from a pairing channel with the parity opposite to that of the superconducting condensate.

Here, by using a generic model Hamiltonian we carry out a qualitative investigation on the

excitation energy of the BS mode with respect to the out-of-plane magnetic fields and its

contribution to the optical conductivity. Our findings indicate that the distinct coupling

between the BS mode and the light can serve as evidence for the competing odd-parity

channels of CeRh2As2 and other locally non-centrosymmetric superconductors.
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D iscovering superconductors with odd-parity Cooper
pairing has been a long-standing challenge in condensed
matter physics, as they are rare in inversion symmetric

solid-state systems. To name a few, UPt31, UNi2Al32 and
Sr2RuO4

3 are the most notable candidates which have been sus-
pected to host odd-parity Cooper pairings for a long time, though
the case of a much studied candidate material Sr2RuO4 has grown
more controversial in recent years4–8.

Faced with this rarity of odd-parity superconducting materials,
many researchers have endeavored to find realistic conditions
favoring odd-parity superconductivity. For instance, the systems
possessing a structural instability toward an inversion-symmetry-
broken phase such as the pyrochlore oxide Cd2Re2O7 drew attention
for a potential to host an odd-parity superconducting phase9–12.

Another mechanism for odd-parity superconductivity is sug-
gested by a recent experiment on CeRh2As213,14. There a transition
is observed when the external magnetic fields are applied along the
c-axis within the superconducting phase of CeRh2As213. According
to the preceding theoretical studies15,16, the transition referred to as
the even-to-odd transition seems to occur between two super-
conducting phases of opposite parities under an inversion. The
Pauli paramagnetic pair-breaking effect17,18 is a knownmechanism
for destroying the even-parity superconducting (eSC) phase. By
contrast, an odd-parity superconducting (oSC) state can withstand
the magnetic fields through an equal–(pseudo)spin pairing13,19–21.
It is noted that the combination of P4/nmm nonsymmorphic
crystal structure and the heavy-fermion characteristic supports
strong intralayer Rashba-type spin–orbit couplings that are known
to favor equal-(pseudo)spin pairings20.

An intriguing implication of the even-to-odd transition in
CeRh2As2 is the presence of competing pairing channels with
opposite parities. The potential transition temperature Tc,o of the
oSC phase at zero field, which is preempted by the onset of the
eSC phase in reality, is estimated to be close to the transition
temperature Tc,e of the eSC phase13. Moreover, phenomenological
studies have reproduced the overall superconducting phase dia-
gram in CeRh2As2 with comparable coupling strengths for both
pairing channels13,22.

Even if most of the theories set forth so far support that the
high-field superconducting phase of CeRh2As2 is odd in parity,
counter-arguments have also been raised. For instance, a theo-
retical study proposed that the observed magnetic field-induced
phase transition arises not from the parity switching of the
superconducting gap but from the spin-flipping in the coexistent
antiferromagnetic order parameter23. Therefore, further experi-
mental signatures need to be sought for the first-order transition
that switches the parity of the superconducting gap. Of the many
ways to find indisputable evidence for the symmetry of the
superconducting phase, one is to investigate the collective modes
in the superconducting phase24. Historically, the detection of a
number of the nearly degenerate collective modes in the super-
fluid B-phase of 3He proved to be the decisive evidence in favor of
the spin–triplet pairing25.

In this regard, we note that, if the first order transition is really
associated with the parity-switching transition, Tc,o ≈ Tc,e not only
implies the close competition between two pairing channels of
opposite parities but also provides a favorable condition for a
collective mode, known as the Bardasis–Schrieffer (BS) mode26,
to appear far from the pair-breaking continuum. The BS mode is
an exciton-like collective mode in superconductors due to an
uncondensed pairing channel and indicates an instability towards
another superconducting phase breaking some symmetries of the
superconducting ground state. As a precursor of the instability of
the superconducting ground state, the BS mode softens as the
uncondensed channel gets stronger so that the competition
between the uncondensed pairing channel and the condensed

pairing channel defining the superconducting ground state is
enhanced. However, such closely competing pairing channels
have rarely been found in superconductors, with one of a few
exceptions being the iron-based superconductors, where the close
competition between the s-wave and d-wave pairing channels has
been confirmed by the Raman detection of the BS mode27–30.

Besides the possible existence of the BS mode, it is worth
noting that the collective mode can possess a non-zero optical
coupling when the parity of the uncondensed pairing channel
under inversion is the opposite of that of the superconducting
ground state31. This feature makes the detection of the collective
mode possible through the optical response in the linear response
regime, which can be thought of as compelling proof for the
existence of a strong odd-parity pairing channel. This is in sharp
contrast to the Fe-based superconductors where the electronic
Raman spectroscopy is used to detect the BS mode from the d-
wave channel as this pairing channel and the s-wave ground state
pairing share the same parity27,28,32–34. Thus, in the case of
CeRh2As2, the detection of the BS mode would be conclusive
evidence for the occurrence of parity-switching at the observed
transition between the two superconducting phases.

In this work, we conduct a qualitative study on the BS modes in
the clean limit superconducting phase of a locally non-
centrosymmetric system such as CeRh2As2, which arise from
the odd-parity and even-parity pairing channel in the eSC state
and oSC state, respectively. First, we demonstrate the even-to-odd
parity transition by the Pauli paramagnetic effect at the zero-
temperature at the level of a mean-field description. We then
briefly introduce the generalized random phase approximation
(GRPA)35,36 which provides the basis of the analysis in this work.
Also, it is shown that the BS mode from the uncondensed pairing
channel can be linearly coupled to the light. This is ascribed to the
origin of the BS mode whose parity is opposite to the condensed
Cooper pairs. Using the GRPA, we investigate the softening of the
BS modes under the external magnetic fields along the c-axis and
its contribution to the optical conductivity.

Results
Mean-field analysis of the even-to-odd transition. We start our
presentation by demonstrating the field-induced even-to-odd
transition in the superconducting phase in a locally non-
centrosymmetric layered structure by using a mean-field
description at the zero-temperature. For results valid in a wider
range of temperature and magnetic fields, we refer to
refs. 15,16,21,37.

To describe the normal phase of the representative locally non-
centrosymmetric system, CeRh2As2, with the point group D4h, we
use a model Hamiltonian given by refs. 13,16,20,21:

H0ðkÞ ¼ ∑
2

i¼0
εi0ðkÞσ i þ ∑

3

i¼1
ε3iðkÞσ3si � μ ð1Þ

with

ε00ðkÞ ¼ 2tð2� cos kx � cos kyÞ; ð2Þ

ε10ðkÞ ¼ tc;1 cos
kz
2
cos

kx
2
cos

ky
2
; ð3Þ

ε20ðkÞ ¼ tc;2 sin
kz
2
cos

kx
2
cos

ky
2
; ð4Þ

ε31ðkÞ ¼ �αR sin ky; ð5Þ

ε32ðkÞ ¼ αR sin kx; ð6Þ

ε33ðkÞ ¼ λI sin kz sin kx sin kyðcos kx � cos kyÞ; ð7Þ
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where σi and si are the Pauli matrices for the orbital and spin
degrees of freedom, respectively. The eigenenergies ξi and
eigenvectors i; ±j i of H0 for i= 1, 2 can be found in the
subsection “Microscopic model” in the “Methods” section.

Note that two orbital degrees of freedom should be introduced
to take account of the locally non-centrosymmetric feature of the
system. The reason is easily understood by looking into the
crystal structure of CeRh2As238. In Fig. 1a, the crystal structure is
depicted with three {001} lattice planes composed of Ce atoms.
The locally broken inversion symmetry around Ce atoms is easily
noted in Fig. 1b where the crystal structure is viewed from the
(100) direction. Still, there is a global inversion symmetry whose
center is marked by the black star in Fig. 1, under which no
individual atom is left invariant. This global inversion is
represented by P ¼ σ1s0 in the basis of the model Hamiltonian
H0(k) in Eq. (1).

tc,1 and tc,2 are the hoppings between the nearest-neighbor Ce
layers depicted in Fig. 1. These hoppings endow the three-
dimensional characteristics of the electronic structure. αR and λI
denote the intra-layer Rashba- and inter-layer Ising-type
spin–orbit couplings, respectively. Note that the sign of the
Rashba spin–orbit coupling alternates layer-by-layer, which
reflects the locally non-centrosymmetric structure of the system
shown in Fig. 1b.

Throughout this work, we ignore λI since this spin–orbit
coupling corresponds to a spin-dependent inter-layer hopping
between the two next-nearest-neighboring layers, and thus it is
expected to be much weaker than the spin-independent inter-
layer hoppings tc,1 and tc,2 between the nearest layers and the
intra-layer Rashba spin–orbit coupling αR.

In addition, we assume that the Rashba-type spin–orbit
coupling αR is much larger than the inter-layer hoppings tc,1
and tc,2 following refs. 13,20. In this limit of large Rashba
spin–orbit coupling, the difference between tc,1 and tc,2 has no
significant effect on the band structure except for a weak
modulation of the Fermi surface along the kz-axis. Thus,
tc≡ tc,1= tc,2 is assumed throughout this work.

With this lattice model, we consider two spin–singlet pairing
channels whose form factors are represented by σ0 and σz. These
are used to reproduce the magnetic field–temperature (H−T)
phase diagram of CeRh2As2 in refs. 13,20,21,37. The pairing
channel represented by σ0 describes a uniform s-wave pairing.
Meanwhile, σz represents a pairing channel whose sign alternates
layer-by-layer, in which way the two orbital degrees of freedom
endow it with the odd parity with respect to the global inversion
despite being singlet in the physical spin sector. Hence, we call the
superconducting state, where the pairing channel σ0 is condensed
while σz is uncondensed, the eSC state. The opposite case is called
the oSC state. Throughout this paper, we use for conciseness the
nomenclature pSC state with p= e, o for the eSC and the oSC,
respectively, and p= n for the normal state.

The Bogoliubov–de Gennes (BdG) Hamiltonian for the pSC
state including the Zeeman term B ⋅ s is given by

HðpÞ
BdGðB; kÞ ¼ τ0B � sþ τzH0ðkÞ þ Δpτ

ðpÞ
x ; ð8Þ

with τðeÞi ¼ τiσ0 and τðoÞi ¼ τiσz for i= x, y, z. Here, the basis field
operator of the BdG Hamiltonian is Ψ̂k ¼ ðĈk; Ĉ

yT
�kðisyÞÞT39,40.

The magnetic field along (perpendicular to) the c-axis in Fig. 1 is
denoted by Bz(Bx) and it is referred to as the out-of-plane (in-
plane) magnetic field in this work. The gap amplitude Δp,
presumed to be real, is determined from the gap equation:

Δp ¼
gp
2

�∑
k
Tr τðpÞx GðpÞ

k

h i
; ð9Þ

with GðpÞ
k ¼ iω�HðpÞ

BdGðkÞ, while Δ�p ¼ 0 where �p denotes the

uncondensed pairing channel in the pSC state. Here, �∑k ¼
ðβVÞ�1∑k is the normalized summation over a pair of Matsubara
frequency and the three-dimensional momentum k= (iω, k),
where β= 1/kBT and V are the inverse of the temperature and the
volume of the system, respectively. The coupling constants ge and
go are assumed to be constant for the simplicity of the
presentation. This assumption is valid in the weak-coupling
regime which is suitable for the qualitative study.

Though both pairing channels are spin–singlet pairings, the
Pauli paramagnetism through the Zeeman term can induce an
even-to-odd phase transition which can be shown by comparing
the zero-temperature (Gibbs) free energies of eSC and oSC phases

FpðBzÞ ¼
Δ2
p

4gp
þ �∑

k

Tr ½H0ðkÞ� �∑n E
ðpÞ
n ðBz; kÞ

2
: ð10Þ

Here, EðpÞ
n ðBz; kÞ (n= 1, 2) denotes a positive branch of the

eigenvalues of the BdG Hamiltonian HðpÞ
BdGðBz; kÞ and

�∑k � V�1∑k . Figure 2a illustrates the free energies δFp(Bz)≡
Fp(Bz)−Fn(0) of the pSC state from which the zero-field normal
phase free energy is subtracted. The parameters used are written
in the caption of Fig. 2. The qualitative features of the system are
well displayed with this set of parameters. ge is chosen so that
Δe= 0.004 is obtained by Eq. (9), which is used throughout this
work unless otherwise noted.

Each curve in Fig. 2a is well described by

FpðBzÞ ¼ Fpð0Þ �
1
2
χðpÞspinB

2
z ; ð11Þ

where χðpÞspin is the spin susceptibility of the pSC state. The crossing
point at the Pauli-limiting field Bz,P between the normal (black
dashed line) and eSC (black line) phases marks a first-order
transition between the normal and eSC phase. Using Eq. (11), Bz,P

Fig. 1 Crystal structure of CeRh2As2. a Bird’s eye view of the structure. b A view from the (100) direction. An inversion center is marked by a black star.
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is given by

Bz;P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fnð0Þ � Feð0Þ

ðχðnÞspin � χðeÞspin Þ=2

s
: ð12Þ

Compared to the conventional Pauli-limiting critical field referred
to as the Chandrasekhar–Clogston field Bz;CC ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2fFnð0Þ � Feð0Þg=χðnÞspin
q

, Bz,P is several times larger because of

the non-vanishing χðeÞspin due to the sizable Rashba spin–orbit
couplings15,41.

The red, blue, and green lines in Fig. 2b denote the free
energies of the oSC states with go= ge, go= 1.17ge and go= 1.2ge,
respectively. Since χðoÞspin ¼ χðnÞspin as shown in Fig. 2a, a transition
due to the Pauli paramagnetic depairing does not occur between
the normal phase and the oSC state. The crossing point between
the free energies of the eSC state and the oSC state for a given go
indicates the even-to-odd transition observed in the
experiment13. Moreover, the slopes of the lines are different at
the crossing point, which means the transition is of the first order
and the magnetization changes discontinuously at the transition.

Note that eSC state can be more stable than the oSC state at
zero fields even if go > ge, because the inter-layer spin-indepen-
dent hoppings ε10 and ε20 effectively weaken the odd-parity
pairing channel. For example, with the aforementioned para-
meters, we obtain 1.21 for the critical ratio rc≡ go,c/ge at which the
eSC and oSC states degenerate at zero fields. Above the critical
ratio, the oSC state is the superconducting ground state of the
system at zero field. In the two-dimensional limit in which the
ratio αR/max(∣tc,1∣, ∣tc,2∣) is infinite, the electrons do not discern
the trivial gap function σ0 from the sign-alternating gap function
σz, and thus rc→ 1.

Though the effect of the out-of-plane magnetic fields is of main
interest, we present the free energies under the in-plane magnetic
fields as well. Figure 2b displays the free energies of the normal
and superconducting phases under in-plane magnetic fields Bx.
The free energies of the normal and the eSC phase cross at the
Pauli-limiting in-plane magnetic field Bx,P which is smaller than
Bz,P, and this is consistent with the experiment13,42. When it
comes to the oSC state, we do not see a first-order transition to
the normal phase due to the Pauli depairing, while an exponential

decrease of the gap function is seen with the increasing in-plane
magnetic fields. (See Supplementary Note 1 for more details.).

Furthermore, the critical in-plane magnetic field at which the
oSC state and the eSC state degenerate is very close to Bx,P for a
fair range of go/ge. As a result, up to the impurity and the finite-
temperature effect, it can be challenging to detect the oSC state
which would appear between the eSC and the normal phases.
This is consistent with the experimental result where a phase
transition into the oSC state by the in-plane magnetic field is not
detected13.

Effective action for the pairing fluctuation. To study the BS
mode, we use the generalized random phase approximation
(GRPA)26,35,36,43, which is one of the primary methods to
incorporate the effect of the collective modes in the super-
conducting phase. Before applying the method to our case, we
first briefly introduce the formulation of the GRPA.

Concerned with the linear optical response of the fluctuation
from the uncondensed pairing channels around the (meta)stable
superconducting condensate, we consider an attractive electronic
interaction consistent with the gap equation in Eq. (9):

V̂ ¼ � 1
2
∑
p

�∑
k1;k2;q

gpΠ̂pðk1; k1 � qÞ½Π̂pðk2; k2 � qÞ�y; ð13Þ

where Π̂pðk1; k2Þ ¼ Ψ̂y
k1
τðpÞþ Ψ̂k2

with τðpÞ± ¼ ðτðpÞx ± iτðpÞy Þ=2. ∑p is
the summation over the pairing channels represented by σ0 and
σz. We generally expect go ≠ ge; one simplest case being the
combination of the on-site attractive interaction and the pair
hopping interaction between the Ce atoms on the neighboring
layer. Other pairing channels such as those discussed in refs. 21,41

do not couple linearly to the light because of the symmetries of H0

with negligible λI as shown in the subsection “Other odd-parity
channels” in the “Methods” section.

After adding V̂ to the normal phase action
S0 ¼ 1

2
�∑kΨ̂

y
kðiω� H0ÞΨ̂k, we obtain the effective action for the

pairing fluctuations under external electromagnetic fields in the
pSC state through the standard procedure in the functional
integral approach (see subsection “Macroscopic model” in the

Fig. 2 Magnetic field dependence of free energies of the normal state, even-parity and odd-parity superconducting states. a Free energies versus the
out-of-plane magnetic field Bz along the c-axis. b Free energies under the in-plane magnetic field Bx. Both magnetic fields are normalized by the Pauli
limiting field Bz,P. The dashed line, and the black solid line depict the free energy of the normal state, and the even-parity superconducting state,
respectively. The red, blue, and magenta lines correspond to the free energies of the odd-parity superconducting state for go/ge= 1, 1.17, 1.2, respectively,
where ge and go are the coupling strengths for the even-parity pairing channel and the odd-parity pairing channel introduced in Eqs. (9) and (13). The
parameters t= 2, μ= 0.5, tc,1= tc,2= 0.1, αR= 0.34 and Δe= 0.004 are used.
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“Methods” section):

SðpÞ
eff ¼

1
2
�∑
Ω
ðA0; η

ðpÞ
a Þ-iΩΛpðiΩÞ

A0

ηðpÞb

 !
iΩ

þ 1
2
�∑
Ω
ðAi; η

ð�pÞ
a Þ-iΩΛ�pðiΩÞ

Aj

ηð�pÞb

 !
iΩ

:

ð14Þ

The auxiliary bosonic fields ηðpÞa with a= 1, 2 are introduced
through the Hubbard–Stratonovich transformation. Associated
with τðpÞa , they represent the real and imaginary parts of the
fluctuation in the condensed pairing channel, respectively.
Importantly, they correspond to the amplitude and the phase
fluctuation, respectively, when Δp is real. ηð�pÞa with a= 1, 2

associated with τð�pÞa represent the fluctuations in the uncondensed
pairing channel. The electromagnetic four-potential Aμ ¼
jejð�iA0;AÞ is defined by multiplying the unit charge ∣e∣ to the
conventional four-potential for conciseness. Note that we omit
the momentum q dependence of η and A since the London limit
(q→ 0) of the linear response is our interest.

The kernels Λp and Λ�p in Eq. (14) are given as

Λp ¼
K00 LðpÞ0b

RðpÞ
a0

~Π
ðpÞ
ab

 !
; Λ�p ¼

Kij Lð�pÞib

Rð�pÞ
aj

~Π
ð�pÞ
ab

0
@

1
A; ð15Þ

where the frequency dependence is omitted for conciseness (See
the subsection “Macroscopic model” in the “Methods” section for
the definition of the sub-blocks in Eq. (15)). The real-frequency
kernels are obtained by the analytical continuation
iΩ→Ω+=Ω+ iϵ. ϵ= 10−6= 2.5 × 10−4 Δe is used throughout
this work unless otherwise noted.

Note that the effective actions SðpÞ
eff for p= e and p= o are

decomposed into two groups involving Λp and Λ�p. This is because
of the global inversion symmetry τ0I (τzI ) of the BdG
Hamiltonian of the eSC (oSC) state. Also, Eqs. (14) and (15)
explicitly show that the fluctuations of the uncondensed channel are
involved in the optical response in the second block Λ�p in Eq. (15).

It also deserves to be noted that the effect of vortices in type-II
superconductors is ignored since the critical fields Hc,2 of the eSC
and oSC are about four times higher than the critical field for the
even-to-odd transition13 which is our main focus.

Bardasis–Schrieffer mode at zero field. Given the effective
action SðpÞ

eff , we study the BS mode originating from the fluctua-

tions ηð�pÞ1 and ηð�pÞ2 in the uncondensed pairing channel25,26,28,43,44.
The equation of motion for the BS mode is given by 0 ¼
δSðpÞ

eff =δη
ð�pÞ which is rearranged into

ηð�pÞ ¼ �½~Πð�pÞ��1Rð�pÞA; ð16Þ
where ~Πð�pÞðΩÞ is the propagator of the fluctuations
ηð�pÞ ¼ ðηð�pÞx ; ηð�pÞy Þ. Since the BS mode arises from this fluctuation,
the gap of the mode can be obtained by finding the singularity of
the right-hand side (RHS) in Eq. (16) by solving det½~Πð�pÞ� ¼ 0,
which is denoted by ΩBS throughout this work.

To figure out the physical implication of the BS mode, we
analyze ~ΠðoÞ based on our numerical and analytical results for the
eSC state. As shown in Supplementary Note 2, ½~ΠðoÞðΩÞ�12 and
½~ΠðoÞðΩÞ�21 are vanishingly small, and ½~ΠðoÞðΩÞ�11 are finite for
∣Ω∣ < 2Δe. Thus, the zero of det½~ΠðoÞðΩÞ� � ½~ΠðoÞðΩÞ�11½~ΠðoÞðΩÞ�22
is largely identical to the zero of ½~ΠðoÞðΩÞ�22 which can be
understood as the propagator of the BS mode, and ΩBS can be
found by looking into the singular peak of the spectral function
Im½1=½~ΠðoÞðΩÞ�22�. Figure 3a shows the spectral function
Im ½1=½~ΠðoÞðΩÞ�22� of the BS mode versus go/ge in the eSC state
at zero field. The gap of the BS mode ΩBS is clearly identified.
Increasing go/ge drops ΩBS, and ΩBS becomes zero at the critical
ratio rc= go,c/ge ~ 1.21. For larger go/ge, the BS mode disappears,
which is consistent with the free-energy analysis through the
mean-field calculation.

To relate the gap of the BS mode ΩBS to the stability of the
superconducting condensate against the condensation of the
other pairing channel, we first derive a semi-analytical expression
for ΩBS which is given by

2y arcsin yffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p ¼ 1
goN tothsin2χiFS

� 1
geN tot

ð17Þ

¼ � ln
Tc;o

Tc;e
; ð18Þ

where y=ΩBS/2Δe, sin χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε231ðkÞ þ ε232ðkÞ

p
=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε210ðkÞ þ ε220ðkÞ þ ε231ðkÞ þ ε232ðkÞ
p

, and Ntot=N1+N2 with

Fig. 3 The spectral function Im½1=½~ΠðoÞ�22� of the Bardasis–Schrieffer (BS) mode. ½~ΠðoÞ�22 is the propagator of the BS mode introduced in Eq. (16). a False
color plot of the spectral function of the BS mode in the go/ge−Ω plane. b The spectral function versus the frequency for the ratios go/ge close to the critical
ratio ~1.21 at which the BS mode becomes gapless as shown in (a). ge and go are the coupling strengths for the even-parity pairing channel and the odd-
parity pairing channel introduced in Eq. (9) and Eq. (13). Δe is the magnitude of the superconducting gap function in the even-parity superconducting state.
ΩBS, which is referred to as the gap of the BS mode in the main text, denotes the frequency where the peak of the spectral function is located. The inverse
of the height of each peak is linearly dependent on ΩBS as shown in the inset.
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Ni=1,2 being the density of states of the i-th Fermi surface given by
ξi= 0. [The total density of states is 2Ntot due to the Kramers’
degeneracy]. Here, h� � �iFS ¼ ∑2

i¼1 Nih� � �iFS;i=ðN1 þ N2Þ with
〈⋯ 〉FS,i being the angular average over the ith Fermi surface
(for the derivation, see the subsection “Relation between the
critical temperatures and BS mode gap” in the “Methods”
section). In the second line, the weak-coupling formulae of the
superconducting transition temperature Tc for the eSC state and
the preempted oSC state are used, which are given by geN tot ¼
�1= lnðTc;e=ΛÞ and hsin2χigoN tot ¼ �1= lnðTc;o=ΛÞ, respectively,
with a cutoff Λ. Note that a real solution y exists only when
Tc,o ≤ Tc,e. This implies that ΩBS= 0 indicates a transition
between two superconducting states, and, in turn, ΩBS can be
understood to tell how much more the superconducting
condensate is stable than other superconducting states.

We now use Eq. (18) to estimate ΩBS in CeRh2As2 at zero field.
Adopting Tc,o/Tc,e= 0.87 as estimated for CeRh2As2 by ref. 13, we
find ΩBS ~ 0.51Δe; i.e. below the pair-breaking continuum. It
should be stressed that this estimation of ΩBS from Eq. (18) has
nothing to do with our choice of the parameters such as t, μ, αR; it
is a model-independent result under weak-coupling assumption.

In Fig. 3b, the spectral functions Im ½1=½~ΠðoÞðΩÞ�22� are drawn
for several go/ge around the critical ratio. The location of the peak
of each curve corresponds to ΩBS for each ratio go/ge. The height
of peak is enhanced as go/ge→ rc. The inset clearly shows that the
peak height is inversely proportional to ΩBS for small ΩBS.

This is a general consequence resulted from
ΠðoÞðΩÞ ¼ ½ΠðoÞðΩÞ�y ¼ ½ΠðoÞð�ΩÞ�T45 for Ω below the quasipar-
ticle continuum, which ensures det ~ΠðoÞðΩÞ / Ω2

BS �Ω2 when
ΩBS and Ω are small. Given that the off-diagonal elements of ~ΠðoÞ

are small, then det ~ΠðoÞðΩÞ and ½~ΠðoÞðΩÞ�22 are proportional, and
we know Im ½1=½~ΠðoÞðΩÞ�22� / δðΩ2

BS �Ω2Þ / δðΩBS �ΩÞ=ΩBS,
Thus, the intensity of the BS mode increases as ΩBS approaches to
zero. Note that this argument is applicable even when magnetic
fields are applied and also applicable to the BS mode in the oSC
state except that the BS mode appears only when go > go,c.

Bardasis–Schrieffer mode under Bz. We now study the effect of
magnetic fields on the BS mode. Figure 4a and b show the ima-
ginary part of the inverse of ½~Πð�pÞðBz;ΩÞ�22 in the pSC state for Bz.
Here, go= 1.17ge is used to make the features of figures more
recognizable. The reddish region of each figure represents the
BdG quasiparticle excitations. Below the quasiparticle continuum,
the curves corresponding to the gap of the BS mode ΩBS(Bz) in
each pSC appear. The red and blue lines are drawn over the
curves for a guide to the eye. The vertical dashed lines in both
figures denote the even-to-odd critical field Bz,c identified in
Fig. 2a.

It is clearly seen that ΩBS(Bz) in eSC (oSC) phase is lowered
(raised) as the external magnetic field Bz increases. Also, it has to
be noted that ΩBS exhibits a jump at the transition as shown in
Fig. 4c, which is generally expected for a first-order
transition46–48. Furthermore, ΩBS becomes zero at Bz= Bz,e >
Bz,c (Bz= Bz,o < Bz,c) in eSC (oSC) phase. Recalling that the eSC
(oSC) phase is the equilibrium ground state under Bz < Bz,c (Bz >
Bz,c), Figure 4 shows that the softening of the BS mode occurs
outside the thermodynamic equilibrium31,49. Understood as a
precursor of an instability of a superconducting condensate,
Bz,e (Bz,o) could correspond to the termination of the metast-
ability of the eSC (oSC) state. Note that this limiting field
Bz,e (Bz,o) is to the transition into the oSC (eSC) state what the
superheating field is to the vanishing of the energy barrier against
the vortex formation in type-II superconductors.

Multiband-assisted optical coupling. The linear optical response
function of the BS mode can be given as

~K ¼ K � Lð�pÞ½~Πð�pÞ��1½Lð�pÞ�y; ð19Þ

which is derived from J iðiΩÞ=jej ¼ δSðpÞeff =δAið�iΩÞ ¼
KijðiΩÞAjðiΩÞ þ Lð�pÞia ðiΩÞηaðiΩÞ, RðpÞðiΩÞ ¼ ½LðpÞð�iΩÞ�y and

Eq. (16) as exposed in the subsection “Derivation of ~K” in the
“Methods” section. The imaginary part of ~KðΩÞ � ~KðiΩÞjiΩ!Ωþ

is related to the the real part of the optical conductivity tensor
σ(Ω)= σ1(Ω)−iσ2(Ω) by σ1ðΩÞ ¼ Im ½~KðΩÞ�=Ω. Note that σ1(Ω)
involves the contribution of the BS mode contained in the second
term in the RHS of Eq. (19), and the contribution is finite only
when Lð�pÞi;a ðΩÞ is finite. This is often overlooked in literature par-
tially due to the fact that the matrix elements of the velocity
operators vanish in the BCS model with a single electronic
band50.

However, the presence of multiple electronic bands can render
Lð�pÞi;a ðΩÞ finite51, as explained in detail below based on the
analytical estimation of it in the eSC state at zero field.

Since the symmetry group of HðeÞ
BdG makes LðoÞx;2 and LðoÞy;2 vanish

as shown in the subsection “Other odd-parity pairing channels”
in the “Methods” section, we focus on LðoÞz;2. The spectral

representation of it is given as LðoÞz;2ðΩÞ ¼ � R Lðk;ΩÞddk=ð2πÞd
with

Lðk;ΩÞ ¼ � 1
2
∑
m;n

mh jVz nj i nh jτyσz mj i
Ωþ � Em þ En

Θmn; ð20Þ

at the zero-temperature, where Θmn≡Θ(Em)−Θ(En) with the
Heaviside step function Θ(x). Em and mj i denote the eigenener-

gies Ec;i ¼ �Ev;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2i þ Δ2

e

q
and the corresponding eigenvec-

tors jcðvÞ; i; ui of the BdG Hamiltonian HðeÞ
BdG, respectively, which

are given in the subsection “Microscopic model” in the
“Methods” section. The momentum dependence of Em and mj i
is omitted for conciseness.

The matrix element mh jVz nj i of the velocity operator, defined
in the subsection “Macroscopic model” in the “Methods” section,
relevant for calculating LðoÞz;2 at the zero-temperature is given by

c; i; uh jVzjv; j; vi ¼ sin
Ξi � Ξj

2
i; uh j∂zH0jj; vi; ð21Þ

where sinΞi � Δe=Ec;i. Note that the RHS is zero when i= j, as it
is in the single-band model. These forbidden elements
c; i; uh jVz v; i; vj i for u, v= ± are marked by gray arrows in Fig. 5a,
where the energy bands of the BdG quasiparticles are drawn. An
explicit calculation using the eigenvectors i; uj i given in the
subsection “Microscopic model” in the “Methods” section yields
i; uh j∂zH0jj; vi / δuv. Therefore, only c; i; uh jVzjv; j; ui with i ≠ j
for i= 1, 2 and their complex conjugate are finite. The colored
arrows in Fig. 5a represent the transitions related to these finite
elements of the velocity operator. Comparing these to the
interband transitions in the normal phase whose electronic band
structure is displayed in Fig. 5b, these finite transitions associated
with mh jVz nj i can be understood as the remnants of the
interband transitions in the normal phase which are marked by
arrows in Fig. 5b51.

With hc; j; ujτyσz v; i; uj i and their complex conjugate, one of
which is given by

c; 2; uh jτyσz v; 1; uj i ¼ eiðζþϕÞtk cos χ
2i

cos
Ξ2 � Ξ1

2
; ð22Þ
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we get

Lðk;ΩÞ ¼ ðEc;1 þ Ec;2ÞtðkÞ cos χ sinðΞ2 � Ξ1Þ
ðEc;1 þ Ec;2Þ2 � ðΩþÞ2

: ð23Þ

Note that the possible singularities of Lðk;ΩÞ are located at
∣Ω∣= Δe+ ∣ξ1,k− ξ2,k∣ which are fairly distant from the region of
interest ∣Ω∣ < 2Δe. Hence, it is a good approximation to set Ω= 0
in Eq. (23). We draw Lðk; 0Þ in Fig. 5c. Lðk; 0Þ has narrow

positive peaks of height Δecos
2χ

4EiðkÞ on each ith Fermi surface, and thus

LðoÞz;2ðΩÞ � �Δehcos2χiFS
2ge

: ð24Þ

Here, we use the BCS gap equation 1=ge ¼ ðN1 þ N2Þ
R
d ξðξ2 þ

Δ2
eÞ�1=2 with Ni the density of states of the ith Fermi surface given

by ξi= 0. Note that LðoÞz;2ðΩÞ is finite even at Ω= 0 as long as
hcos2χiFS ≠ 0, which is approximately proportional to t2c=α

2
R.

Thus, the signature of the BS mode is expected to be observed in
the optical conductivity along the z-direction ½σ1ðΩÞ�zz , or just
σ1(Ω) for short, at zero field.

Optical response. Given that the coupling between the fluctua-
tions in the uncondensed channel and the light can be finite, the
signature of the BS mode can be observed by measuring the

optical conductivity σ1(Ω). However, considering the experi-
mental conditions by which the available range of frequency of
the incident light is restricted, it is necessary to adjust the gap of
the BS mode by tuning the external parameter, i.e. the magnetic
field. Therefore, we present here our numerical results of σ1(Ω)
under Bz to provide a guide to future experiments.

For illustration, we use the case with go= 1.17ge again. Figure 6a
and b show σ1(Bz,Ω) (normalized by σ1(0, 2.5Δe)) in the log-scale
in the eSC and the oSC states, respectively. It is easy to see the
signature from the collective modes appearing in the spectral
function of the BS mode Im ½1=~Πð�pÞ

22 ðBz;ΩÞ� in Fig. 4a and b. As
illustrated in Fig. 4c, the gap of BS mode is expected to change
discontinuously when the first-order transition occurs, and thus, a
sudden jump of the peak due to the BS mode can be observed in σ1.

Since Lð�pÞz;aðBz;ΩÞ is finite in the range of interest, the collective
mode makes distinguished contributions to σ1(Bz,Ω) which
increases as ΩBS→ 0 like Im ½1=½~ΠðoÞðΩÞ�22� displayed in Fig. 3b.
Figure 6c shows graphs of σ1(Bz,Ω) for several Bz marked by
stars in Fig. 6a, and we see that the peak height of σ1(Bz,Ω)
from the BS mode diverges like Ω�2

BS around the point where the
gap of the BS mode vanishes and the metastability of the eSC
state is terminated, which is in sharp contrast to the case in the
iron-based superconductors where the spectral weight of BS
mode in Raman measurement is predicted to diminish as the
softening is approached52–54. The diverging trend appears

Fig. 4 Spectral function of the Bardasis–Schrieffer (BS) mode for go= 1.17ge in the plane of frequency and magnetic field Bz. a False color plot of the
spectral function Im½1=½~ΠðoÞ�22� of the BS mode in the even-parity superconducting state. b False color plot of the spectral function Im½1=½~ΠðeÞ�22� of the BS
mode in the odd-parity superconducting state. Δo= 0.001 is used which is obtained from Eq. (9) with go= 1.17ge. c The gaps of the BS modes. The red and
blue lines are the lines of the same colors depicted in (a) and (b), respectively. The crossing point of the two curves does not coincide with the magnetic
field Bz,c at the first-order transition. Δe is the magnitude of the superconducting gap function in the even-parity superconducting state. Bz,P is the Pauli
limiting field. Bz,e and Bz,o are the magnetic fields at which the BS mode in each superconducting state becomes gapless.

Fig. 5 The band structure and the transitions between bands contributing to Lðk;ΩÞ in Eq. (20). a The band structure of the Bogoliubov–de Gennes
quasiparticle and the transition relevant to Lðk;ΩÞ. The colored arrows depict the transitions contributing to Lðk;ΩÞ in the even-parity superconducting
state, while the gray arrows denote transitions to which have no contribution to Lðk;ΩÞ. b The electronic band structure is in the normal state. The
interband transitions depicted by the colored arrows in (a) are inherited from the transitions depicted by the colored arrows in (b). For (a) and (b), the
superconducting gap magnitude Δe= 0.05 is used. c Lðk;0Þ in the kx−ky plane. Δe= 0.004 is used for (c).
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because Lð�pÞz;aðBz;ΩÞ is almost constant up to the critical magnetic
field Bz,e (Bz,o) where the BS mode in the eSC (oSC) state
becomes gapless. Consequently, using an incident light of lower
frequency, a stronger peak from the BS mode is expected. The
trend of σ1(Bz,Ω) in the oSC state is qualitatively identical
except that the peak height of the BS mode increases with
decreasing Bz.

Discussion
We have investigated the linear optical response from the BS
modes brought about by the uncondensed pairing channel with
parity opposite to that of the condensed pairing. Our analysis
shows the gap of the BS mode in the eSC (oSC) state is lowered
with the increasing (decreasing) out-of-plane magnetic field and
eventually becomes gapless at the termination of the metastability
of the superconducting condensate which occurs around the first-
order transition. In our analysis, the presence of the multiple
orbital degrees of freedom intertwined by the inversion symmetry
turns out to be crucial as it enables the linear coupling between
the BS mode and the light which is generally allowed by the
symmetry. As long as this coupling is finite, the contribution to
the optical conductivity of the BS mode is much larger than that
of the quasiparticle excitation in the clean limit and also can get
enhanced as the BS mode softens. Therefore, we can expect the
signature of the collective mode to be observed by measuring the
linear optical response in the microwave regime for the super-
conductor CeRh2As2, where ΩBS ~ 0.51Δe is expected at zero
field55–58.

It should be stressed that the detection of the BS modes via a
linear optical response measurement is a compelling signature
from the bulk of CeRh2As2 evidencing the competing odd-
parity pairing channel. This is because linear optical coupling is
possible only when the condensed and the competing uncon-
densed pairing channels are opposite in parity. Moreover, as
discussed in the subsection “Other odd-parity channels” in the
“Methods” section, the light selectively couples to a particular
set of odd-parity pairings transforming as A2u for D4h symmetry
to which the current operator along z belongs. Therefore, the
detection of the BS modes not only can be taken as compelling
proof, i.e. sufficient, for the existence of the odd-parity
pairing channel but also can place restrictions on the form of
the odd-parity pairing channels31. It also deserves to be noted
that the gap of the BS mode in the oSC increases with increasing

out-of-plane magnetic field. This feature may also be regarded
as proof of the parity-switching at the first-order transition in
the superconducting phase of CeRh2As2 because the gap of the
BS mode should continue decreasing if it were not for the
parity-switching.

Though the Pauli paramagnetic depairing is considered the
primary cause of the first-order transition in the superconducting
state of CeRh2As2, our findings and argument are applicable to
any superconducting systems exhibiting parity-switching transi-
tions regardless of the underlying mechanism and the transition
order. An interesting application is superconductivity in a system
hosting a structural instability9,11,12,59, e.g. ferroelectric instabil-
ity. We address the cases from the two perspectives. Firstly, if the
even-to-odd transition is realized within the centrosymmetric
state of this system, it is possible to have a soft BS mode at the
transition, and a signature from it can appear in the linear optical
response.

The second case is when such a transition occurs in the non-
centrosymmetric state. In this case, the superconducting phase
could host an intriguing topological phase transition between an
even-parity dominant trivial superconductivity and an odd-parity
dominant topological superconductivity, and a low-lying Leggett
mode could appear at the transition11,12. The existence of such a
topological phase transition implies there are at least two com-
peting pairing channels of opposite parities up to the parity
mixing induced by the inversion-breaking order. This parity
mixing blurs the the sharp distinction between even- and odd-
parity pairings, which could lead both pairing channels to
belonging to the same irreducible representation of the symmetry
group of the state. As a result, the BS mode from the competing
pairing channel will turn into the Leggett mode of refs. 11,12. The
absence of the inversion symmetry could allow the linear optical
coupling of this Leggett mode to be nonzero51.

Lastly, a recent experiment suggests that the possibility of an
inversion-breaking antiferromagnetic order coexisting with
superconductivity in CeRh2As242,60. Since the antiferromagnetic
order can reduce the symmetry group of the system, its potential
effect on the BS modes and the optical response calls for further
investigation.

Note added in proof: During the revision of this work for
publication, ref. 61 appeared in arxiv. This work investigates the
BS mode arising from the odd-parity pairing in a two-
dimensional bilayer system and the consequence of the pre-
sence of strong interlayer Coulomb interaction.

Fig. 6 The frequency and the magnetic field dependence of the real part of the optical conductivity σ= σ1+ iσ2. a False color plot of σ1 in the even-parity
superconducting state. b False color plot of σ1 in the odd-parity superconducting state. Δo= 0.001 is used which is obtained from Eq. (9) with go= 1.17ge.
c Frequency dependence of σ1 for several magnetic fields Bz marked by green stars in (a). σ1 is normalized by its magnitude at zero field and Ω= 2.5Δe. For
c, the unity is added to plot σ1 on the semi-log scale. Bz,c and Bz,P are the magnetic fields at the first-order transition and the Pauli limiting field, respectively.
Bz,e and Bz,o are the magnetic fields at which the Bardasis–Schrieffer mode in each superconducting state becomes gapless.
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Methods
Microscopic model. The two-fold degenerate eigenenergies of
H0(k) in Eq. (1) are given by

ξ1ðkÞ ¼ ε00ðkÞ � μþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðkÞ2 þ αðkÞ2

q
; ð25Þ

ξ2ðkÞ ¼ ε00ðkÞ � μ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðkÞ2 þ αðkÞ2

q
; ð26Þ

with tðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε10ðkÞ2 þ ε20ðkÞ2

q
and αðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε31ðkÞ2 þ ε32ðkÞ2

q
.

The eigenvectors of these eigenvalues are

ξ1;þ
�� � ¼

cosχ2ffiffi
2

p

eiϕ sinχ2ffiffi
2

p

eiζ cosχ2ffiffi
2

p

z sinχ2
� ffiffi

2
p

0
BBBBBBB@

1
CCCCCCCA
; ξ1;�
�� � ¼

sinχ2
z
ffiffi
2

p

e�iζ cosχ2ffiffi
2

p

e�iϕ sinχ2
� ffiffi

2
p

cosχ2ffiffi
2

p

0
BBBBBBB@

1
CCCCCCCA
; ð27aÞ

ξ2;þ
�� � ¼

cosχ2
z
ffiffi
2

p

e�iζ sinχ2
� ffiffi

2
p

e�iϕ cosχ2
� ffiffi

2
p

sinχ2
� ffiffi

2
p

0
BBBBBBB@

1
CCCCCCCA
; ξ2;�
�� � ¼

sinχ2ffiffi
2

p

eiϕ cosχ2
� ffiffi

2
p

eiζ sinχ2ffiffi
2

p

z cosχ2ffiffi
2

p

0
BBBBBBB@

1
CCCCCCCA
; ð27bÞ

with expðiχÞ ¼ ftðkÞ þ iαðkÞg=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðkÞ2 þ αðkÞ2

p
, expðiζÞ ¼

fε10ðkÞ þ iε20ðkÞg=tðkÞ; expðiϕÞ ¼ fε31ðkÞ þ iε32ðkÞg=αðkÞ, and
z ¼ exp½iðζ þ ϕÞ�.

The eigenenergies and eigenvectors of HðeÞ
BdG at zero field are

given by Ec;i ¼ �Ev;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2i þ Δ2

e

q
for i= 1, 2 and

c; i; uj i ¼ cos Ξi
2 ξi; u
�� �

sin Ξi
2 ξi; u
�� �

 !
;

v; i; uj i ¼ � sin Ξi
2 ξi; u
�� �

cos Ξi
2 ξi; u
�� �

 !
;

ð28Þ

for u= ± with eiΞi ¼ ðξi þ iΔeÞ=Ec;i. These are used in the main

text to derive the approximate expression for LðeÞz;2ðΩÞ.

Macroscopic model. By adding

V̂ ¼ � 1
2
∑
p

�∑
k1;k2;q

gpΠ̂pðk1; k1 � qÞ ½Π̂pðk2; k2 � qÞ�y ð29Þ

to the normal phase action S0 ¼ 1
2
�∑kΨ̂

y
kðiω� H0ÞΨ̂k, and using

the Hubbard–Stratonovich transformation, the microscopic
action including the pairing fluctuations is obtained:

S ¼ SðpÞ
e þ Se�η þ Sη þ Se�A; ð30Þ

SðpÞ
e ¼ 1

2
�∑
k
Ψ̂yðkÞf�iωþHðpÞ

BdGðkÞgΨ̂ðkÞ; ð31Þ

Sη ¼
1
2
∑
p;a

�∑
q

η̂ðpÞa ðqÞη̂ðpÞa ð�qÞ
gp

; ð32Þ

Se�η ¼
1
2
∑
p;a

�∑
k;q
Ψ̂yðkþ qÞfηðpÞa ðqÞτðpÞa gΨ̂ðkÞ; ð33Þ

Se�A ¼ 1
2
�∑
k;q
Ψ̂yðkþ qÞfΓ1ðk; qÞ þ Γ2ðk; qÞgΨ̂ðkÞ: ð34Þ

The auxiliary bosonic fields ηðpÞ1 and ηðpÞ2 represent the real and
imaginary parts of the fluctuation in the condensed pairing
channel of the pSC state, respectively. Γ1 and Γ2 are the

paramagnetic and diamagnetic light-matter coupling vertices,
respectively, and expressed in the uniform limit (q→ 0) of the
external electromagnetic fields as

Γ1ðk; qÞ ¼ ∑
3

μ¼0
VμðkÞAμðqÞ; ð35Þ

Γ2ðk; qÞ ¼ �∑
k0

∑
3

μ;ν¼0
½m�1

k �μνAμðq� k0ÞAνðk0Þ; ð36Þ

with the four-velocity operators VμðkÞ ¼ ð2τz; τ0∂iH0ðkÞÞ and the
inverse of the mass matrix ½m�1

k �μν ¼ τz∂μ∂νH0ðkÞ which is zero
when either of μ or ν is 0. Here, we define a four-potential Aμ ¼
jejð�iA0;AÞ by multiplying the unit charge ∣e∣ to the conventional
four-potential for conciseness.

By integrating out the fermionic degree of freedom Ψ̂ and
expanding the resultant action to the second order in Aμ and ηðpÞa ,
we obtain an effective action for η and A:

SðpÞ
eff ¼

1
2
�∑
Ω
ðA0; η

ðpÞ
a Þ-iΩ

K00 LðpÞ0b

RðpÞ
0ν

~Π
ðpÞ
ab

 !
A0

ηðpÞb

 !
iΩ

þ 1
2
�∑
Ω
ðAi; η

ð�pÞ
a Þ-iΩ

Kij Lð�pÞib

Rð�pÞ
aj

~Π
ð�pÞ
ab

0
@

1
A Aj

ηð�pÞb

 !
iΩ

;

ð37Þ

where �p denotes the odd-parity(even-parity) pairing channel in
eSC (oSC) state, which is the uncondensed pairing channel. Note
that we omit the momentum q dependence of η and A since the
London limit (q→ 0) of the linear response is our interest. The
sub-blocks K, L, R, and ~Π are given by

KμνðqÞ ¼
1
2
�∑
k
Tr ½VμðkÞGðkþ qÞVνðkÞGðkÞ�

þ �∑
k
Tr ½GðkÞ½m�1

k �μν �;
ð38Þ

LðpÞμa ðqÞ ¼
1
2
�∑
k
Tr ½VμðkÞGðkþ qÞτðpÞa GðkÞ�; ð39Þ

RðpÞ
aμ ðqÞ ¼

1
2
�∑
k
Tr ½τðpÞa Gðkþ qÞVμðkÞGðkÞ�; ð40Þ

~ΠðpÞ
ab ðqÞ ¼

δab
gp

þ 1
2
�∑
k
Tr ½τðpÞa Gðkþ qÞτðpÞb GðkÞ�; ð41Þ

with q= (iΩ, 0) and for p= e, o.

Derivation of ~K . The current Ji(Ω) in response to the external
electromagnetic vector potential is derived by differentiating SðpÞ

eff
with respect to the vector potential Aið�iΩÞ and then taking the
analytic continuation iΩ→Ω+ iϵ.

JiðΩÞ ¼
δSðpÞ

eff

δAið�iΩÞ

�����
iΩ!Ωþiϵ

¼ KijðΩÞAjðΩÞ þ Lð�pÞia ðΩÞηð�pÞa ðΩÞ;
ð42Þ

where we use an identity Kij(Ω)= Kji(−Ω) and
Lð�pÞia ðΩÞ ¼ Rð�pÞ

ai ð�ΩÞ. By substituting ηð�pÞ ¼ �½~Πð�pÞ��1Rð�pÞA for ηð�pÞ

in Eq. (42), we obtain

Ji ¼ Kij � ½Lð�pÞ½~Πð�pÞ��1Rð�pÞ�ij
n o

Aj; ð43Þ

where the argument Ω of each function is omitted for con-
ciseness. Note that the term in parenthesis is nothing but ~K in
Eq. (19).
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Spectral representation of LðoÞz;2 in the eSC state. The spectral
representation of LðpÞμa ðqÞ is derived by carrying out the Matsubara
frequency summation. Starting with the definition, we obtain

Lð�pÞμa ðΩÞ ¼
1
2
�∑
k
Tr½Vμ;kGðiωn þ iΩν ; kÞτð�pÞa GðkÞ�

����
iΩν!Ωþ

¼ 1
2
�∑
k

hm; kjVμ;kjn; kihn; kjτð�pÞa jm; ki
ðiωu þ iΩv � En;kÞðiωu � Em;kÞ

�����
iΩν!Ωþ

¼ 1
2
�∑
k

hm; kjVμ;kjn; kihn; kjτð�pÞa jm; ki
Ωþ � En;k þ Em;k

Θmn;k;

ð44Þ

where Θmn,k≡Θ(Em,k)−Θ(En,k) and Ω+=Ω+ iϵ.

Other odd-parity channels. In this section, we discuss the linear
couplings between the other odd-parity channels and the light (or
the current) when the zero-field ground state is an even-parity
state. We first note that the presence of an inversion I ¼ σx and a
time-reversal symmetry T ¼ isyK forces the normal phase
Hamiltonian to take the following form:

H0ðkÞ ¼ ε00ðkÞσ0s0 þ ðε10ðkÞσx þ ε20ðkÞσyÞs0
þσzðε31ðkÞsx þ ε32ðkÞsy þ ε33ðkÞszÞ

ð45Þ

where ε00(k) and ε10(k) are even functions under k→−k while
ε20(k) and ε3i(k) are odd functions. The linear coupling between a
pairing channel and the light is possible only when the pairing
channel transforms like one of the current operators Ji under the
symmetries of H0(k). For CeRh2As2, the point group D4h is the
symmetry of the Hamiltonian at Γ in the Brillouin zone. By using
the symmetries of the point group D4h, we analyze the selection
rule for odd-parity channels transforming like kxsy−kysx, kzsz,
kzσxsz, or kxsx+ kysy which are discussed in ref. 41.

Table 1 summarizes the parities of the current operators and
the form factors of those odd-parity channels with respect to
several two-fold symmetries in D4h. The signs tell whether TO(k)
T−1=+O(Tk) or TO(k)T−1=−O(Tk) where O represents one
of the currents or the form factors in the first column of Table 1
and T represents a symmetry transformation in the first row.

Firstly, the linear coupling between the in-plane currents Jx and
Jy and the odd-parity gap functions in Table 1 is forbidden by, for
example, C2z. It is easy to see that the odd-party channels
transforming like kxsx+ kysy or kzsz can not be linearly coupled to
the light because of C2z and C2x. The odd-parity channel labeled
by kxsy−kysx transforms like Jz for all two-fold symmetries in D4h.
Indeed, Jz and kxsy−kysx belong to the same irreducible
representation, and thus kxsy−kysx can be coupled to the light
as σz can.

In the above symmetry-based analysis, however, the details of
the electronic structure are not taken into consideration. For
CeRh2As2, the large contribution to ε33(k) may be supposed to
originate from the Ising-type spin–orbit couplings between next-
nearest-neighboring Ce atoms. As long as this Ising-type
spin–orbit coupling is so negligible that ε33 is also negligible
compared to other εij, the coupling between kxsy−kysx and Jz is
expected to be much smaller than that between σz and Jz.

To prove it, we first note that the non-trivial part of the normal
phase Hamiltonian

~H0ðkÞ � H0ðkÞ � ε00ðkÞσ0s0 ð46Þ
is subject to an additional antiunitary antisymmetry A ¼ UAK of
~H0ðkÞ with UA ¼ iσysx . It transforms under A as

UA ~H0ðkÞ�Uy
A ¼ �~H0ðkÞ. By A, the eigenvectors jξ1; αi and

jξ1; βi are related to jξ2; αi and jξ2; βi:
A ξ1; α
�� � ¼ ∑

α0¼α;β
½ΓA�α0;α ξ2; α

0�� �
; ð47Þ

A ξ2; α
�� � ¼ ∑

α0¼α;β
½�ΓTA�α0;α ξ1; α

0�� �
; ð48Þ

where ΓA is a 2 × 2 unitary matrix. Here, we use UA ¼ �UT
A.

The antiunitary antisymmetry of ~H0 is especially useful when
the linear coupling is computed between the current operator Jz
and the pairing fluctuations with the form factor Mk in the eSC
state with the trivial ground state gap function. In the calculation,
we frequently encounter terms such as Im�m ¼
∑α;βhm; αjJzj�m; βih�m; βjMkjm; αi with �m ¼ �m being 1 or 2,
which determine the selection rule for the optical response. A
tedious manipulation leads us to

Im�m ¼ λJzλMIm�m; ð49Þ
where λO is the parity of the operator O with respect to A. Thus,
if λJzλM ¼ �1, the linear coupling between the light and the
pairing fluctuation characterized by the form factor Mk is
forbidden. Note that both Jz and σz are odd under A while
kxsy−kysx is even. Therefore, the linear coupling between the light
and the fluctuation in the pairing channel kxsy−kysx is negligible
as long as the Ising-type spin–orbit coupling is negligible. This
argument is also applicable even when the Zeeman term Bzsz
induced by the out-of-plane magnetic field is added to ~H0ðkÞ.

For completeness, let us discuss the case discussed in ref. 21 in
which it is proposed that the H−T phase diagram of the
superconducting states of CeRh2As2 might be reproduced with
inter-layer spin-triplet odd-parity gap functions. There, the low-
field state is characterized by an odd-parity spin-triplet gap
function transforming like kxkykzðk2x � k2yÞσxsz that belongs to
A1u of D4h. The gap function of the high-field state is another
odd-parity spin-triplet gap function transforming σysz belonging
to A1u of D4h. For this case, a BS mode should exist because both
pairing channels belong to different irreducible representations.
Since both pairing channels have the same inversion parity,
however, the BS mode is inactive in the linear optical response.

Relation between the critical temperatures and BS mode gap.
Eq. (17) is derived in this section. To derive it, it is sufficient to
obtain the analytical expression of ΠðoÞ

22 ðΩÞ ¼ g�1
o � ~ΠðoÞ

22 ðΩÞ for
∣Ω∣ < 2Δe. To get to the point first,

ΠðoÞ
22 ðΩÞ � �hsin2χi 1

go
þ N tot

2y arcsin yffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
( )

: ð50Þ

with y=Ω+/2Δe and Ntot=N1+N2, which is used throughout
this section. Here, Ni is the density of states at the Fermi surface

Table 1 Symmetry properties of the current operators
(Jx, Jy, Jz) and several odd-parity gap functions.

I ðσxÞ C2z (sz) C2x (σxsx) A ðσysxKÞ
Jz, σz − + − −
{Jx, Jy} − − {+,−} −
kxsy−kysx − + − +
kzsz − + + −
kxsx+ kysy,
kzσxsz

− + + +

The first column shows the forms of the odd-parity gap functions considered as well as the
current operators. The first row shows the representative two-fold symmetries of the normal
state Hamiltonian H0 in Eq. (45). A is the antiunitary antisymmetry of ~H0ðkÞ in Eq. (46). The
matrix representations of the two-fold symmetries are given in the parentheses. The
signs ± mean TOT−1= ±O where O is an operator in the first column and T is a two-fold
symmetry in the first row.
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from the band ξi. (Counting the Kramer degeneracy, 2Ntot is the
total density of states).

For later use, we first evaluate ΠðoÞ
22 ð0Þ using the identity

½τzσz;GðkÞ�1� ¼ �2iτðoÞy Re½Δe� � 4iFA: ð51Þ
where 4iFA≡ [σz,H0]. This commutator appears in literature that
is concerned with the concept of superconducting fitness21. When
the Ising-type spin–orbit coupling is ignored (λI= 0) in Eq. (1),
FA= Jz is satisfied. Given the self-consistent gap equation
2Re½Δe� ¼ �ge Tr ½τxGðkÞ� and FA= Jz, we get

ΠðoÞ
22 ð0Þ ¼ � 1

ge
� �∑

k

Tr ½τyσzGðkÞFAðkÞGðkÞ�
Re½Δe�

ð52Þ

¼ � 1
ge

� 2LðoÞz;2ð0Þ
Re½Δe�

� � hsin2χi
ge

; ð53Þ

where we use Eq. (24) for the last approximation.
To calculate ΠðoÞ

22 ðΩÞ, let us first decompose ΠðoÞ
22 ðΩÞ at zero-

temperature into the singular and regular parts as

ΠðoÞ
22 ðΩÞ ¼ Πðo; sigÞ

22 ðΩÞ þ Πðo; regÞ
22 ðΩÞ; ð54Þ

with

Πðo; sigÞ
22 ðΩÞ ¼ �∑

k
∑

i¼1;2

4Ec;i sin
2χ

ðΩþÞ2 � 4E2
c;i

;

Πðo; regÞ
22 ðΩÞ ¼ �∑

k

4cos2χ cos2 Ξ1�Ξ2
2 ðEc;1 þ Ec;2Þ

ðΩþÞ2 � ðEc;1 þ Ec;2Þ2
;

ð55Þ

where we use

jhξi; sjσzjξj; s0ij ¼ ð1� δss0 Þ
j sin χj i ¼ j

j cos χj i≠ j

�
; ð56Þ

c; i; sh jτðoÞy jv; j; s0i ¼ 1
i
cos

Ξj � Ξi

2
hξi; sjσzjξj; s0i: ð57Þ

The potential singularities of Πðo; regÞ
22 ðΩÞ lie at Ω= Ec,1+ Ec,2≫

2Δe, and thus it behaves regularly for ∣Ω∣ < 2Δe. Also, it is
expected to be very small compared to the singular part Πðo; sigÞ

22 .
Thus, ignoring it can be justified as far as the semi-analytical
expression for ΩBS is concerned. This approximation, ΠðoÞ

22 ðΩÞ �
ΠðoÞ

22 ð0Þ is given by

ΠðoÞ
22 ðΩÞ � ΠðoÞ

22 ð0Þ ¼ �∑
k
∑
i

ðΩþÞ2sin2χ
Ec;iððΩþÞ2 � 4E2

c;iÞ

¼ �hsin2χiN tot
2y arcsin yffiffiffiffiffiffiffiffiffiffiffiffiffi

1� y2
p :

ð58Þ

Therefore, we obtain

~ΠðoÞ
22 ðΩÞ ¼

1
go

þ ΠðoÞ
22 ðΩÞ

¼ 1
go

� hsin2χi 1
ge

þ 2N toty arcsin yffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
 !

:

ð59Þ
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