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Single-ended recovery of optical fiber transmission
matrices using neural networks
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Ultra-thin multimode optical fiber imaging promises next-generation medical endoscopes

reaching high image resolution for deep tissues. However, current technology suffers from

severe optical distortion, as the fiber’s calibration is sensitive to bending and temperature and

thus requires in vivo re-measurement with access to a single end only. We present a neural

network (NN)-based approach to reconstruct the fiber’s transmission matrix (TM) based on

multi-wavelength reflection-mode measurements. We train two different NN architectures

via a custom loss function insensitive to global phase-degeneracy: a fully connected NN and

convolutional U-Net. We reconstruct the 64 × 64 complex-valued fiber TMs through a

simulated single-ended optical fiber with ≤ 4% error and cross-validate on experimentally

measured TMs, demonstrating both wide-field and confocal scanning image reconstruction

with small error. Our TM recovery approach is 4500 times faster, is more robust to fiber

perturbation during characterization, and operates with non-square TMs.
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U ltra-thin endoscopes are a promising technique for
enabling cell-scale imaging in difficult-to-reach parts of
the body, with the potential to improve disease detection

in organs such as the pancreas and ovaries. Commercial products
using imaging fiber bundles around 1mm in diameter are used in
bile ducts1 and flexible and full-color imaging has been demon-
strated using distal scanning mechanisms that are typically
~2 mm in diameter2–4. To further reduce the size of endoscopes,
recent work has focused on imaging through ultra-thin multi-
mode fibers with diameters of 0.125 mm and has achieved in vivo
fluorescence imaging in brains of immobilized mice5. However,
there are some key limitations of these imaging systems that use
ultra-thin optical fiber. First, the thinnest such imaging devices
are made using multimode fiber (MMF), which suffers from
optical distortion that changes whenever the fiber is perturbed,
particularly for longer fibers (>1m) required to reach deep inside
the human body6. Second, to calibrate this distortion, practical
endoscopes made using MMF or some types of fiber bundle
require measurement of their transmission matrix (TM) which
requires transmitting a set of well-defined modes of light from the
proximal facet to the distal facet where the resulting optical field
must be measured. If calibration is required immediately before
use (e.g. for in vivo use), such components would be required on
the distal tip and would thus compromise the ultra-thin form
factor7.

A number of methods have been proposed to calibrate fiber
TMs without distal access including guidestars8–10, beacons that
can be tracked11,12, or reflective structures on the fiber tips7,13,14.
Gordon et al.14 proposed a single-ended method of TM recovery
based on the fiber system shown in Fig. 1, with a specially
designed reflector stack that provides different reflectances at
different wavelengths. This approach avoids the need for mea-
surement at both proximal and distal end of the fiber and works

for non-unitary TMs. The reflection matrix, Cλ 2 CM2 ´M2

, where
images are assumed to be M ×M pixels, describes how an inci-
dent field Ein 2 CM2

is transformed via propagation through the
optical fiber, reflected by the reflector stack and finally transferred
back through the fiber into an output field Eout 2 CM2

at a
wavelength of λ:

CλEinλ ¼ Eoutλ ð1Þ

The reflectance matrix, Cλ 2 CM2 ´M2

, is obtained from a forward
pass via the TM, Aλ 2 CM2 ´M2

, reflection via the reflector stack,
Rλ 2 CM2 ´M2

, and then a return pass via the TM, A>
λ 2 CM2 ´M2

.
It has been previously been shown that the forward TM at
wavelength λ,Aλ, can be unambiguously reconstructed based on
the measured reflection matrices at 3 different wavelengths, with
imaging performed at a fourth wavelength14. This requires design
of a special reflector stack whose reflection matrix changes with
wavelength at a significantly faster rate than the fire TM, which
may be achieved by alternately stacking metasurface reflectors
with long-pass filters. A first-order dispersion model is assumed
for the TM and has been experimentally validated to be >70%
accurate over a 5 nm bandwidth for a 1–2 m length MMF using
110 modes, avoiding degeneracies arising from matrix
logarithms14, although recent work has shown MMF dispersion
modeling over a much greater bandwidth15. This leads to a set of
3 non-linear quadratic-form equations:

Cλ1
¼ AT

λ1
Rλ1

Aλ1
ð2Þ
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¼

�
eðlogAλ1

λ1
λ2
Þ
�T

Rλ2

�
eðlogAλ1

λ1
λ2
Þ
�

ð3Þ

Fig. 1 Single-ended optical fiber imaging system for transmission matrix (TM) recovery. The object, which will produce an image X 2 CM´M is placed at
the distal facet. Light with a field of Ein 2 CM2

propagates from the proximal facet through the optical fiber, with the forward TM of the optical fiber defined
as Aλ 2 CM2 ´M2

at the wavelength, λ. A reflector stack with a three-layer structure is placed at the distal facet, producing a reflector matrix Rλ 2 CM2 ´M2

at the wavelength λ. There are four different wavelengths used, where wavelengths λ1, λ2, and λ3 are used for characterization and λ4 for imaging. For each
wavelength, light propagates through one or more layers of the stack and is partially reflected by metasurfaces at the interfaces between layers. This
produces distinct reflector matrices at each wavelength, Rλ1::3 , which can be addressed using a tuneable laser. At wavelength λ4 light passes fully through
the stack so that imaging can be performed. Faithful image reconstruction require correction for the TM of the reflector stack using pre-calibrated values at
this wavelength14. Reflection matrices, Cλ 2 CM2 ´M2

, can be measured at relevant wavelengths to recover the TM.
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where eðlogAλ1
λ1
λ2
Þ is the TM adjusted for a wavelength λ2.

Currently, these equations are solved by using an iterative
approach which relies on optimization of the entire TM14. This
therefore scales in complexity with the square of the matrix
dimension, incurring significant computational time, especially
for large matrices. In practice, the TM shows high sensitivity to
bending and temperature so in a practical usage scenario would
need to be measured very frequently and reconstructed imme-
diately prior to imaging. Large computational times are therefore
not practical.

Considering this, there are several methods that have been
developed in order to reduce the computational time for fiber
imaging. These methods typically exploit prior knowledge about
the fibers to improve or speed up TM reconstruction. For
example, Li et al.16 proposed a compressed sampling method
based on the optical TM to reconstruct full-size TM of a multi-
mode fiber supporting 754 modes at compression ratios down to
5% with good fidelity. Similarly, look-up tables can be used with a
reflective beacon for high-speed TM estimation over an experi-
mentally sampled prior space12. Huang et al.17 retrieved the
optical TM of a multimode fiber using the extended Kalman filter,
enabling faster reconstruction.

Recently, there has been work on using deep learning
approaches, involving convolutional neural networks, to recon-
struct images via multimode fibers both in transmission and
reflection modes18–20. These methods have the advantage of
being fast, and also learning and utilizing prior information about
the fiber properties and the objects being imaged. However, their
performance typically degrades significantly under fiber pertur-
bation because they do not have access to reflection calibration
measurements required to unambiguously resolve a TM. Further,
because such approaches seek to approximate the forward pro-
pagation of light and often only consider amplitude image
recovery, they often rely on classical mean-squared error loss
functions for training.

In order to incorporate reflection calibration measurements
following fiber perturbation, it may instead be advantageous to
use AI approaches to reconstruct a TM rather than an image,
though there has been relatively little work in this area. When
reconstructing a TM comprising complex numbers, a particular
type of degeneracy arises that is not well handled by conventional
AI loss functions: a global phase factor. In many physical pro-
blems, including the recovery of TMs for the purposes of image
reconstruction and phase-hologram generation, global phase
factors are not relevant as they do not affect the perceived per-
formance of the system: it is the relative phase between pixels that
must be preserved. The relative phase between rows or columns
of fiber TMs or reflection matrices is typically preserved using a
reference beam e.g. interferometry21 or referencing to a fiber
mode22. Global phase may have a physical interpretation related
to the physical length of the fiber, but in practice it is often
arbitrary unless great care is taken. For example, in interfero-
metric systems the global phase is likely to be arbitrary unless the
optical path lengths of the reference and sample arms are per-
fectly matched, which is very challenging for multimode fibers.
Further, the global phase often drifts during practical
experiments21, and approaches using phase-retrieval produce
entirely arbitrary global phase values22. Therefore, in many
practical situations, conventional loss functions will convert
arbitrary shifts in the global phase to large changes in loss, which
can confound minimization algorithms used to fit AI models and
cause overfitting.

In this paper, we therefore present a method of implementing
single-ended recovery of an optical fiber TM by solving Eqs.
(2)–(4) based on three reflection matrix measurements at three
different wavelengths. Specifically, we present two different neural
network architectures, fully-connected neural network (FCNN)
and convolutional U-net-based neural networks, and demonstrate
the performance of both. As a necessary step, we account for the
global phase factor of the entire TM by developing a custom
global phase insensitive loss function that avoids degeneracies
introduced by conventional loss functions such as mean-squared
error (MSE). We first validate our model by recovering 64 × 64
complex-valued fiber TMs through a simulated single-ended
optical fiber system (shown in Fig. 1) with ≤4% error for both
FCNN and convolutional U-net architectures. We then demon-
strate image reconstruction through fiber based on recovered
TMs for two different imaging modalities: widefield imaging,
achieving ≤9% error, and confocal imaging, achieving ≤5% error.
We highlight several advantages of this TM recovery approach
compared to previous TM recovery methods. Firstly, once the
model is trained (~100 h), it only requires ~1 s for reconstruction,
which is 4500 times faster than pre-existing iterative approaches.
Secondly, the conventional method14 can only reconstruct square
TM cases, whereas this method is compatible with non-square-
shaped TM with ≤8% error, useful for many practical cases where
optical systems may have different mode bases at proximal and
distal ends. Third, the requirements for the reflectors in terms of
matrix properties are related and then can have arbitrary dis-
tributions of eigenvalues.

Results
Simulated TM recovery. This TM recovery model was trained on a
simulated dataset comprising 900,000 sets of simulated reflection
matrices, Cλ at 3 wavelengths, λ1= 850 nm, λ2= 852nm and
λ3= 854nm, as input and a complex-valued non-unitary TM at
wavelength λ1, Aλ1

as output. Performance was monitored during
training using 200,000 validation data that were not used in training.
Final performance figures for the model were evaluated using an
additional 100,000 data that were not part of the validation set.
Figure 2(a) shows the training and validation loss in training the
FCNN model over 2500 epochs using different loss functions,
namely conventional mean absolute error (MAE), and our global-
phase insensitive custom loss function (Eq. (11)). Our global-phase
insensitive loss functions show a decreasing loss in both training
(yellow line) and validation (purple line) in the first 2000 epochs and
convergence after 2500 epochs, whereas the MAE loss function
exhibits fluctuating non-converging loss values for both training
(blue line) and validation (red line). An example of a reconstructed
TM predicted by the FCNNmodel at different epochs is shown inset
in Fig. 2a. It can be seen that the predicted TM approaches the target
TM from 300 epochs to 2500 epochs, enabled by the custom loss
function. Figure 2b compares the TM result predicted by our two
different neural network architectures using different loss functions.
Both FCNN and convolutional U-net-based neural networks cannot
recover TM when using the MAE loss function but are capable of
recovering TM using the global phase insensitive loss function, with
an average loss (metric defined in Eq. (8)) of ≤4% over 100,000 test
TMs. Compared to the previous iterative approach, which requires
nearly 10 hours to converge with an average loss of ≤0.5%, our
method shows a larger ≤4% average loss, but images retain accep-
table visual quality of reconstructed images (shown in “Result”
section “Widefield image reconstruction based on recovered TM”).
Furthermore, we also evaluated the computational resource usage of
the two different neural network architectures as shown in Fig. 2c.
Training was implemented using Tensorflow 2.0 running on an
NVIDIA Tesla V100 GPU. Compared to FCNN, the convolutional
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U-net shows significant advantages in memory usage, requiring 1000
times fewer trainable parameters, and in convergence time, which is
reduced by 20%. However, it shows 0.7% larger average loss on the
test set. Both FCNN and convolutional U-net can recover TM at a
loss ≤4% (standard deviation 0.44% and 0.56% respectively),
with ~1s prediction time.

Widefield image reconstruction based on recovered TM. Next,
we examine a widefield imaging modality to evaluate the per-
formance of recovered TMs at a fourth wavelength (the imaging
wavelength), λ4= 854.5 nm, where we assume a pixel basis at the
fiber output. We considered three example images denoted
x 2 C8 ´ 8: an amplitude-only image with a ‘space invader’ pat-
tern, a phase-only digit with a uniform amplitude and a random
complex-valued image. Random noise was added to better
simulate expected behavior in a real system (shown in Eq. (7)).

Figure 3 shows the image reconstruction results based on
recovered TM using FCNN and convolutional U-net networks. It
can be seen that all three images can be successfully reconstructed
based on recovered TMs using both neural network models.
Using the IMMAE (image MAE metric defined in Eq. (9)) we
achieved error ≤9% and using SSIM (structural similarity index
measure metric defined in Eq. (10) we achieve similarity ≥83%.
Because of the superior error performance of the FCNN
approach, for the remainder of this work we choose this model to
demonstrate proof-of-principle performance of neural network
TM recovery under a range of realistic scenarios. However, when
scaling to larger size TMs, the convolutional U-net may be more
favorable due to fewer trainable parameters.

Effect of fiber perturbation widefield image reconstruction. We
then evaluate the robustness of our TM recovery model by

Fig. 2 Simulated TMs recovered by training Neural Network (NN) models. a Training and validation loss tracking plot using MAE and custom loss
function (Eq. (11)) of fully-connected neural network (FCNN) model. Blue and red line represent training and validation loss using mean absolute error
(MAE) loss function. Yellow and purple line represent training and validation loss using our global-phase insensitve loss function. TM recovery results over
different epochs are shown inset. b TM recovery results using two different neural network architectures (i.e. FCNN and convolutional U-net networks),
with two different loss functions, namely MAE and custom loss function in Eq. (11). c Comparison between FCNN and convolutional U-net architecture in
aspects of average loss, standard deviation, training time, prediction time, number of converging epochs and number of trainable parameters. In complex-
valued colormap, hue represents phase and lightness/darkness represents amplitude.
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simulating the effect of the TM changing mid-way through fiber
characterization. Specifically, we simulate a situation in which the
reflection matrices measured at the first two wavelengths (C1 and
C2) are recorded using a fixed TM, but the reflection matrix
measured at the third wavelength C3 is recorded initially using
this same TM but the final few columns are generated using a
different TM. Therefore, we simulated 10 sets of 64 × 64 reflection
matrices with five different perturbation rates indicating the
numbers of columns swapped (2/64, 4/64, 8/64, 16/64, and 32/64).
Figure 4 shows the results of recovering the TM based on these
perturbed measurements, and then using this perturbed TM esti-
mate to perform widefield image reconstructions. This is repeated
for different fiber perturbation rates based on our pre-trained
TM recovery FCNN model. It can be seen that our TM recovery
model is compatible with optical fibers with a small perturbation
rate (below 6%) with TM average loss ≤8% (standard deviation
≤0.82%), IMMAE ≤19% and SSIM ≥76% but performance
degrades above this.

Confocal image reconstruction based on recovered TM. Many
fiber imaging systems use a confocal imaging approach, rather
than widefield, because of its superior resolution. We therefore
simulated confocal scanning imaging reconstruction through our
recovered TM. For this, we used a simulated LP basis based on a
typical fiber profile (see “Methods” section). We addressed
128 × 128 spot positions and found the average percentage of
power in the focus to be 48.5% using recovered TM, which
compares favorably to that achieved using an identity matrix as
the TM (49.9%) as shown in Fig. 5a. Next, we reconstructed
confocal images of three target images, denoted x 2 C128 ´ 128 that
contain the same pattern shown in “Result” section “Widefield
image reconstruction based on recovered TM” by integrating total
reflected power for each spot position. We used λ4= 845.5 nm

here for imaging. Figure 5b–d shows the confocal image results
using FCNN model. It can be seen that all three types of confocal
images can be successfully reconstructed based on recovered
TMs, with IMMAE ≤5% and SSIM ≥90%. Also, it shows 3%
points less image error and 4% points higher similarity between
reconstructed and target confocal images compared to widefield
imaging.

Non-square TM recovery. We next examine the practical case of
non-square TMs, e.g. where the desired representation at the
distal end of a fiber might be different from that used at the
proximal end and may have more elements. This might be the
case, for example, when measuring forward TMs to use to train
such a network. To recover a TM A 2 CMd ´Mp , we require that
the reflection matrix, C 2 CMp ´Mp and that the reflector matrix,
R 2 CMd ´Md . Mp and Md represent the number of elements used
for the basis representation at the proximal and distal ends of the
fiber respectively. Figure 6 shows one example of recovered non-
square-shaped TM 2 C6 ´ 12 using FCNN, with the average loss of
3.96% (standard deviation 0.38%). ‘Wide’ TMs (with Md <Mp)
may be over-constrained by larger dimension C producing stable
solutions, while ‘tall’ TMs (with Mp <Md) may be under-
constrained producing degenerate solutions.

Reflector matrix conditioning. Explicit conditions on the
reflector matrices, R, namely having distinct eigenvalues, have
been a requirement in previous approaches7, 14. Here, we test our
TM recovery FCNN model with different reflector matrix con-
ditioning by varying the number of distinct eigenvalues, as shown
in Supplementary Figure 1. We examined the recovered TMs for
3 conditionings of R: 1 distinct eigenvalue (unitary, all eigenva-
lues the same), 2 distinct eigenvalues, and 6 distinct eigenvalues.
The average recovery loss achieved is 5.02% (standard deviation

Fig. 3 Widefield image reconstruction based on recovered transmission matrices (TMs) using fully-connected neural network (FCNN) and
convolutional U-net networks. We considered three example images: an amplitude-only image with a `space invader' pattern, a phase-only digit with a
uniform amplitude and a random complex-valued image. Two metrics are defined to evaluate the image reconstruction performance, namely image mean
absolute error, IMMAE (Eq. (9)) and structural similarity index measure, SSIM (Eq. (10)).In complex-valued colormap, hue represents phase and lightness/
darkness represents amplitude.
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0.43%), 4.96% (standard deviation 0.41%), 3.88% (standard
deviation 0.37%) respectively, demonstrating that the recovery
process is compatible with various reflector matrices conditions.

Computational resource usage. As the dimension of recovered
images increases, we expect an increase in the TM dimension thus
requiring more computational resources. Empirically measured
computational resources are plotted in log-scale in Fig. 7a–c:
minimum training data, minimum memory usage, and conver-
ging time respectively. All indicate a quadratic relationship to the
image dimension M for both FCNN and convolutional U-net
models. For practical imaging applications we would desire at
least 32 × 32 image resolution, giving a 1024 × 1024 TM, which
would require training with >10 million examples, leading to
memory consumption >1.5TB for the FCNN. By comparison, the
convolutional U-net would require only 1.1TB of memory con-
sumption. Compared to FCNN, convolutional U-net shows
potential advantages in using 25% fewer memory resources and
20% less training data within 15% less training time. Figure 7d
compares the prediction time using our neural network model
with the conventional methods using iterative optimization
approaches14, where our FCNN model shows less reconstruction
time (~1s vs. 1920s for a 12 × 12 TM).

Validation with experimental TMs. Finally, to demonstrate
applicability to practical systems we cross validated our model on
experimentally measured TMs recorded under a representative
range of likely fiber conformations12. The graph of loss vs. epoch
for the different training steps used to adapt the model pre-
trained on simulated data is shown in Supplementary Figure 2.
The model is first re-trained from step 1 with additional inputs
using random matrices to avoid overfitting to the prior dis-
tribution of simulated matrices (step 2). We next continued
training the model on a small subset of the experimental data to
aid domain transferability (step 3). By creating ‘submatrices’ we
are effectively implementing a downsampling basis change and so
expect some change in correlations betweens TM elements.
However, by including random matrices in our training set we
actively prevent the model from learning a strong prior dis-
tribution over these correlations and thus overfitting.

The final model achieves recovery of simulated TMs with an
average loss of 3.38% (standard deviation 0.48%) and experi-
mental matrices with 3.42% (standard deviation 0.57%), suggest-
ing that it is applicable to realistic fiber TMs under various
conformations. An example of experimental TM used for the test
at each step is shown inset in Supplementary Figure 2, where the
predicted TM is getting closer to the target TM from step 1 to
step 3.

Fig. 4 Effect of simulated perturbations of fiber transmission matrices (TMs) during reflection-mode characterization. Perturbations are simulated by
swapping columns between two different TMs at wavelength λ3. Two metrics are defined to evaluate the image reconstruction performance based on
recovered TM using fully-connected neural network (FCNN), namely image mean absolute error, IMMAE (Eq. (9)) and structural similarity index measure,
SSIM (Eq. (10)). a Estimated perturbed TM. b Error in estimated TM. c Image reconstruction of amplitude-only target (uniform phase) using estimated
perturbed TM. d Image reconstruction of phase-only target (uniform amplitude) using estimated perturbed TM. e Image reconstruction of complex
amplitude and phase target using estimated perturbed TM.In complex-valued colormap, hue represents phase and lightness/darkness represents
amplitude.
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Discussion
We have demonstrated the successful reconstruction of forward
fiber TMs based on reflection-mode measurements at multiple
wavelengths using a neural network-based approach encom-
passing two architectures: a fully-connected neural network and a
convolutional U-Net. Previous work applying neural networks to
fibers has focussed on image reconstruction as the end goal, but
we instead focus on TM reconstruction. Such an approach is
more flexible as the inputs to the network are calibration mea-
surements that reflect a fiber’s deformation state at any given time
– previous image reconstruction approaches have instead learned
a static representation of the fiber TM encoded in the neural
network weights. Using our approach, the recovered TM will be
accurate up to the most recent calibration measurements and can
be used for high-speed image recovery via conventional matrix
operations.

One major challenge of recovering the TM is the presence of
degenerate global phase shift. Previous work on image recon-
struction has addressed this problem by training separate

networks for amplitude and phase recovery in purely real space
and accepting relatively poor performance for phase recovery18.
Here, we present a loss function that is insensitive to this global
phase degeneracy and show a high degree of convergence com-
pared to conventional MAE metrics. We believe this metric could
also find applications in neural network-based computer-gener-
ated holography or phase retrieval.

There are several major advantages to our neural network
approach compared to previous iterative approaches14. First, the
prediction time is very fast (typically ~1s), over 4500x faster than
the existing iterative approach, which makes this a feasible
approach for future real-time imaging, Training the network is
much slower, but this only need to be done once per fiber for a
fixed reflector as a one-off calibration step. Second, our approach
shows robustness to the fiber TM changing part way through
characterization measurements, as is likely to happen during real
in vivo usage, and can tolerate up to 6% column swaps between
different reflection matrices. This performance could be further
improved by re-training the network with perturbed examples as

Fig. 5 Spot scanning and confocal image reconstruction based on recovered transmission matrices (TMs) using fully-connected neural network
(FCNN) model. The spot and 2D full samples are generated using 128 × 128 targets. Power ratio (pr) is defined to calculate the average percentage of
power in the focus by scanning 128 × 128 approximate spot positions. Two metrics are defined to evaluate the image reconstruction performance, namely
image mean absolute error, IMMAE (Eq. (9)) and structural similarity index measure, SSIM (Eq. (10)). a Creation of a focussed spot in perfect scenario and
band-limited scenario with 64 modes using both actual (target) and recovered TMs. b Image reconstruction using confocal scanning for amplitude-only
image, (c) phase-only image and (d) random complex valued image.In complex-valued colormap, hue represents phase and lightness/darkness represents
amplitude.

Fig. 6 Non-square shaped transmission matrix (TM) 2 C6 ´ 12 recovered by our TM recovery model using fully-connected neural network (FCNN)
architecture. a TM recovered by FCNN model. b Target TM. c Error between recovered and target TMs. In complex-valued colormap, hue represents
phase and lightness/darkness represents amplitude.
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input, allowing it to learn an ‘error correction’ strategy. Third, the
approach can reconstruct non-square TMs. This is important
because the sampling basis of the light on the proximal facet is
often the pixel basis of the camera but at the distal end it may be a
mode basis of the fiber (e.g. LP modes). The fiber may support
many fewer modes than the camera has pixels. Therefore, to
optimize speed and imaging performance it is often desirable to
retrieve a TM in the mode basis of the fiber that can easily be
addressed using our camera coordinates: hence a non-square TM.
Finally, our recovery process is compatible with various reflector
matrices conditions whereas in previous models the eigenvalues
are required to be distinct7,14. However, it is noted that eigen-
values are unlikely to be identical in any experimental system due
to small mode-dependent power losses, but the removal of this
condition may increase robustness to noise.

Several trade-offs should be considered when using this approach.
The first trade-off is the need for large amounts of experimental
transmission and reflection measurements to train the network. This
can be addressed by augmenting experimental data with large
amount of simulated fiber data: we have previously found good
agreement between simulated and experimental matrices14. To
implement these simulations, the reflector matrices would need to be
known in advance e.g. by performing TM measurements of a fiber,
attaching a reflector, then measuring reflection matrix with minimal
fiber perturbation. Alternatively, it may be possible to devise a
method of reliably manufacturing reflectors with consistent and
highly reproducible properties. Our simulations assume limited fiber
bandwidth to avoid degeneracies arising from matrix logarithms, but
this bandwidth could be extended using a non-linear model of the
fiber TM over a much broader wavelength range15. This joint
simulation-experiment approach borrows ideas from data augmen-
tation and domain transfer23–25. The use of adaptive loss functions,
such as in generative-adversarial networks, may further enable
convergence using relatively small experimental datasets, or else help
to generate further training data. In these latter scenarios it could be
envisioned that the reflector need not be characterized in advanced
and can be inferred from a small number of experimental
measurements.

The second key trade-off is that the training process is very
memory-intensive for dealing with large sizes of TM that are

typically encountered in imaging applications e.g. 1024 × 1024
would require over 1TB for training the recovery model. The
convolutional U-net architecture has much (×1000) fewer train-
able parameters, which reduces memory usage somewhat,
although the large dimension of each input TM also has a large
influence on the memory usage. However, using convolutional
architectures may come at the expense of slightly increased error
(a few percent) as we observed in our TM reconstruction results.
One possible solution is to develop matrix compression techni-
ques such as auto-encoder models to represent matrices in a low-
dimensional latent space. Reducing batch size will also reduce
memory usage but can lead to greater fluctuations and poorer
convergence.

We anticipate this neural network-based TM recovery model
will lead to machine-learning models for complex-valued data, for
example in holographic imaging and projection and phase
retrieval, where both phase control and speed are required.

Conclusions
Overall, our model for reconstructing 64 × 64 complex-valued
fiber TMs through a single-ended optical fiber system achieves
≤4% error for both FCNN and convolutional U-net-based neural
network architectures. By re-training our FCNN model we also
show that it can reconstruct experimentally measured 64 × 64
TMs with 3.42% error. Using our recovered TMs we demonstrate
image reconstruction of complex objects in two imaging mod-
alities: 8 × 8 pixel widefield imaging, achieving IMMAE ≤9% and
SSIM ≥83%, and confocal scanning, achieving 48.5% power
focused in the spot and ≤5% IMMAE and ≥90% SSIM.

Methods
Simulated data generation. We present a TM recovery method
that uses neural networks, instead of using iterative approaches14,
to solve the Eqs. (2)–(4). Figure 8 shows the schematic of this TM
recovery model. Specifically, we first simulated N optical fiber

TMs, Aλ1
2 CM2 ´M2

, at a wavelength of λ1 as the ground truth.
Here we use M= 8 and λ1= 850 nm. Our simulation model aims
to recreate typical properties found in practical fiber TMs. First,
we assume that TMs are sparse in some commonly used basis e.g.

Fig. 7 Empirically measured computational resources plotted in log-scale. a Minimum training data versus the number of image dimensions, plotting in
log-scale. b Minimum memory usage versus the number of image dimensions, plotting in log-scale. c Converging time versus the number of image
dimensions. d Prediction time of using our transmission matrix (TM) recovery model and conventional method, plotting in log-scale.
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LP modes for multimode fibers or pixel basis for multicore
fibers26. Second, we assume TMs can be arranged such that the
majority of power intensity lies along the main diagonal with
additional power spread along sub-diagonals, which is also typi-
cally observed when using bases closely matched to the fiber
eigenbasis27. Third, we assume that realistic TMs are slightly non-
unitary, with mode-dependent loss values (i.e. condition num-
bers) in the range of 3-526,27. To meet these assumptions, we
generate a uniformly distributed random tri-diagonal matrix,
B 2 C64 ´ 64, which has non-zero elements only at the main
diagonal, subdiagonal and superdiagonal. We then compute the
left singular matrix U 2 C64 ´ 64 and right singular matrix V 2
C64 ´ 64 via singular value decomposition (SVD). We then apply a
new singular value distribution via a matrix Snew 2 R64 ´ 64, a
diagonal matrix that contains random values along its diagonal
ranging from 0.5 to 2.5 to simulate our expected TM. We then
construct the TM at λ1 as:

Aλ1
¼ U � Snew � VT ð5Þ

Next, we apply Eqs. (2)–(4) to simulate corresponding TMs, Aλ1
and Aλ1

at wavelengths λ2= 852 nm and λ3= 854 nm. Here, we
use wavelengths λ1= 850nm, λ2= 852nm, and λ3= 854nm as
physically realistic values within the TM bandwidth of a typical
endoscope length fiber (~2 m)14.

Following this, we simulate reflectors on the fiber distal tip by
generating three complex-valued matrices with complex uniform
randomly distributed elements (-1 to 1 and -i to i). These three

matrices then form our reflector matrices, Rλ1
2 CM2 ´M2

,

Rλ2
2 CM2 ´M2

, and Rλ3
2 CM2 ´M2

at wavelengths λ1, λ2 and λ3
respectively. By generating reflectors in this way we ensure with
high probability, according to random matrix theory, that the
eigenvalues are distinct28.

Finally, we combine the TMs and reflector matrices to generate
N sets of complex-valued reflection matrices Cλ1

2 C64 ´ 64,

Cλ2
2 C64 ´ 64, and Cλ3

2 C64 ´ 64 at three different wavelengths
λ1= 850nm, λ2= 852nm and λ3= 854nm.

To feed this data to our neural network, which only accepts real
numbers, we convert inputs and outputs from complex to real-
valued data. A 2 × 2 complex-valued matrix can be represented by
a 4 × 4 real-valued matrix as follows29:

aþ bi cþ di

eþ fi g þ hi

� �
7!

a �b c �d

b a d c

e �f g �h

f e h g

2
6664

3
7775 ð6Þ

where,↦ indicates an isomorphism.
Finally, the input of the model, three Cλ 2 C128 ´ 128 at different

wavelengths are normalized using in the range from -1 and 1.
Each set of 3 reflection matrices, Cλ1::3

represents a single input to
our neural network model. We split the N data into training,
validation, and test sets with an 8:2:1 ratio. The validation set is
expected to provide unbiased evaluations and stopping criteria on
unseen data, and test set aims to examine the generalization
performance of the model on unseen data. Test set is independent
of the validation set and contains unseen data that is not used
during training process. The model is trained with the ADAM
optimizer using our custom-defined loss function. Python was
used for model training and MATLAB was used for data pre-
processing and post-processing because of its ease of use for
complex matrix computations.

Imaging modalities. We validate our system via two commonly
used fiber imaging modalities: wide-field and confocal scanning.
For wide-field imaging we assume a pixel basis at the fiber distal

end, and that a ground-truth complex image X 2 CM2

passes via

Fig. 8 Schematic of transmission matrix (TM) recovery model. This contains (a) data generation, (b) data pre-processing, and (c) model training. N pairs
of TM are firstly simulated as the ground truth. λ1, λ2, and λ3 represent three different wavelengths (in our case, 850 nm, 852 nm and 854 nm). The input of
the model is all real-valued matrices concatenated with reflection matrices at three different wavelengths. L represents custom loss function and w
represents the weight updated by the optimizer.
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the simulated optical fiber ground-truth TM at a fourth wave-
length λ4= 854.5 nm. We then use the recovered TM at a fourth
wavelength λ4= 854.5 nm to estimate original image and com-
pare this to the ground-truth. For simplicity, we assume the
object is located at the distal fiber facet with no loss coupling into
and out of the fiber, and we neglect the loss in transferring
through the reflector stack but consider random Gaussian noise
to better simulate expected behavior in a real system. Theoreti-

cally, the reconstructed widefield image, X̂j 2 CM2

can be cal-
culated by:

X̂j ¼ ðÂλ4

T Þ
�1
ðAλ4

TXj þ ZÞ ð7Þ
where, Z is random Gaussian noise with a power of 2% of the
target signal. X̂j is the reconstructed image, Xj is the target image,

Âλ4
and Aλ4

are the recovered TM and target TM at wavelength
λ4 respectively.

For confocal imaging, which is commonly used in fiber
imaging30, we assume an LP mode basis at the fiber output, which
is a realistic and widely used fiber basis31. To implement this, we
first simulated a multimode fiber with a core radius of 30 μm,
length of 1.5 m and a numerical aperture (NA) of 0.24 and used
64 of the available modes as our basis for creating a spot to be
scanned. We used our recovered TM to estimate the required
proximal field to create a spot then examined the expected spot
by forward propagating via the ground truth TM. We next
scanned 128 × 128 approximate spot positions and found the
average percentage of power within the FWHM of the spot. Using
this approach we reconstructed confocal images of three target
images, denoted x 2 C128 ´ 128 that contain the same pattern
shown in “Result” section “Widefield image reconstruction based
on recovered TM” by integrating total reflected power for each
spot position.

Metrics. We next define loss metrics to compare the complex
overlap integral between the target and recovered results. How-
ever, due to the degenerate global phase factor, this complex
overlap integral is multi-valued. Therefore, the loss metrics
defined here first normalize to correct for the global phase term
(see Methods Section Global phase insentive loss function) before
calculating the complex correlation. This is an essential step to
gauge the accuracy both for TM recovery and image recon-
struction in widefield and confocal modalities.

To gauge the accuracy of our TM recovery we define an
average loss metric by calculating the average mean absolute error
(MAE) of each validated TM in the test data:

average loss ðÂt;AtÞ ¼
1

Ntest
´

1

4M2 ∑
Ntest

n¼1
∑
4M2

t¼1
jÂt � Ate

iϕc j ð8Þ

where, Ât is the recovered TM, At is the target TM, eiϕc is the
global phase normalization term, 4M2 is the total number of TM
elements, and Ntest is the number of data used for testing.

To gauge the accuracy of widefield reconstructed image based
on the recovered TM, we define two metrics, namely the image
MAE (IMMAE) and complex-valued based structural similarity
index measure (SSIM) of each reconstructed image:

IMMAE ðX̂j;XjÞ ¼
1

M2 ∑
M2

j¼1
jX̂j � Xje

iϕc j ð9Þ

SSIM ðX̂j;XjÞ ¼
2j∑M2

j¼1 X̂jXj
�eiϕc j þ K

∑M2

j¼1 jX̂jj
2 þ∑M2

j¼1 jXjj2 þ K
ð10Þ

where, M2 is the total number of pixels of image Xj, Xj
� is the

complex conjugate of Xj, K= 0.03 is a positive constant to
improve the robustness when the local signal to noise ratios are
low. These two metrics can also be extended to evaluate the
performance of recovered confocal images.

In the confocal case, we compare recovered images Ŷ against
the confocal imaging scenario with an identity TM, Y, using the
two metrics (IMMAE and SSIM) introduced in Eqs. (9)–(10).
This aims to do a fair comparison considering the effect of
conversion between fiber mode basis and pixel basis.

Network architectures. We defined two neural network models: a
fully-connected neural network (FCNN) and convolution U-net-
based neural network as shown in Fig. 9. The FCNN is a ten-layer
densely connected neural network (eight hidden layers), includ-
ing 32,768 neurons in first and last hidden layers and 8192
neurons in other layers, all with Leaky ReLU activation function.
Figure 9 shows the FCNN architecture, where reflection matrices
Cλ1

2 R128 ´ 128, Cλ2
2 R128 ´ 128, Cλ3

2 R128 ´ 128 are flattened
into 1D arrays and then concatenated as the input of the model
(with the size of 49,152 × 1) and TM Aλ1

2 R128 ´ 128, flattened
into 1D array as the output (with the size of 16,384 × 1). Batch
normalization layers were defined between every dense layer and
dropout layers at the rate of 0.2 were defined after the first two
dense layers. Also two skip connections were developed in order
to prevent the model overfitting. The model was trained itera-
tively with the global phase-insensitive custom loss function used.
The training dataset for recovering 64 × 64 TM consisted of
500,000 matrices and the model was run for 2500 epochs, taking
182.5 hours using Tensorflow 2.0 running on a NVIDIA Tesla
V100 GPU. The Adam optimizer was used with a learning rate of
0.004 in a decay rate of 1e−4.

Next, we developed a U-net-based model that used encoder-
decoder architecture, including seven Conv2D and DeConv2D

Fig. 9 Architectures of two different neural network models used for TM recovery. a Fully-connected neural network, (b) Convolutional U-net.
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layers respectively and two MaxPooling and UpSampling layers
respectively with LeakyRelu activation function in each layer.
Figure 9 shows this architecture, where reflection matrices
Cλ1

2 R128´ 128, Cλ2
2 R128´ 128, Cλ3

2 R128 ´ 128 are defined in
three channels as the input of the model (with the size of
128 × 128 × 3) and TMAλ1

2 R128 ´ 128, as the output (with the size
of 128 × 128 × 1). Batch normalization layers were defined between
every layer and dropout layers at the rate of 0.2 were defined after
the second and last second Conv layers. Also three skip connections
were developed in order to prevent the model being overfitted. The
model was trained iteratively with the global phase insensitive
custom loss function defined. Also, 2200 epochs were used for
training 400,000 training datasets using 143 h. The Adam optimizer
was used with a learning rate of 0.004 in a decay rate of 1e-4.

Global phase insensitive loss function. Widely used conventional
loss functions such as mean absolute error (MAE) or mean squared
error (MSE) calculate the absolute difference between predicted
and target output values. However, there is a class of problems
whose solutions trained by deep learning models are degenerate
within a global phase factor, but whose relative phase between
pixels must be preserved. This class includes problems where
complex TMs are reconstructed and relative phase, but not global
phase, could extend to phase-hologram generation algorithms
where replay-field phase is relavant32. This is depicted visually in
Supplementary Fig. 3a, which shows one example of a pair of
predicted and target matrices with complex entries depicted as
vectors. Supplementary Fig. 3b shows the complex error between
these two matrices when using MAE as the loss function. Due to
the global phase shift, we observe that the vectors have large
magnitudes, which will lead to an overall very large MAE when
their magnitudes are summed. In the limiting case (e.g. when the
phase shift is of π) where the predicted and target matrices are
identical, this global phase shift can result in a normalized MAE of
100% when the true value should be 0%. To avoid this problem, we
propose a custom loss function termed a ‘global phase insensitive’
loss function that normalizes for this global phase factor:

Lð bAtðwÞ;AtÞ ¼ ∑
4M2

t¼1
bAtðwÞ � Ate

iϕ TrðAt
HbAtðwÞÞ

�����
����þ α

2
kwk2 ð11Þ

where, bAtðwÞ 2 CM2 ´M2

and At 2 CM2 ´M2

represent predicted
and target output value with regards to weight, w, respectively, ∑
represents summation over all matrix elements, ϕ represents the
argument function for a complex number input. We add an ℓ2

regularization term to encourage generalization of the model with
regularization parameter, α= 10−4. This formula implicitly
weights the phase contributions by the product of magnitudes of
the respective elements in bAtðwÞ and At, which upon convergence
will approximately equal the squared magnitude of the target.

The rationale for this is that when the optimization algorithm
approaches a minimum, the remaining error for each complex
element will be entirely due to aleatoric uncertainty, e.g. a
circularly symmetric zero-mean complex Gaussian distribution33.
To estimate the correction factor, the element-wise complex
errors can be summed, as shown in Supplementary Fig. 3c. This
will produce an overall complex factor that has the desired global
phase shift, shown in Supplementary Fig. 3d. The predicted
output value can be corrected by multiplying by this phase factor
as shown in Supplementary Fig. 3e, the result of which is then
used to compute further parameter updates in the gradient
descent algorithm. It can be seen that the complex error in
Supplementary Fig. 3f between the predicted and target output
value is reduced to a minimum after removing the phase factor

compared to that calculated by MAE. We then compared the
absolute values of the complex error calculated by MAE (green
bar) and our customized global phase insensitive loss function
(blue bar) respectively over 100,000 pairs of predicted and desired
TM as shown in Supplementary Fig. 3g. The error using the
custom loss function is more than two times smaller than that of
the conventional loss function (MAE).

Experimental measurement and updated model setup. The
optical layout of our experimental setup is provided in ref. 12.
Measuring the TM, treated as a linear operator, involves input
modulation and output recovery. To achieve input modulation, the
incident light was collimated into MMF by an objective lens and a
4f configuration after reflecting from digital micro-mirror device
(DMD). In our specific case, the input fields are implemented using
the Hadamard basis, providing an orthogonal set of modulated
inputs. For the complex output recovery, images of the output facet
of the fiber are captured using a movable calibration module. The
light from the multimode fiber (MMF) is combined with the
reference signal using a beam splitter. The reference light is directed
to the camera through a single-mode fiber, and then the off-axis
holography is recorded by CCD camera after magnifying by a
microscope objective. By employing this optical layout, we are able
to accurately measure the TM and gain insights into the propa-
gation characteristics of light through the MMF. Using this
approach, we measured experimental TMs for 164 different
bending conformations and selected 64 rows and 64 columns of the
raw measurements to create suitably sized matrices for training our
model. TMs are measured at a wavelength of 488 nm and we use
these as our base Aλ1

at wavelength λ1. We then scale this matrix to
λ2−3 using the method in Eqs. (3)–(4), which has been validated
previously on multi-wavelength TM datasets14.

For a small size matrix (8 × 8) we find that the model trained
on simulation data is sufficient to reconstruct cropped 8 × 8
experimental matrices. However, for the larger 64 × 64 matrices,
the model pre-trained on simulated data is prone to overfitting as
it tends to also learn the prior distribution of TMs, and the
subsequent loss is around 9.24% (standard deviation 0.78%). This
learning of a prior can be advantageous in some cases where prior
information is essential to resolve degeneracies, but to avoid that
here we next re-trained the model with an augmented dataset
containing 600,000 additional random matrices with elements
drawn from complex uniform distribution. This reduced loss to
an average value of around 5.07% (standard deviation of 0.67%),
but a degree of overfitting is still present and so tweaked the
model by continuing the training on 100 experimental TM,
keeping 64 aside for validation and testing. Visually, these
experimental TMs are structured differently to our simulated TM
due to their use of a different basis. However, the training on
random matrices seems to encourage generalization to different
matrix structures.

Data availability
The data presented in this study are available from the following source: https://doi.org/
10.17639/nott.7334.

Code availability
The code for this study is available from the following source: https://doi.org/10.17639/
nott.7334.
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