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Larmor precession in strongly correlated itinerant
electron systems
Erik G. C. P. van Loon 1✉ & Hugo U. R. Strand 2,3✉

Many-electron systems undergo a collective Larmor precession in the presence of a magnetic

field. In a paramagnetic metal, the resulting spin wave provides insight into the correlation

effects generated by the electron-electron interaction. Here, we use dynamical mean-field

theory to investigate the collective Larmor precession in the strongly correlated regime,

where dynamical correlation effects such as quasiparticle lifetimes and non-quasiparticle

states are essential. We study the spin excitation spectrum, which includes a dispersive

Larmor mode as well as electron-hole excitations that lead to Stoner damping. We also

extract the momentum-resolved damping of slow spin waves. The accurate theoretical

description of these phenomena relies on the Ward identity, which guarantees a precise

cancellation of self-energy and vertex corrections at long wavelengths. Our findings pave the

way towards a better understanding of spin wave damping in correlated materials.
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Magnetization dynamics is a field with great technological
and scientific importance, with topics ranging from
magnetic data storage1,2 to magnetic skyrmions3, the

ultrafast optical manipulation of magnetism4,5, and the properties
of earth’s core6. Although magnetization dynamics in solids is
frequently modeled using localized magnetic moments7, it fun-
damentally originates from the electrons and their quantum
mechanical delocalization and Coulomb interaction. The
description in terms of immobile moments is a particularly
drastic approximation for metals with itinerant electrons.

The application of an external magnetic field leads to spin waves
in paramagnetic metals. The dispersion relation of the spin wave
ωL(q) has a universal value at zero momentum q= 0, corre-
sponding to the Larmor precession of the system’s total magnetic
moment, while ωL(q) depends on the interactions and correlations
in the system at finite q8–12. In a Fermi liquid, conduction-electron
spin resonance experiments in the presence of a magnetic field can
be used to extract the magnetic Landau parameters B0, B1 based on
this effect10,13, which was a crucial confirmation of Fermi liquid
theory for the alkali metals in the late 1960s and early 1970s11.
Given the current interest in and limited understanding of non-
Fermi liquid behavior in correlated electron systems14,15, similar
studies of spin waves in the presence of a magnetic field have the
potential to provide additional insight.

In addition to the dispersion, there is also the question of spin
wave damping. For systems with SU(2) spin symmetry, the uni-
form Larmor precession is undamped, so the damping of the
associated spin wave should vanish at long wavelengths
(q→ 0)11, similar to plasmons16. At finite wavelength (∣q∣ > 0),
the collective mode can be damped by electron–hole excitations
(Stoner/Landau damping16) and the finite quasiparticle lifetime of
the interacting electrons, i.e., electron–electron scattering. The
latter is a paradigmatic example of a correlation effect, making it
hard to model adequately.

In this work, we study the magnetization dynamics and
damping of spin waves in the Hubbard–Zeeman model (Fig. 1a).
We use dynamical mean-field theory (DMFT)17,18 to handle
strong correlations while maintaining the appropriate Ward
identities19–21. We show the importance of dynamical correlation
effects for the spin excitation spectrum, leading to changes in the
dispersion and the damping as well as the appearance of an
additional spin wave mode.

Results
Larmor precession. A single magnetic moment in an external
magnetic field B~ez will partially align itself with the magnetic field
while the in-plane component undergoes Larmor precession with a
characteristic frequency ωL= B. For a larger system composed of
several electrons or magnetic moments, a similar precession occurs
for the total magnetization~ST ¼ ∑a

~Sa. If the Hamiltonian without
field H0 is SU(2) spin-symmetric, and H ¼ H0 � BSzT , then the
Heisenberg equation of motion for the total magnetization and the
precession frequency ωL= B is identical to that of the single
moment, independently of the details of the system (see Methods).
Here, we have incorporated the g-factor into the definition of B,
and we use ℏ= 1. The Larmor precession is undamped, a fact that
follows directly from the Heisenberg equation of motion.

Hubbard model. We now consider the single-orbital Hubbard
model on the square lattice, i.e., H0 ¼ �t∑ abh i;σc

y
aσcbσþ

U∑ana"na#, where cyaσ creates an electron on site a with spin
σ∈ {↑, ↓}, caσ is the corresponding annihilation operator, naσ ¼
cyaσcaσ is a number operator, and the sum ∑ abh i goes over pairs of
neighboring sites a, b. The local spin operator~Sa has components

Sηa ¼ ∑σσ 0c
y
aσσ

η
σσ 0caσ 0 , where σ

η, η∈ {x, y, z} are the Pauli matrices.
The parameter t is the hopping matrix element, and U is the
Coulomb repulsion between electrons on the same site. As U
increases, the system becomes more and more correlated. The
bandwidth is 8t, and we use units of energy t= 1. We consider
this model in thermodynamic equilibrium, in the grand canonical
ensemble at fixed temperature T= 1/β, chemical potential μ, and
magnetic field B. The simulations in the figures are for T= 1/10
and B= 2. The model is illustrated in Fig. 1a. The magnetization
dynamics in equilibrium are encoded in the spatiotemporal cor-
relation function χðt; rÞ ¼ hSxðt; rÞSxð0; 0Þi and its Fourier trans-
forms χ(ω, q), which we call the susceptibility. We look at the spin
components orthogonal to the field since these show the collective
Larmor precession.

Using DMFT, we can calculate both the susceptibility defined
above and single-particle properties such as the spectral function
Aσ(E, k) and the average density and magnetization, Nh i and Szh i,
which are shown in Fig. 1b. The DMFT calculations take into
account (dynamical) correlation effects such as finite electronic
lifetimes, bandwidth renormalization and spectral weight transfer,
as well as the associated vertex corrections to the susceptibility.
These vertex corrections are needed to satisfy the Ward identities,
an exact relation between single-particle and two-particle proper-
ties. Only approximations that satisfy the Ward identities are
guaranteed to find the undamped Larmor precession at the
correct frequency19,21,22 (see “Methods”). Essentially, the Ward
identities lead to a precise cancellation of self-energy effects and
vertex corrections for the Larmor precession. We compare the
resulting susceptibility to the random phase approximation
(RPA). Via the Ward identities, the RPA corresponds to taking
into account only static Hartree shifts in the band structure, and it
is therefore only applicable to weakly correlated systems.

Moderate correlation. The electron–electron interaction U leads
to a finite quasiparticle lifetime for electrons away from the Fermi

Fig. 1 The Hubbard–Zeeman model. a Electrons on a lattice with hopping
parameter t, Hubbard interaction U and Zeeman magnetic field B. b Density
hNi ¼ hn"i þ hn#i in the Hubbard–Zeeman model, calculated using
dynamical mean-field theory (DMFT, blue) and the Hartree approximation
(H, orange). Similarly, the magnetization 2hSzi ¼ hn"i � hn#i in DMFT
(green) and Hartree (red). Calculations with temperature T= 1/10,
magnetic field B= 2, and chemical potential μ= ± 1. c Stoner enhancement
of the band splitting. The interaction leads to an enhanced effective
Zeeman field Beff and, therefore, a larger splitting between the minority
(solid blue) and the majority (solid red) bands E↑(k), E↓(k) than in the non-
interacting system (dashed blue and dashed red, respectively), where k is
taken along the Γ–X–M–Γ high-symmetry path.
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level, as is visible in the band broadening in Fig. 2a, b. Further-
more, there is a Stoner enhancement of the magnetic field
(Fig. 1c), which would be given by Beff ¼ Bþ 2U Szh i in the
Hartree approximation. In fact, this static Hartree mean field
overestimates the Stoner enhancement. A minority electron can
be on a site precisely at times when there is no majority electron
there. The inclusion of these dynamical correlations reduces the
spin polarization 〈Sz〉, as is visible in Fig. 1b. This is a clear sign of
the importance of dynamical correlations even at moderate
interaction strengths. Finally, we note the spectral weight transfer
away from the main minority spin band, visible in the spectral
function A↓(E, k) in Fig. 2a, b.

Looking at χ(ω, q), the spin excitation at the Γ-point (i.e.,
q= 0) is fixed at the bare Larmor frequency ωL(0)= B= 2, as
required by the Heisenberg equation of motion and as guaranteed
by DMFT’s Ward identities, see Fig. 2c, d. Universality is lost
when moving away from Γ to finite momenta ∣q∣ > 0. As in the
Fermi liquid (see Supplementary Note 1), the Larmor mode
disperses downwards, allowing for a determination of Landau
parameters10,13 in principle. At the same time, the electron-hole
continuum emanates at Γ from the renormalized frequency given
by the effective field Beff ¼ Bþ 2U Szh i. Broadening of the
Larmor mode due to finite electronic lifetimes is allowed for
any q ≠ 0 and is clearly visible in Fig. 2c, d. Once the Larmor
mode and the electron–hole continuum meet further away from
Γ, the Larmor mode can decay into electron-hole pairs (the
Stoner/Landau damping), and the mode broadens further. Deep
in the Brillouin zone, there is a rich energy and momentum
structure in χ reflecting the particular fermiology at a given filling,
including low-energy modes that are indicative of a tendency
toward magnetic ordering. Our DMFT simulations have a limited
energy resolution and cannot resolve the details of these
structures, but they are clearly visible in RPA, see Fig. 3. At the
same time, RPA does overestimate this tendency towards
magnetic ordering23, which is reflected in the much larger low-
energy spectral weight in the RPA susceptibility. Finally, Fig. 2c, d

also shows the low-frequency limit of the susceptibility, α(q),
which will be discussed in more detail below. The relation to spin-
wave spectra in systems with spontaneously broken symmetry24

is discussed in Supplementary Note 2.

Strong correlation. At larger interaction strengths, the electronic
structure changes qualitatively, as shown in Fig. 4a, b, becoming
reminiscent of a ferromagnetic half-metal25. Due to the large
Stoner enhancement of the magnetic field, no minority electrons
are present, visible as 〈N〉 ≈ 2〈Sz〉 in Fig. 1b. As a result, the
majority electrons move as free electrons according to their non-
interacting band structure with very long lifetime (no band
broadening). For the minority electrons, on the other hand, there
are both quasiparticle states which are shifted to high energies
due to the Stoner-enhanced field, and states just above the Fermi
level where the minority and majority electrons move coherently
so as to avoid doubly occupying a site. The electron–electron
interaction also leads to scattering and, thus, to a finite lifetime of
the minority electrons (band broadening). The precise structure
of these features in the minority spectral function depends
strongly on the chemical potential μ, which controls the filling of
the majority band. A wider set of Hubbard interaction strengths is
shown in Supplementary Note 3.

Studying χ(ω, q) in Fig. 4c for μ= 1, two electron-hole
continua are visible close to Γ. One of them emanates from the
expected high energy given by the effective magnetic field Beff,
while the one at lower energy originates from transitions between
the majority band and the lower minority band. Thus, the spectral
weight transfer at the single-particle level is reflected in the spin
susceptibility, similar to the observation for plasmons20. The
appearance of this additional branch is an entirely dynamic
correlation-driven effect that is beyond Hartree and the
corresponding RPA. For μ=− 1 in Fig. 4b, d, the high-energy
branch of the minority single-particle spectrum is very weak, and

Fig. 2 Moderate correlation. a, b Single-particle spectral function Aσ(E, k)
at a Hubbard interaction U= 4 for chemical potential a μ= 1 and b μ=− 1.
The associated density Nh i and magnetization Sz

� �
are indicated.

c, d Susceptibility Imχðω; qÞ and damping αðqÞ ¼ ∂ Imχðω; qÞ=∂ωjω¼0 for
c μ= 1 and d μ=− 1. All momenta are taken along the Γ–X–M–Γ high-
symmetry path. Calculations using dynamical mean-field theory (DMFT).

Fig. 3 Static mean-field. a, b Hartree approximation for the band structure
at chemical potential μ= 1 and a Hubbard interaction a U= 4 and b U= 9.
Note that the bands are perfectly sharp in the Hartree approximation, so no
color bar is shown. The associated density Nh i and magnetization hSzi are
indicated. c, d Susceptibility Imχðω; qÞ and damping αðqÞ ¼
∂ Imχðω; qÞ=∂ωjω¼0 for c U= 4 and d U= 9, calculated using the random
phase approximation (RPA). All momenta are taken along the Γ–X–M–Γ
high-symmetry path. Note that α(q) < 10−3 for all momenta in (d).
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as a result, there are also no high-energy excitations in the
susceptibility at Beff ≈ 6.3.

Although U= 9 is clearly outside the formal range of
applicability of RPA, it is worthwhile to consider how RPA fails
by comparing Figs. 3d and 4c. The RPA incorrectly predicts an
extremely sharp Larmor mode throughout the Brillouin Zone.
The reason for this is that RPA only contains damping from
electron–hole excitations, and it overestimates the energy of the
minority electrons substantially since the Hartree band structure
lacks the lower minority branch.

Weak correlation. For very small values of U, RPA is known to
be accurate, and the comparison of RPA and DMFT can be used
to assess the quality of the DMFT calculations. Figure 5 shows
that both methods indeed give qualitatively similar results: low
energy spectral weight in large parts of the Brillouin Zone except
close to M, maximum energy ω ≈ 6 at X, and one upwards and
one downwards dispersing mode close to Γ. Note that the Stoner
enhancement 2U Szh i is so small that it is not possible to observe
the splitting between the Larmor mode and the electron–hole
continuum in either figure. We have a much better energy (and
momentum) resolution in RPA, which makes it possible to
resolve the sharp features that characterize electronic quasi-
particles with a very long lifetime. Note that U > 0, so DMFT
already contains some finite lifetime effects and should not be
expected to match the RPA exactly.

Damping of slow modes. Low-energy (slow) magnetization
dynamics can be described using the Landau–Lifshitz–Gilbert
equation7, which contains the Gilbert damping as a parameter. In
general, the Gilbert damping can be nonlocal, although it is fre-
quently assumed to be local (q-independent) for convenience. To
connect magnetization dynamics to first-principles calculations, it
is necessary to extract the damping parameter from an electronic
model. Several mechanisms contribute to the damping of

low-energy modes in real materials, including spin–orbit cou-
pling, coupling to the lattice and impurities, decay of spin waves
into electron-hole excitations, and finite electronic lifetimes. In
our model, there is no spin–orbit coupling or coupling to the
lattice or impurities by construction, which gives us a clear view
of the physics of electron–hole excitations and finite electronic
lifetimes. We should stress that spin-orbit coupling is the main
damping mechanism for spin waves in many magnetic materials
and can, in principle, be included in multi-orbital DMFT calcu-
lations. To connect our electronic model to slow magnetization
dynamics26–28, we study αðqÞ ¼ ∂ Imχðω;qÞ

∂ω jω¼0, which is shown
below, the color maps in the Imχðω; qÞ figures. Note that we show
α(q) on a logarithmic scale with a lower cut-off at 10−3.

Starting with the weakly correlated system, Fig. 5 shows the
quantitative agreement of α(q) between DMFT and RPA. Since
RPA is known to be accurate in this regime, this provides
confidence in the numerical methods used to extract α(q) from
the analytically continued DMFT spectra. At this small value of
U, α(q) is relatively flat in a large part of the Brillouin Zone and
quickly drops close to Γ. In RPA, the damping of slow modes α(q)
is non-zero when the transferred momenta q connects the
minority and majority Fermi surfaces (see Supplementary Fig. 2)
since that is where electron-hole damping at ω= 0 is possible. For
larger values of U, α(q) becomes more momentum-dependent,
i.e., less local. We find that the RPA does not describe α(q) in
moderately and strongly correlated systems accurately. It under-
estimates the damping by electron-hole excitations since it puts
the electron-hole continuum too far away. At strong coupling, it
also completely lacks the lower electron–hole excitation branch.
As a result, at U= 9, the RPA predicts a negligible damping of
slow modes even though the DMFT calculation shows a
substantial damping deep in the Brillouin Zone. At moderate
correlation strength, U= 4, the RPA overestimates the tendency
towards magnetic ordering and thereby also α(q). For additional
analysis of the structure of α in real space see Supplementary
Note 4.

Energy scales. For clarity, we have illustrated the Larmor pre-
cession in situations where the Zeeman splitting is smaller than
but comparable to the electronic bandwidth. In practice, the Bohr
magneton μB= 5 × 10−5 eV/T leads to sub-meV Larmor fre-
quencies at realistic magnetic field strengths, substantially below
the relevant electronic bandwidth in conventional materials. For
that reason, the magnetization dynamics and electronic dynamics
can frequently be considered as decoupled phenomena. On the

Fig. 4 Strong correlation. a, b Single-particle spectral function Aσ(E, k) at a
Hubbard interaction U= 9 for chemical potential a μ= 1 and b μ=− 1. The
associated density hNi and magnetization hSzi are indicated.
c, d Susceptibility Imχðω; qÞ and damping αðqÞ ¼ ∂ Imχðω; qÞ=∂ωjω¼0 for
c μ= 1 and d μ=− 1. All momenta are taken along the Γ–X–M–Γ high-
symmetry path. Calculations using dynamical mean-field theory (DMFT).

Fig. 5 Weak correlation. The susceptibility Imχðω; qÞ and damping αðqÞ ¼
∂ Imχðω; qÞ=∂ωjω¼0 for a dynamical mean-field theory (DMFT) and b the
random-phase approximation (RPA), both at Hubbard interaction U= 1 and
chemical potential μ=− 1. The density Nh i, magnetization hSzi,
susceptibility, and damping are similar in both approaches. Note that we
are able to perform the RPA calculations with much higher energy
resolution. All momenta are taken along the Γ–X–M–Γ high-symmetry path.
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other hand, extremely narrow bands can be created in artificial
superlattices, such as twisted bilayer graphene29, transition metal
dichalcogenide bilayers30–32, and fermions in optical lattices33.
These systems are promising experimental platforms for studying
the collective Larmor precession and the electron–hole continua.

Discussion
We have studied the collective Larmor precession of correlated
electron systems in the presence of a Zeeman field. A comparison
of RPA and DMFT calculations shows that dynamical correlation
effects are crucial in the moderate and strong correlation regime
for the dispersion and damping of the spin excitations as well as
for the single-particle spectrum. The damping is due to a com-
bination of Stoner damping by electron–hole excitations (present
but underestimated in RPA), finite electronic lifetimes, and vertex
corrections (both correlation effects beyond RPA). The DMFT
susceptibility, however, can describe all of these effects since it
satisfies the Ward identities. The resulting damping of slow
modes by electronic excitations is strongly momentum-
dependent.

Current state-of-the-art calculations of the damping of slow
modes in the spin dynamics are restricted to static mean-field
approximations7,28. For this level of theory, the torque-torque
correlator approach34 is applicable for damping of spatially uni-
form spin excitations, i.e., at small momenta (∣q∣ ≈ 0). However,
in several canonical systems like Fe and Ni, many-body correla-
tions beyond static mean-field are important6,35,36, and they
drastically influence the Gilbert damping28. To account for these
effects, ad hoc quasi-particle lifetimes have been introduced in the
calculation of the mean-field torque-torque correlator28,34,37.
Formally this is equivalent to a calculation using the RPA where
only the bubble susceptibility is independently modified to
account for many-body effects on the single-particle level.
However, this completely neglects vertex corrections on the two-
particle level, which are a priori just as important, and breaks the
Ward identities. It also does not take into account the splitting of
the minority electron spectral function. These facts hinder
quantitative calculations of the contribution of electronic pro-
cesses to the Gilbert damping when electronic correlations are
important.

For correlated metals like Fe and Ni, the quantitative calcula-
tion of Gilbert damping due to electron-electron scattering
requires a consistent treatment of single-particle and two-particle
correlation effects. In fact, a perfect cancellation of the two effects
occurs in the long-wavelength limit as a consequence of the Ward
identities. Hence, we conjecture that DMFT, which satisfies the
Ward identity, is able to describe Gilbert damping due to
electron–electron scattering accurately. A full account of Gilbert
damping needs to take into account spin–orbit coupling as well
since it is the dominant mechanism at long wavelengths and
survives in the limit q→ 0. Spin–orbit coupling can be taken into
account in DMFT, so a generalization of the current set-up to
multiorbital systems is able to incorporate this mechanism.

Methods
DMFT calculations. The numerical calculations in this work are
based on the toolbox for research on interacting quantum systems
(TRIQS)38 and the two-particle response function toolbox
(TPRF)39. The DMFT self-consistency cycle was performed using
continuous time hybridization expansion quantum Monte
Carlo40–43 as implemented in TRIQS44, while the two-particle
correlation functions of the impurity model were calculated with
worm sampling45,46 using the Wien/Würzburg strong coupling
solver (W2Dynamics)47. Worm sampling is needed to get access to
the full orbital structure of the correlation functions. Based on these

ingredients, we calculate the DMFT lattice susceptibility18,48–53,
using an efficient implementation54 of the Bethe–Salpeter equation
to improve the frequency convergence. This implementation cor-
responds to the dual boson version of the DMFT susceptibility19,55,
generalized to systems with inequivalent orbitals, and is called the
dual Bethe–Salpeter equation (DBSE). This formalism uses the
impurity susceptibility χimp(ωm), which in principle can be sampled
in the worm CTHYB, but that turned out to be difficult to measure
with sufficient accuracy due to ergodicity problems, especially at
low frequency. Fortunately, χ(ωm, 0) is known exactly (see below).
Figure 6 shows the mismatch between the calculated and analytical
susceptibility due to the uncertainty in χimp. We introduce a
momentum-independent correction, χcorrected(ω, q)= χ(ω, q) +
χanalytical(ω, 0)− χ(ω, 0) to enforce the exact result at q= 0. This
procedure is similar in spirit to the correction applied by Niyazi
et al.24, although χanalytical is different in this case.

A momentum discretization of 16 × 16 is used for the DMFT
and DMFT-DBSE calculations, which is sufficient for the chosen
parameter regime. The single-particle spectral function Aσ(E, k) is
plotted on a denser momentum grid for visual purposes, this
momentum-grid conversion is possible since Σ is local in DMFT.

We note that the calculations presented here take place above
Tc, so DMFT’s problems with low-temperature spurious
ordering56 (at B= 0) are not an issue. We checked that the
leading eigenvalues of the DBSE are below unity to ensure that no
ordering phase transition takes place.

The final part of the calculation is the maximum entropy
(MaxEnt) analytical continuation57 of the susceptibility
χcorrected(ωm, q) and the single-particle Green’s function from
Matsubara to real frequency. For this, we use the Python package
for analytic continuation (ana_cont)58. Analytical continuation
from Matsubara to real frequency data is an intrinsically hard
computational problem, and many methods to perform the
continuation have been discussed in the literature, also for
susceptibilities (i.e., bosonic functions)59–61. The result of an
analytical continuation is, in some sense, only the most probable
result consistent with the Matsubara data. Here, we have
performed MaxEnt continuation with automatic tuning of the
hyperparameter, as implemented in ana_cont. A constant noise
amplitude of 10−3 is assumed for the susceptibility (10−2 for the
spectral function), and results were checked to be qualitatively
stable under variation of this parameter. A flat default model was
assumed.

Fig. 6 Exact long-wavelength limit. Matsubara axis susceptibility
χ(ωm, q= 0) for several values of the Hubbard interaction U. The symbols
show the calculated dynamical mean-field theory (DMFT) susceptibility,
the lines are the exact result of Eq. (2). Both χS

xSx and χS
xSy are shown.
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It is useful to discuss which features in our analytically continued
spectra can be relied upon and which properties are more
uncertain. Analytical continuation is especially difficult when the
Matsubara data is subject to statistical noise, as in our DMFT
calculations. Here, we have the advantage that we know the
analytical form at q= 0, and we have used this to remove the
dominant Monte Carlo uncertainty (see above). Thereby, we
recover the expected sharp Larmor peak at q= 0. We also observe
the correct number of spin excitation branches based on the single-
particle spectra. The continuation at different momenta is
performed independently, and the lack of discontinuities is a good
sign for the quality of the continuation. On the other hand, the
continuation is likely to blur sharp structures within a region of
finite spectral weight, making it hard to identify possible splitting
within the collective modes62 that has been discussed for charge
fluctuations in the Hubbard model. Analytical continuation is
known to be more reliable at low energies than at high energies.
This makes the extraction of α(q) relatively safe. On the other hand,
in Fig. 4b at μ=− 1, very diffuse high-energy weight is observed in
A↓(E, k) and no spectral weight is observed in Imχðω; qÞ in Fig. 4d.
Given the limitations of analytical continuation, it is hard to rule
out that the true Imχðω; qÞ at these parameters has a small amount
of high-energy spectral weight.

RPA calculations. We have also calculated the susceptibility in
the RPA. This takes into account the Hartree renormalization of
the band structure and the corresponding static, unrenormalized
vertex only, making it inapplicable in the strongly correlated
regime. It has the advantage that exact, high-resolution simula-
tions can be done easily, so it is valuable as a reference. DMFT, on
the other hand, includes local dynamical correlations, including
finite electronic lifetime effects and a local dynamical vertex, so it
can describe the strong correlations that we are interested in here.
DMFT simulations are computationally more expensive and
require analytical continuation (see above), substantially limiting
the attainable energy resolution. We note that both the RPA and
DMFT susceptibilities satisfy the Ward identities, which guar-
antees exact relations at long wavelengths, where Larmor pre-
cession takes place. Supplementary Note 1 contains a study of the
homogeneous electron gas using RPA, which clearly illustrates the
physical content of the approximation.

Larmor precession. General properties of many-body Larmor
precession in the presence of a Zeeman field have been studied in
several works, see, e.g., Refs. 11,12,22. Here, we provide the
necessary derivations in a form that closely matches the DMFT
results presented in this work.

For a lattice model, Larmor precession in the presence of a
Zeeman field occurs for the total magnetization ~ST ¼ ∑a

~Sa,
where ~Sa is the spin on site a and the sum runs over the entire
lattice. We consider a Hamiltonian Ĥ ¼ Ĥ0 � BŜ

z
T , where H0 is

the SU(2) symmetric Hamiltonian without the field; we have
incorporated the g-factor into the definition of B, and ℏ= 1. The
Heisenberg equation of motion for the total magnetization h~STi is
identical to that of a single magnetic moment

d
dt

Ŝ
x
T

D E
¼ i ½Ĥ; Ŝ

x
T �

D E
¼ �iB ½ŜzT ; Ŝ

x
T �

D E
¼ B Ŝ

y
T

D E
;

d
dt

Ŝ
y
T

D E
¼ �B Ŝ

x
T

D E
;

d2

dt2
Ŝ
x
T

D E
¼ �B2 SxT

� �
;

ð1Þ

giving the precession frequency ωL= B. Note that the relation
ωL= B for the precession of the total magnetization is completely

independent of the total number of electrons, the lattice structure,
and the Coulomb interaction between the electrons.

In this work, we study many electron systems on a lattice at
finite temperatures, i.e., in a statistical ensemble. For such a
statistical ensemble, hSxi ¼ 0 at any time by symmetry. The
Larmor precession is visible in the periodicity of the time-
dependent spin correlation function. Since the total spin ST
processes with the same frequency ωL in all the members of the
ensemble, the dynamical total spin-total spin correlation function
has a single sharp, undamped mode at the frequency
ω= ± ωL= ± B.

Since it relates to the total spin, the Larmor mode is visible at
the momentum q= 0 of the dynamical, momentum-dependent
susceptibility. We use the general notation χABðω; qÞ ¼ ABh iω;q �
δωδq Ah i Bh i to denote susceptibilities corresponding to different
observables A, B. We use both real frequencies ω and Matsubara
frequencies iωm, for the retarded and Matsubara correlation
functions, respectively. In the main text, A= B= Sx, and the
superscript is dropped for clarity. We also note that χ is
sometimes defined with an overall minus sign, e.g., Giuliani and
Vignale16 or Krien et al.21, which requires some care when
comparing formulas with the literature.

The exact form of the dynamical spin susceptibility at q= 0
is22

χS
xSx ðω; 0Þ ¼ B Sz

� �
B2 � ω2

; ð2Þ

χS
xSy ðω; 0Þ ¼ � iω Sz

� �
B2 � ω2

: ð3Þ

The location of the two poles in the complex ω plane is known
from the equation of motion, and their residue will be derived
below using formulas for the large-frequency asymptotics. Both
expressions are exact since they are derived from the equation of
motion without approximation. They depend explicitly on B and
implicitly on all other system parameters via Szh i, which only
determine the overall magnitude. Note that there is no
discontinuous δω contribution19,63 to χS

xSx , since Sx is not a
conserved quantity in the presence of a Zeeman field. For q ≠ 0,
the equation of motion generates additional terms ½H0; S

x
q�, which

leads to a dispersion relation ωL(q) that is sensitive to details of
the system11.

Larmor precession: magnitude of susceptibility. The frequency
structure of the Larmor precession follows directly from the
equation of motion. Here, we derive the magnitude of the sus-
ceptibility in the Matsubara formalism. The susceptibility is
known to decay algebraically at large Matsubara frequencies, and
the prefactors of this asymptotic decay are given by commutation
relations21,64. For a general susceptibility χAB, the leading
asymptotic Matsubara decay (first moment) is determined by the
commutator [A, B], i.e., iωmχ

ABðiωmÞ ! h½A;B�i for ∣ωm∣→∞.
The relevant case for us is [Sx, Sy]= iSz,

χS
xSy ðiωm; 0Þ ¼jωmj!1

Szh i=ωm: ð4Þ

For χS
xSx and χS

zSz , where A= B, this commutator vanishes, and
the next term in the asymptotic expansion is
ðiωmÞ2χABðiωmÞ ! �h½½A;H�;B��i. Since H appears linearly, the
high-frequency tail coefficient can be decomposed into con-
tributions from the interaction, the dispersion, and the Zeeman
field. In the present case, the interaction does not contribute,
while the dispersion leads to a coefficient related to ∂2ϵk/∂k2 and
is the same for χS

xSx and χS
zSz . This term is q-dependent with a

vanishing value at q= 0. Finally, the Zeeman field is not relevant
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for χS
zSz but is relevant for χS

xSx , where it creates a local term
(independent of q). Since this is the only contribution at q= 0,
using [[Sx,− BSz], Sx]= iB[Sy, Sx]= BSz, we get

ðiωmÞ2χS
xSx ðiωm; 0Þ ¼jωmj!1�B Szh i: ð5Þ

Higher-order moments of the susceptibility are obtained by
inserting additional commutators with the Hamiltonian, i.e.,

½½½Sx;H�;H�; Sx� ¼ B2½½½Sx; Sz�; Sz�; Sx� ¼ 0 ð6Þ

½½½½Sx;H�;H�;H�; Sx� ¼ �B3½½½½Sx; Sz�; Sz�; Sz�; Sx�
¼ �B3ð�iÞ½½½Sy; Sz�; Sz�; Sx�
¼ �B3½½Sx; Sz�; Sx�
¼ �B3ð�iÞ½Sy; Sx�
¼ B3Sz:

ð7Þ

Since the only non-commuting part of the Hamiltonian is− BSz,
every additional commutator leads to a switch between Sx and Sy

and a factor+ i or− i. Thus, for χS
xSx , only the odd commutators

survive, and the moment expansion is

χS
xSx ðiωm; 0Þ ¼ � B Szh i

ðiωmÞ2
∑
1

M¼0

B2M

ðiωmÞ2M

¼ � B Szh i
ðiωmÞ2 � B2

:

ð8Þ

By analytical continuation iωm→ ω, this completes the proof of
Eq. (2).

Note that the magnitudes of χS
xSx and χS

xSy are linked, since the
corresponding observables are governed by the coupled differ-
ential equations in Eq. (1). Using 2Sx= S++ S−, 2iSy= S+− S−,
Eq. (2) implies that χ−+(ω, 0) and χ+−(ω, 0) each has a single
simple pole, at ω=+ ωL=+ B and ω=− ωL=− B, respec-
tively. These two susceptibilities are related by time-reversal
symmetry and B↦− B. The commutation relation
[S+, S−]= 2Sz constrains the instantaneous two-particle correla-
tion functions (that is, the integral over ω of Eq. (2)) in terms of
the one-particle expectation value Szh i, and gives a simple
explanation for the appearance of Szh i on the right-hand side of
Eq. (2).

Larmor precession: limits. It is useful to verify Eq. (2) in several
relevant limits; see also the discussion in refs. 22,24. The limit
ω→ 0 of a dynamic susceptibility is the linear response to an
applied field. Here, starting with Bêz and applying a small field
δB êx does not change the magnitude of the field to linear order in
δB, but it changes its orientation to Bêz þ δBêx , again, keeping
terms to linear order in δB only. The magnetization will follow
this orientation, so δ Sxh i ¼ δB

B Szh i. In other words,
d Sxh i
dBx

¼ Szh i
B ¼ χS

xSx ð0; 0Þ, consistent with Eq. (2).
If we now take the limit B→ 0, we recover

χS
xSx ð0; 0Þ ¼ d Szh i

dB ¼ χS
zSz ð0; 0Þ, as expected since the Hamiltonian

is SU(2) symmetric in this limit, and we are considering a
paramagnetic state. Furthermore, the poles in χS

zSz move toward
the real axis and at B= 0, χS

zSz ðω; 0Þ / δω as usual for a
conserved quantity.

Hartree and RPA. The susceptibility in the non-interacting
model is given by the Lindhard bubble; for the spin-flip channel,
it is

χ̂�þ
0 ðω; qÞ ¼ ∑

k

n#kþq � n"k
ω� E#

kþq þ E"
k

: ð9Þ

At q= 0, the denominator simplifies to E↓− E↑= B independent
of k, so the momentum sum can be performed to give
χ̂�þ
0 ðω; q ¼ 0Þ ¼ �2 Szh i=ðω� BÞ. By symmetry, χþ�

0 ðω; q ¼ 0Þ ¼
þ2 Szh i=ðω� BÞ, giving the expected result

χ̂S
xSx

0 ðω; q ¼ 0Þ ¼ χ̂�þ
0 þ χ̂þ�

0

4
¼ B Szh i

B2 � ω2
; ð10Þ

χ̂S
xSy

0 ðω; q ¼ 0Þ ¼ χ̂�þ
0 � χ̂þ�

0

4i
¼ �iω Szh i

B2 � ω2
: ð11Þ

The effect of the Hubbard interaction at weak coupling can be
studied within the Hartree approximation, which is exact to linear
order in the interaction (the Fock self-energy is zero in the
Hubbard model). The Hartree self-energy states that the electrons
feel an effective additional on-site potential given by the density
of the opposite spin, Σσ ¼ U n�σ

� �
. The corresponding enhance-

ment of the band splitting is ΔBH ¼ 2U Szh i, leading to a larger
magnetization. This is essentially just the Stoner
mechanism7,16,25. Note that this system of equations has to be
solved self-consistently.

The RPA provides us with the dynamical susceptibilities
associated with the Hartree single-particle energies. Due to the
enhanced band splitting, χ̂�þ

0 has its pole at ω ¼ Bþ 2U Szh i>ωL.
The RPA susceptibility, written in a tensor formalism, is
calculated from the Lindhard bubble via the Bethe–Salpeter
equation χ̂ðω; qÞ ¼ χ̂0ðω; qÞ þ χ̂0ðω; qÞ � Û � χ̂ðω; qÞ, where χ0 is
the Lindhard bubble. Importantly, the RPA also does not couple
different momenta, so the analysis only requires the Lindhard
bubble at q= 0. The χ−+ channel does not couple to other
channels, and the Hubbard interaction enhances the magnetic
susceptibility (Stoner enhancement).

The solution of the Bethe–Salpeter equation is

χ̂ðω; qÞ ¼ χ̂0ðω; qÞ ´ 1̂� Û χ̂0ðω; qÞ
� ��1

;

1̂� Û χ̂0ðω; q ¼ 0Þ!χ
�þ

1� U
�2 Szh i

ω� ðBþ 2U Szh iÞ
¼ ω� B� 2U Szh i þ 2U Szh i

ω� B� 2U Szh i
¼ ω� B

ω� B� 2U Szh i ;

ð12Þ

χ�þðω; q ¼ 0Þ ¼ �2 Szh i
ω� B� 2U Szh i ´

ω� B� 2U Szh i
ω� B

¼ �2 Szh i
ω� B

:

ð13Þ
The final result for χ̂ indeed has a simple pole at the correct
frequency ωL= B and with the appropriate residue required by
the equation of motion. The correct result arises from a
cancellation between single-particle renormalization and vertex
corrections. This cancellation holds more generally, as
shown below.

Ward identity and Larmor frequency. In general, the
Bethe–Salpeter equation is a matrix equation in fermionic fre-
quency and momentum space. In the RPA, the frequency
dependence is trivial: the vertex is frequency-independent, and
the electronic propagators have the form of non-interacting
electrons in the effective Hartree potential. In that case, the fre-
quency sums can be performed analytically to give the Lindhard
bubble. In DMFT, both the bubble χ̂0 and the vertex Γ̂ are
matrices in fermionic frequency space, and analytical treatment of
the susceptibility is generically hard. However, it is known that
DMFT satisfies the Ward identities, and this is sufficient to derive
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q= 0 properties of the susceptibility19,21, including the Larmor
frequency22.

The Ward identities express the relation between one-particle
and two-particle correlation functions that have to be satisfied
according to the Heisenberg equation of motion. Here, we follow
the derivation given in Appendix A of Krien et al.21, which can be
generalized to systems with a Zeeman field by putting spin labels
on the Green’s function and dispersion in Eq. (A6) of Krien
et al.21, and by noting that their X corresponds to our �χ̂. Below,
ν and ω are Matsubara frequencies. Note that the Zeeman field
acts as a single-particle term, so [ρ,Hint] still vanishes for the
relevant susceptibility. Thus, the resulting Ward identity is

G#
νþω;kþq � G"

ν;k ¼ � ∑
k0;ν0

χ̂�þ
νν0ω;kk0q ϵ#k0þq � ϵ"k0 � iω

h i
: ð14Þ

We get our desired result for the Larmor frequency by setting
q= 0 and summing over k and ν. On the left-hand side, the
momentum and frequency sums generate expectation values, i.e.,
∑kνG

"
k;ν ¼ hn"i, while on the right-hand side ϵ#k0þq � ϵ"k0 ¼ B.

Altogether,

n#
D E

� n"
D E

¼ �χ�þðiω; 0Þ ´ B� iω½ � ð15Þ

χ�þðiω; 0Þ ¼ � 2 Szh i
iω� B

ð16Þ

Thus, any approximation that satisfies the Ward identities has the
correct Larmor frequency. This includes both RPA and DMFT.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The Python code to perform DMFT calculations for the Hubbard–Zeeman model is
made available at65.
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