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General construction scheme for geometrically
nontrivial flat band models
Hyeongseop Kim 1, Chang-geun Oh2 & Jun-Won Rhim 1,3✉

A singular flat band (SFB), a distinct class of the flat band, has been shown to exhibit various

intriguing material properties characterized by the quantum distance. We present a general

construction scheme for a tight-binding model hosting an SFB, where the quantum distance

profile can be controlled. We first introduce how to build a compact localized state (CLS),

endowing the flat band with a band-touching point and a specific value of the maximum

quantum distance. Then, we develop a scheme designing a tight-binding Hamiltonian hosting

an SFB starting from the obtained CLS, with the desired hopping range and symmetries. We

propose several simple SFB models on the square and kagome lattices. Finally, we establish a

bulk-boundary correspondence between the maximum quantum distance and the boundary

modes for the open boundary condition, which can be used to detect the quantum distance

via the electronic structure of the boundary states.
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When a band has a macroscopic degeneracy, we call it a
flat band1,2. Flat band systems have received great
attention because their van Hove singularity is

expected to stabilize various many-body states when the Coulomb
interaction is introduced. Examples of such correlated states
induced by flat bands are unconventional superconductivity3–11,
ferromagnetism12–18, Wigner crystal19–21, and fractional Chern
insulator22–31. Recently, it was revealed that the flat band could be
nontrivial from the perspective of geometric notions, such as the
quantum distance, quantum metric, and cross-gap Berry
connection32–36. The quantum distance is related to the resem-
blance between two quantum states defined by

d2 ¼ 1� hψ1jψ2i
�� ��2; ð1Þ

which is positive-valued and ranging from 0 to 137–39. If a flat
band has a band-touching point with another parabolic band and
the maximum value of the quantum distance, denoted by dmax,
between eigenvectors around the touching point, is nonzero, we
call it a singular flat band (SFB)40. The SFB hosts non-
contractible loop states featuring exotic topological properties in
real space41,42. The Landau level structure of the SFB is shown to
be anomalously spread into the band gap region32,33, and the
maximum quantum distance determines the magnitude of the
Landau level spreading. Moreover, if we introduce an interface in
the middle of an SFB system by applying different electric
potentials, an interface mode always appears, and the maximum
quantum distance determines its effective mass43.

Diverse unconventional phenomena characterized by quantum
distance are expected to occur in the SFB systems. However, we
lack good tight-binding models hosting the SFB where one can
control the quantum distance, although numerous flat band
construction methods have been developed44–52. This paper
suggests a general construction scheme for the tight-binding
Hamiltonians with an SFB and the controllable maximum
quantum distance. The construction process’s essential part is
designing a compact localized state (CLS), which gives the desired
maximum quantum distance. The CLS is a characteristic eigen-
state of the flat band, which has finite amplitudes only inside a
finite region in real space40. The CLS can be transformed into the
Bloch eigenstate, and any Hamiltonian having this as one of the
eigenstates must host a flat band40. Among infinitely many
possible tight-binding Hamiltonians for a given CLS, one can
choose several ones by implementing the wanted symmetries and
hopping range into the construction scheme. Using the con-
struction scheme, we suggest several simple tight-binding models
hosting an SFB characterized by the maximum quantum distance
on the square and kagome lattices. Using the obtained tight-
binding models, we propose a bulk-boundary correspondence of
the flat band system from the maximum quantum distance to
address the question of how to measure the maximum quantum
distance in experiments. The previous work established the bulk-
interface correspondence for the interface between two domains
with different electric potentials in the same SFB system, where
the maximum quantum distance of the bulk determines the
interface mode’s effective mass43. We show that the same cor-
respondence applies to open boundaries if a boundary mode
exists.

Results
General flat band construction scheme. Since the key ingredient
of the flat band construction scheme is designing a CLS, we begin
with a brief review of it. The general form of the Bloch wave

function of the n-th band with momentum k is given by

jψn;ki ¼
1ffiffiffiffi
N

p ∑
R
∑
Q

q¼1
eik�Rvn;k;q R; q

�� �
; ð2Þ

where N is the number of unit cells in the system, R represents the
position vectors of the unit cells, R; q

�� �
corresponds to the q-th

orbital among Q orbitals in a unit cell, and vn,k,q is the q-th
component of the eigenvector vn,k of the Q ×Q Bloch
Hamiltonian53. Then it was shown that if the n0-th band is flat,
one can always find a linear combination of the Bloch wave
functions resulting in the CLS of the form:

χR
�� � ¼ cχ ∑

k2BZ
∑
R0

∑
Q

q¼1
αkvn0;k;qe

ik�ðR0�RÞ R0; q
�� �

; ð3Þ

where cχ is the normalization constant and αk is a mixing coef-
ficient of the linear combination40. It is important to note that
αkvn0;k;q is a finite sum of exponential factors eik⋅R so that the

range of R0 in (3) with the nonzero coefficient of R0; q
�� �

is finite. If
αkvn0;k;q ¼ 0 at k= k0 for all kinds of αk satisfying the above
properties, we call the band the SFB because vn0;k;q becomes
discontinuous at k0 in this case. From (3), one can note that the
constants in front of each exponential factor of αkvn0;k;q becomes
the amplitude of the CLS.

We construct a flat band Hamiltonian from a CLS arbitrarily
designed on a given lattice. This part corresponds to the third and
fourth stages of the construction scheme sketched in Fig. 1. By
using the correspondence between the CLS and Bloch eigenvector
in (3), one can obtain αkvn0;k;q in the form of the finite sum of
exponential factors from the designed CLS. Then, by normalizing
αkvn0;k;q, one can have the flat band’s eigenvector vn0;k;q
corresponding to the CLS. Our purpose is to find a tight-
binding Hamiltonian of the form

Hlattice
ij ðkÞ ¼ ∑

ΔR
tijðΔRÞe�ik�ΔR; ð4Þ

which satisfies

Hlattice
ij ðkÞ � Eflat

h i
αkvn0;k ¼ 0; ð5Þ

where Eflat is the flat band’s energy and vn0;k is a column vector
with components vn0;k;q. Here, tij (ΔR) represents the hopping
parameter between the ithe and jth orbitals in unit cells separated
by ΔR ¼ ∑d

ν¼1 nνaν , where nν is an integer, d is spatial

Find ∝ q1u1 + q2u2

CLS : αkvk

Regularization

Flat band construction 
scheme in Sec. 2 

A tight-binding Hamiltonian 
hosting a SFB with dmax

&u1 u2

d2
max =

1 − |u*1 ⋅ u2 |2

1 − (Reu*1 ⋅ u2)2

satisfying

Singular flat band

vk

Fig. 1 The SFB construction scheme overview. A scheme for the
construction of a tight-binding model hosting a singular flat band (SFB)
characterized by the maximum quantum distance (dmax). First, we find two
vectors with complex components to yield the desired dmax. Then, we build
a compact localized state (CLS) from the two vectors in the second and
third steps. Finally, we obtain an SFB Hamiltonian from the CLS using the
general flat band construction scheme.
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dimension, and aν is the primitive vector. For convenience, we
denote tn1;n2 ¼ nν

ij � tijðΔRÞ and eν � e�ik�aν . We use a bar

notation for the complex conjugate such that tn1;n2 ¼ nν
ij ¼

tn1;n2 ¼ nν
ij

� ��
and eν ¼ ðeνÞ�. Then, the matrix element of the

tight-binding Hamiltonian is rewritten as

HLattice
ij ðkÞ ¼ ∑

n1;n2 ¼ nν
∑
ij
tn1;n2 ¼ nν
ij

Y
ν0

enν0ν0 : ð6Þ

Here, the hopping parameters tn1;n2 ¼ nν
ij can be considered

complex unknowns determined by the matrix equation in (5).
One can encode some wanted hopping range and symmetries by
manipulating the number of unknown hopping parameters and
setting relations between them, respectively. Noting that
αkvn0;k ¼ ∑n1;n2;���;nν cn1;n2;���;nν

Q
ν0e

nν0
ν0 as described above, the

matrix equation (5) leads to a system of linear equations obtained
from the coefficients of the independent exponential factors.

Let us consider a simple example, the flat band Hamiltonian on
the checkerboard lattice, which is illustrated in Fig. 2a. We design
a CLS in the shape of a square represented by a gray region in
Fig. 2a, having amplitudes a and b on the A and B sites,
respectively. From the CLS, one can obtain the flat band’s
eigenvector αkvn0;k in momentum space such that the CLS’s

amplitude in the unit cell ΔR ¼ ∑d
ν¼1 nνaν becomes the

coefficient of the exponential factor
Q

νe
ν
ν . As a result, we have

αkvn0;k ¼
aþ ae1
bþ be2

� �
: ð7Þ

The next step is to design the tight-binding Hamiltonian (6). We
seek one with real-valued hopping parameters up to the next-
nearest hopping range. Then, the matrix elements of HCB1 are of
the form

HCB1
11 ¼ t0;011 þ t0;�1

11 e2 þ t0;111 e2; ð8Þ

HCB1
12 ¼ t0;012 þ t1;012 e1 þ t0;112 e2 þ t1;112 e1e2; ð9Þ

HCB1
22 ¼ t0;022 þ t�1;0

22 e1 þ t1;022 e1; ð10Þ
From the flat band condition (5) and by enforcing the hermicity,
one can find relationships between the tight-binding parameters,
which lead to the following form of the Hamiltonian:

HCB1 ¼
�2ð1þ cos kyÞ a

b ð1þ e1Þð1þ e2Þ
a
b ð1þ e1Þð1þ e2Þ � 2a2

b2
ð1þ cos kxÞ

 !
; ð11Þ

where we further assume that a and b are real constants and
t0;011 ¼ �2 for convenience. This Hamiltonian yields a zero-energy
flat band and lower parabolic with a singular band-touching point
at k= (π, π) as plotted in Fig. 2b. In fact, this band-crossing is
already designed at the construction stage of the CLS in (7) by
assigning a simultaneous zero of all the components of αkvn0;k at
k= (π, π).

Maximum quantum distance. In this section, we discuss how to
endow the band-crossing of the flat band with the wanted value of
the maximum quantum distance dmax when we construct a flat
band model. Specifically, the quantum distance between two
Bloch eigenstates with momenta k and k0 is denoted as dðk; k0Þ2 ¼
1� jv�k0 � vkj2 and dmax is defined as

d2max ¼ lim
rD!0

max dðk; k0Þ2
h i���

k;k02Dðk0Þ
; ð12Þ

where vk is the flat band’s eigenvector and D (k0) is a closed disk
with radius rD centered at the band-crossing point k032. In the
previous study, dmax was proposed to measure the strength of the
singularity at k0. The finite dmax also indicates the divergence of
the Fubini-Study metric54 defined by the real part of the quantum
geometric tensor Qμν= 〈∂μψ∣∂νψ〉− 〈∂μψ∣ψ〉〈ψ∣∂νψ〉. For the
generic SFB Hamiltonian characterized by dmax, the quantum
geometric tensor is evaluated as

QSFBðkÞ ¼
d2max

4m1m2EparaðkÞ2
k2x kxky

kxky k2y

 !
; ð13Þ

where EparaðkÞ ¼ 2t1k
2
x þ 2t2kxky þ ð2t3 þ t24=t1Þk2y is the energy

of the parabolic band touching with the SFB, and m1 and m2 are
the minimum and maximum effective mass it [See Supplemen-
tary Note 1 for details]. While the real and imaginary parts of the
quantum geometric tensor correspond to the quantum metric
and the Berry curvature, respectively, the Berry curvature van-
ishes for all momenta so that the Fubini-Study metric is identical
to the quantum geometric tensor in the SFB. Since Epara (k)∝ k2,

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
, every element of the Fubini-Study metric

A site B site
Unit cell

CLS

(a) (b)

Flat band

0

1

2

3

4

5

Fig. 2 The checkerboard lattice model CB1. a A red box represents the unit cell. The hopping amplitudes are 1 for the dashed lines along the y axis, −a/b
for black solid lines along diagonal directions, and a2/b2 for the black solid lines along the x axis. The compact localized state (CLS) corresponding to the
flat band is drawn by a gray region. The CLS’s amplitudes are a at the A-sites and b at the B-sites. b The band structure of the checkerboard model for a= 1
and b= 2.
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diverges algebraically (~1/k2) approaching the band-crossing
point at k= 0. This singularity disappears if dmax becomes zero
because the Fubini-Study metric simply vanishes in this case.
Note that if there is a singularity at the touching point, the
quantum distance between the Bloch eigenstates can remain finite
even if the momenta of them are very close to k032. For the well-
known SFB models, such as the kagome and checkerboard lattice
models, dmax is found to be unity. While 0≤ dmax ≤ 1 in general32,
there have been almost no examples of the tight-binding models
hosting dmax smaller than 1.

One can design vk of the flat band to have a specific value of
dmax by manipulating the form of the linear expansion of αkvk
around the band-crossing point. Denoting qμ= kμ−k0,μ, where k0
is the band-crossing point, the eigenvector αkvk can be written as

αkvk ’ q1u1 þ q2u2; ð14Þ
in the vicinity of k0 up to the linear order of q. Here, u1 and u2 are
Q × 1 constant normalized vectors. Then, one can show that

d2max ¼
1� ju�1 � u2j2

1� ðReu�1 � u2Þ2
: ð15Þ

See Supplementary Note 2 for the detailed derivations. By using
this relationship, one can choose two constant vectors u1 and u2,
giving the desired value of dmax. Then, performing a regulariza-
tion of (14) by applying transformations, such as qi ! sin qi and
qi ! 1� eiqi , one can obtain αkvk, the Fourier transform of a
CLS, in the form of a finite sum of exponential factors eν and eν .
In this stage, corresponding to the first to third steps in Fig. 1, one
can control the size of the CLS, which is closely related to the
hopping range of the tight-binding model obtained from this
CLS. While the regularization process contains a large degree of
arbitrariness for the final tight-binding model, this arbitrariness
can be reduced quite much if we select CLSs with a size as small
as possible. Once we obtain αkvk, the tight-binding Hamiltonian
with the desired dmax can be built by using the construction
scheme in the previous section.

From the dmax-formula (15), one can note that dmax can be less
than one and larger than zero only when u�1 � u2 is not real or
pure imaginary. Namely, u�1;mu2;m should be imaginary at least for
onem, where ui,m is the m-th component of ui. Let us denote such
an index m by m0. Then, the m0-th component of αkvk, given by
αkvkjm0

¼ u1;m0
q1 þ u2;m0

q2, must be regularized into a form,
where the coefficients of the exponential factors contain both the
real and imaginary values. This implies that the CLS

corresponding to the SFB with 0< dmax < 1 cannot be constructed
only with the real amplitudes. Note that the CLS of the flat band
of the kagome lattice can be represented by only real amplitudes
because the corresponding dmax is unity. However, the CLS
should consist of different complex amplitudes in at least two
atomic sites for generic flat bands with 0< dmax < 1. The tight-
binding Hamiltonian stabilizing such a CLS usually requires
complex hopping parameters. Moreover, it is shown in Methods
that we need more than two exponential factors for at least one
component of αkvk. This implies that we usually need hopping
processes between atoms at a longer distance than the nearest-
neighbor ones.

Let us consider the checkerboard lattice example again. We
assume that the touching point is at k= (0, 0). First, to obtain a
model with dmax ¼ 1, we can choose u1= (i, 0)T and u2= (0,
−i)T in (14), using the formula (15). Then, we apply the
regularization ik1 ! 1� e�ik1 and ik2 ! 1� eik2 to obtain the
CLS’s Fourier transform. Second, on the other hand, one can let
the CLS have dmax ¼ 1=

ffiffiffi
2

p
by choosing u1 ¼ ði;�1ÞT= ffiffiffi

2
p

and
u2= (0, −i)T. In this case, an example of the regularization gives

αkvk ¼ ð1� e�ik1 ; 1þ i� ie�ik1 � eik2 ÞT. The CLS corresponding
to this eigenvector is drawn in Fig. 3a. An example of the flat
band tight-binding Hamiltonian obtained from this choice of the
CLS is given by

HCB2 ¼ v2v
�
2 �v1v

�
2

�v2v
�
1 v1v

�
1

� �
; ð16Þ

where v1 ¼ 1� e�ik1 and v2 ¼ 1þ i� ie�ik1 � eik2 . The band
structure of this model is shown in Fig. 3b. One can note that the
band has nonzero slopes at X and M points due to the broken
time-reversal, mirror, and inversion symmetries. As discussed
above, the CLS contains both the real and imaginary amplitudes,
and the Hamiltonian possesses imaginary hopping processes in
the dmax ¼ 1=

ffiffiffi
2

p
case.

Flat band models characterized by the quantum distance. We
first construct a simple tight-binding model hosting an SFB
characterized by dmax in the kagome lattice as shown in Fig. 4a, b.
When we consider only the nearest-neighbor hopping processes
in the kagome lattice, which is the most popular case, the flat
band already has a quadratic band-touching, but the corre-
sponding dmax is fixed to 132. We generalize this conventional
kagome lattice model so that dmax can vary by adding some next-
nearest-neighbor hopping processes.

A site B site

CLS

(a) (b)

Flat band

Fig. 3 The checkerboard lattice model CB2. a The checkerboard flat band model with the maximum quantum distance dmax ¼ 1=
ffiffiffi
2

p
. A red box represents

the unit cell. The hopping parameters are given below the lattice structure. For the complex hopping processes, the hopping direction is represented by the
arrow. The gray region stands for the compact localized state (CLS). b The band structure of the checkerboard model CB2.
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We begin with two vectors u1= c1 (−i, −2α, −i)T and u2= c2
(0, −i−α, −i)T, where c1 ¼ ð2þ 4α2Þ1=2 and c2 ¼ ð2þ α2Þ1=2.
This set of vectors yields

dmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2α2

3þ 6α2

r
; ð17Þ

where α can take any real number from −∞ to ∞. dmax of the
constructed SFB model can take values from 1=

ffiffiffi
3

p
to 1. Then, we

regularize the linearized vector vfb= u1k1+ u2k2 to

vfb ¼
1� e1

�1þ iαe1 þ e2 � iαe3
e1 � e2

0
B@

1
CA; ð18Þ

where e3 ¼ e1e2. The CLS corresponding to this eigenvector of
the flat band is drawn in Fig. 4a by the gray region. From this
choice of the CLS, we construct a tight-binding Hamiltonian as
follows:

HkagðkÞ ¼
g1 g�2 g�3
g2 2 g�4
g3 g4 g1

0
B@

1
CA; ð19Þ

where g1= 2∣t∣2, g2 ¼ tð1þ e3Þ, g3 ¼ t 1þ e2
	 þ iαtðe1 þ e3Þ,

g4 ¼ tð1þ e1Þ, t ¼ eiθ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p
, and θ ¼ cos�1ð1= ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2
p Þ. Note

that when α= 0, where dmax ¼ 1, the model reduces to the
kagome lattice model with only nearest-neighbor hopping
processes. As the parameter α grows, the nearest-neighbor
hopping parameters become complex-valued, and the next-
nearest-neighbor hopping processes are developed as represented
by green dashed lines in Fig. 4a. One can assign threading
magnetic fluxes corresponding to the complex hopping para-
meters as illustrated in Fig. 4b, similar to the Haldane model in
graphene. In Fig. 4c–e, we plot band dispersions for various
values of α, where we have a zero-energy flat band at the bottom.
Fig. 4c) is the well-known band diagram of the kagome lattice
with the nearest-neighbor hopping processes. If α is nonzero,
the Dirac point is gapped out due to the broken C6 symmetry, but
the quadratic band-crossing at the Γ point is maintained. We
calculate dmax of this model directly using (12) and check that the
continuum formula (17) works well as shown in Fig. 4f.

We also construct an SFB tight-binding model in the square
lattice bilayer, where one can adjust dmax. The lattice structure is
illustrated in Fig. 5a, b, and its band dispersion is plotted in
Fig. 5c. As in the kagome lattice case, the construction scheme
starts by setting two constant vectors. Our choice is u1= c (iα+γ,

−α−iγ)T, and u2 ¼ u1, where c ¼ ð2α2 þ 2γ2Þ1=2. One can show

Unit Cell

CLS

(a)

ei�

ei�

ei�

ei�

e-i�

e-i�

e-i�

e-i�

e-i�
e-i�iei�

iei�

(b)

(c) (d)

(e) (f) dmax = (2α2 + 3)/(6α2 + 3)
Lattice model

α = 0
dmax = 1

α = 0.766
dmax = 0.8

α = 3.464
dmax = 0.6

ϕA

ϕB

ϕC

ϕA

ϕB

Fig. 4 The kagome lattice model characterized by the quantum distance. a The nearest and the next-nearest-neighbor hopping processes are denoted by
the black solid and green dashed lines, respectively. The compact localized state (CLS) corresponding to the flat band of this model is represented by the
gray region. b The phase parts of the hopping parameters are highlighted. The magnetic fluxes for the complex hopping parameters are given by ϕA= π/
2−θ, ϕB= θ, and ϕC=−π. c–e Band dispersions for α= 0, α= 0.766, and α= 3.464, where θ ¼ cos�1ð1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p
Þ. f The maximum quantum distance dmax

as a function of α. The formula (17) drawn by a black curve is compared with the numerically calculated dmax from the lattice model, represented by circles.
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that dmax calculated from these vectors is given by

dmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4α2γ2

ðα2 þ γ2Þ2
s

; ð20Þ

where α and γ can take any real values. dmax can vary from 0 to 1.
If α or γ is zero

As shown in Fig. 5d, dmax of the constructed SFB model can
take values from 0 to 1. Then, we regularize a vector
vfb= u1k1+ u2k2 to

vfb ¼
�iγð1� e1e2Þ � αðe1 � e2Þ
iαð1� e1e2Þ þ γðe1 � e2Þ

� �
: ð21Þ

From this choice of the CLS, we construct a tight-binding
Hamiltonian as follows:

HsqðkÞ ¼
jf 2j2 f 3
f 3 jf 1j2

 !
; ð22Þ

where f1=− iγ (1−e1e2)− α (e1−e2), f2= iα (1−e1e2)+ γ (e1−e2)
and f 3 ¼ �f 1f 2. When α= γ or α and γ are zero, dmax ¼ 1. As
parameters α and γ grow, interlayer and intralayer hopping appear,
and if α ≠ γ, the complex-value hopping process is developed as
represented by blue arrow in Fig. 5a. Unlike kagome lattice model,
this model has an isotropic band dispersion. As shown in Fig. 5c,
the flat band is fixed at the zero energy, and the parabolic band is
scaled with α2+ γ2. Figure 5d shows dmax of this model as a
function of γ. One calculated by the continuum formula (15)
complies with the numerical results from the lattice model
evaluated directly from (12).

Bulk-boundary correspondence. The bulk-boundary corre-
spondence is the essential idea of the topological analysis of
materials55–62. Based on this, one can detect the topological
information of the bulk by probing the electronic structure of the
boundary states. Recently, a new kind of bulk-interface corre-
spondence from the quantum distance for the flat band systems

was developed43. Here, a specific type of interface is considered,
which is generated between two domains of an SFB system with
different onsite potentials UR and UL. Note that the two domains
are characterized by the same geometric quantity dmax, unlike the
topological bulk-boundary correspondence, where the boundary
is formed between two regions with different topological char-
acters. In the case of the SFB systems, an interface state is guar-
anteed to exist if the value of dmax is nonzero, and the
corresponding band dispersion around the band-crossing point is
given by

EIFðkÞ �
d2max

2mb
k2 þ U0; ð23Þ

where k and mb are the crystal momentum and the bulk mass
along the direction of the interface, respectively, and
U0 ¼ minðUR;ULÞ. This formula implies that the effective mass
of the interface mode is m� ¼ mb=d

2
max.

Now, we examine the formula (23) for the finite systems
satisfying the open boundary condition. In the previous work,
(23) could be obtained by presuming an exponentially decaying
edge mode, and the existence of such a state was guaranteed for
the specific interface of the step-like potential. While the open
boundaries are naturally induced when we prepare a sample, the
application of the step-like potential is not usually straightforward
in experiments. Therefore, it is worthwhile to investigate the
bulk-boundary correspondence for the open boundary systems.
In the case of the open boundary, the bulk-boundary correspon-
dence states that if edge-localized modes exist, their energy
spectrum is given by (23). Note that the edge modes are not
guaranteed to appear within the open boundary condition. For
example, the modified Lieb lattice model yields an interface mode
when there is a chemical potential difference over the system as
studied in reference [43], while we do not have an edge mode
under the open boundary condition [See Supplementary Fig. 1 in
Supplementary Note 3].

i(γ2 − α2)
− α
4αγ

− α2

− γ2
x

y

z

(a) (b)

E/
(α

2
+

γ2 )

(c) (d)

Lattice model

dmax = 1 − 4γ2 /(1 + γ2)2

Fig. 5 The square lattice bilayer model characterized by the quantum distance. We plot the interlayer and intralayer hopping processes in a and
b, respectively. c We plot the band structure, where the energy is scaled by α2+ γ2. The relation between the maximum quantum distance dmax and the
band parameter γ is presented in d. The results from the lattice model (red circles) are compared with the analytic formula (20) drawn by the solid curve.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01407-6

6 COMMUNICATIONS PHYSICS |           (2023) 6:305 | https://doi.org/10.1038/s42005-023-01407-6 | www.nature.com/commsphys

www.nature.com/commsphys


We first consider the kagome lattice model. We note that
boundary modes exist for the ribbon geometry of this system
illustrated in Fig. 6a, which respects the translational symmetry
along ð1=2; ffiffiffi

3
p

=2Þ while terminated along the x axis. The width
W of the kagome ribbon is defined as the number of the unit cells
along the x axis. For example, the width of the kagome ribbon
shown in Fig. 6a is 4. We plot the band dispersions of the kagome
ribbons with W= 20 for dmax ¼ 1 and dmax ¼ 0:8 in Fig. 6b, c,
respectively. The red and blue lines represent the boundary
modes stemming from the band-crossing point at ky= 0. While
the band dispersions of the left (near ky ≈ 0)- and right (near
ky ≈ 2π)-localized modes in Fig. 6b are precisely the same for the
dmax ¼ 1 case, it is not for 0 <dmax < 1 case due to the broken
time-reversal symmetry. For this reason, we distinguish the left-
and right-localized modes by the red and blue colors in Fig. 6c.
We check that the blue and red curves, although they look
asymmetric with respect to ky= 0, they follow the same parabolic
equation (23) in the vicinity of the touching point at ky= 0 [See
Supplementary Fig. 2 in Supplementary Note 4]. We numerically
calculate the effective mass of the boundary modes from the
kagome lattice model and compare it with the analytic result of
the effective mass m� ¼ mb=d

2
max in (23). As plotted in Fig. 6d,

the formula (23) describes the numerical results perfectly for any
values of dmax. Second, we also investigate the edge state of the
square lattice bilayer ribbon shown in Fig. 6e. As in the kagome
model, the width W of this system is defined as the number of
unit cells along the x axis. In Fig. 6f, g, we plot the band structures
of the square lattice bilayer ribbon with W= 20. The red curves,
which are doubly degenerate, correspond to the boundary modes.
We confirm that the effective mass of the boundary modes obeys
the continuum formula (23) well as plotted in Fig. 6h.

Discussion
In summary, we propose a construction scheme for tight-binding
Hamiltonians hosting a flat band whose band-touching point is
characterized by dmax, the maximum value of the quantum dis-
tance between Bloch eigenstates around the touching point. Based
on the scheme, we built several flat band tight-binding models
with simple hopping structures in the kagome lattice and the

square lattice bilayer, where one can control dmax. We note that
complex and long-range (at least the next-nearest ones) hopping
amplitudes are necessary to change dmax between 0 and 1. This
implies that the candidate materials hosting an SFB with
0< dmax < 1 could be found among the materials with strong spin-
orbit coupling. We believe that our construction scheme could
inspire the material search for geometrically nontrivial flat band
systems. If we extend the category of the materials to the artificial
systems, our lattice models with the fine-tuned complex hopping
parameters are expected to be realized in the synthetic
dimensions63–69 and circuit lattices70,71. Then, we propose a
bulk-boundary correspondence between the bulk number dmax
and the shape of the low-energy dispersion of the boundary
modes within the open boundary condition. The information of
dmax is embedded in the effective mass of the band dispersion of
the edge states. This correspondence provides us with a tool to
detect dmax from the spectroscopy of the finite SFB systems.
Notably, the bulk-boundary correspondence is obtained from the
continuum Hamiltonian around the band-crossing point. This
implies that even if the flat band obtained from our construction
scheme is slightly deformed in real systems, one can investigate
the geometric properties of the SFB. It is worthwhile to remark
that the dmax-driven bulk-boundary correspondence is dis-
tinguished from the conventional one in that the former predicts
the effective mass of the interface mode instead of its existence.

Method
A condition for the CLS to have a noninteger dmax. In this
section, we show that at least one component of αkvk, the Fourier
transform of the CLS, should contain more than two different
exponential factors e�iðmq1þnq2Þ. Here, qi is the momentum with
respect to the band-crossing point, and m and n are integer
numbers. To this end, we verify that if all the components of αkvk
have two or less than two exponential factors, dmax of the cor-
responding flat band is one or zero. The q-th component of such
an eigenvector can be written as

αkvkjq ¼ Am1;n1
e�iðm1q1þn1q2Þ þ Am2;n2

e�iðm2q1þn2q2Þ: ð24Þ

Since we assume that the flat band is singular at the band-
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Fig. 6 The Bulk-boundary correspondence of singular flat band systems. a The lattice structure of the kagome lattice model. The unit cell is indicated by
the red box. b, c are the band structures of the kagome lattice model withW= 20 for various values of the maximum quantum distance dmax. dWe plot the
effective mass of the boundary modes of the kagome lattice model around ky= 0 as a function of dmax and compare it with the continuum result (red
circles) in (23). e The lattice structure of the square lattice bilayer model, where the red box represents the unit cell. f, g We plot the band spectra of the
square lattice bilayer model with W= 20 for various values of dmax. h The dmax-dependence of the effective mass of the boundary modes of the square
lattice bilayer around ky= 0. The general continuum formula (23) of the effective mass is drawn by red circles.
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touching point, the coefficients satisfy

Am1;n1
þ Am2;n2

¼ 0: ð25Þ
As a result, the linear expansion of αk becomes

αkvkjq � �iAm1;n1
ðm1 �m2Þq1 � ðn1 � n2Þq1

 �

; ð26Þ
leading to u�1;qu2;q ¼ jAm1;n1

j2ðm1 �m2Þðn1 � n2Þ, where ui,q is
the q-th component of ui defined in (14). Therefore, u�1 � u2 ¼
∑qu

�
1;qu2;q is a real number, which proves the statement at the

beginning of this section. Namely, we need at least three different
exponential factors in at least one component of αk.

Data availability
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