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Experimental demonstration of position-
controllable topological interface states in high-
frequency Kitaev topological integrated circuits
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Topological integrated circuits are integrated-circuit realizations of topological systems. Here

we show an experimental demonstration by taking the case of the Kitaev topological

superconductor model. An integrated-circuit implementation enables us to realize high

resonant frequency as high as 13GHz. We explicitly observe the spatial profile of a topological

edge state. In particular, the topological interface state between a topological segment and a

trivial segment is the Majorana-like state. We construct a switchable structure in the inte-

grated circuit, which enables us to control the position of a Majorana-like interface state

arbitrarily along a chain. Our results contribute to the development of topological electronics

with high frequency integrated circuits.
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Topological insulators and superconductors are fascinating
new states of matter1–3. The Kitaev topological super-
conductor model4 is an intriguing one-dimensional (1D)

systems realizing topological insulators and superconductors.
Especially, topological superconductors host Majorana edge
states5–8, which are the key elements of a topological quantum
computer9,10. The area of topological physics is expanded
nowadays to photonic11–16, acoustic17–21, mechanical22–29 and
electronic-circuit systems30–37. They are called artificial topolo-
gical systems. There are several merits which are difficult to be
achieved in inorganic crystals: 1) It is possible to make a fine
tuning of the system, which is crucial for observing topological
edge states. 2) It is possible to construct a few site systems. 3) It
is possible to directly measure the site dependent information.

It is a nontrivial task to materialize the Kitaev topological
superconductor model because it involves complex hoppings. It
describes a p-wave topological superconductor, although the
Majorana edge state itself can be generated in a s-wave super-
conductor with the aid of a topological insulator nanowire38,39.
We note that there is no physical realization of the Kitaev
topological superconductor model so far.

Electronic circuits present an ideal platform to realize various
topological phases30–37,40–46. The emergence of topological edge
states is observed by means of impedance resonance. However,
experimental demonstrations have so far been restricted mainly to
printed circuit boards with discrete components, except for a
simulation of the Su-Schrieffer-Heeger model47 and an integrated-
circuit realization of Floquet’s topological insulator48. The
integrated-circuit realization is an important step toward indus-
trial applications of topological electronics.

In order to generate Majorana-like states, it is necessary to
simulate electron and hole bands in electronic circuits. Although
there is a theoretical proposal with the use of chains of capacitors
and inductors44,45, there is so far no experimental demonstration
of this theoretical proposal.

Most of previous experiments were carried out based on patterned
structures, where it is impossible to control the topological and trivial
phases once the sample is manufactured. Actually, it is very hard to
introduce switch structures in inorganic materials, photonic crystals
and acoustic systems. On the other hand, transistors act as switches
in electronic circuits and hence, there is a possibility to construct a
switchable topological system based on electronic circuits.

In this paper, we perform an experimental demonstration of
switchable topological integrated circuits, which are integrated-
circuit realizations of topological systems, by taking the case of
the Kitaev model. An integrated-circuit implementation enables
us to realize high resonant frequency. In this paper, we realized a
Kitaev chain implementation whose resonant frequency is as high
as 13GHz. We explicitly observe the spatial profile of a topolo-
gical edge state and determine its penetration length. The system
may contain several topological and trivial segments simulta-
neously along a chain. In particular, we observe the signal of a
Majorana-like state emerging at the interface of a topological
segment and a trivial segment. It is topologically protected since it
necessarily emerges between the topological and trivial segments.
These two topologically different segments are interchangeable
simply by switching between inductors and capacitors.

Results
Kitaev chain. The Kitaev chain model is the basic model of a
topological superconductor. Our main result is its implementa-
tion in an integrated electronic circuit. To realize a Cooper pair it
is necessary to incorporate an electron band and a hole
band together with cross terms between these two bands into the
circuit, as shown in Methods.

We first illustrate an electronic circuit for the Kitaev chain44,45

in Fig. 1a, b and c. The capacitor channel (indicated in red)
corresponds to the electron band, while the inductor channel (in
blue) corresponds to the hole band. The two main channels
are crosslinked through Cx and Lx. Each node is connected to the
ground via an inductor L0 or a capacitor C0 to realize a
topological state or a trivial state, respectively, as shown in Fig. 1a,
b. The topological phase is realized by the configuration shown in
Fig. 1a, while the trivial phase is realized by the configuration
shown in Fig. 1b.

A single Kitaev chain may accommodate several segments
which are either topological or trivial. A Majorana-like state
emerges at an interface between the two phases. We introduce
two single-pole double-throw (SPDT) switches in each unit cell as
illustrated in Fig. 1c. The electric circuit for the SPDT switch is
shown in Fig. 1d. The switching is done by swapping the
connection of L0 and C0, by way of which the position of a Kitaev
interface state is controlled. In the integrated circuits, the SPDT
switch is simply implemented with an inverter and two
Complementary Metal-Oxide-Semiconductor (CMOS) transmis-
sion gates, composed of n-type and p-type metal oxide
semiconductor field-effect transistors as shown in Fig. 1f, g.

The Kitaev chain circuit shown in Fig. 1c is implemented onto
the chip using 180 nm CMOS technology as shown in Fig. 1e. On
a 5 mm × 5 mm chip, two 16-unit cell Kitaev chain circuits were
integrated for two different target resonant frequencies, 7.3 GHz
and 13.1 GHz. We show a zoom-in view of the unit cell layout in
Fig. 1f, which shows that it includes 3 inductors L, Lx and L0, 3
capacitors C, Cx and C0, 2 SPDT switches, and a contact pad at
each node for direct probing measurement with GSG (Ground,
Signal, Ground) probes. A photo of the SPDT switches is shown
in Fig. 1g. Two transmission gates and an inverter are integrated
for each SPDT switch. The values for the capacitors and inductors
are summarized in Table 1.

Topological edge states. Figure 2 a–c summarizes the impedance
measurement results of the Kitaev chain designed for 13.1 GHz
resonant frequency. Figure 2a, b shows the frequency dependence
of the impedance measured from the left edge of the chain for
topological setup and right edge of the chain for trivial setup,
respectively. The solid and dashed lines show measurement and
simulation results, respectively.

As we can see from the impedance peak of the leftmost edge in
Fig. 2a, the measured resonant frequency is 13.08 GHz, while the
resonant frequency directly calculated based on the on-chip L and
C values in Table 1 is 17.2 GHz. This frequency shift is mainly
caused by the parasitic inductance of the metal wires in the unit
cell to connect the circuit elements as well as the parasitic
capacitance introduced by the SPDT switches realized with
transistors. Without considering the wires and transistors, the
simulated resonant frequency is 16.4 GHz, which is closer to
the theoretical value. Since the parasitic impact is inevitable on
the integrated chip, we utilized a detailed electro-magnetic
simulation to tune the actual resonant frequency. In addition,
for both the topological and trivial setups, the measurement
results show discrepancy from the simulation results mainly due
to the imperfect transistor model. Especially, the peaking
characteristics becomes less obvious in the topological setup. To
verify the impact of the switch transistors, we have also designed
and measured the Kitaev chain without switches as shown in
Supplementary Fig. 1. When the chains are composed only of the
passive components such as inductors and capacitors, the
measurement results agree almost perfectly with the simulation
results. See Supplementary Note 1 for more details, where
measurement data is shown in Supplementary Fig. 2.
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Figure 2b shows that no impedance peaks are observed at the
resonant frequency in the trivial phase.

Figure 2c summarizes the two-point impedance values at their
measured resonant frequencies when all the system is in the
topological phase. The blue and red lines show the impedance
measured from the left and the right edges, respectively. The
leftmost (0-th) and rightmost (16-th) node impedance corre-
spond to Z11 value of the 2 × 2 impedance matrix.

In the topological setup, the impedance peaks are observed at
both the edges. The penetration length of the topological edge
state is 0.860 unit cell for the left edge and 0.788 unit cell for the
right edge. The discrepancy from the theoretical value 0.610 unit
cell is mainly caused by the SPDT switches designed with
transistors. See Supplementary Note 2 for details. A possible
reason would be the hybridization effect of two topological edge
states for a finite length chain. However, this is not the case. See
Supplementary Note 3 and Supplementary Fig. 3.

We have also carried out a measurement for the Kitaev chain
designed for 7.3 GHz, whose results are shown in Fig. 2d–f. As we
can see from the impedance peak of the leftmost edge in Fig. 2d,
the measured resonant frequency is 7.29 GHz, while the resonant
frequency directly calculated based on the on-chip L and C values
in Table 1 is 8.8 GHz. The simulated resonant frequency without
wire is 8.6 GHz, which is much closer to the calculated value.
Again, the shift in the resonant frequency is due to the effect of
the parasitics which is inevitable on the integrated chip. For
precise estimation of the actual resonant frequency including the
impact of wirings, we utilized the EM simulation. In
the topological setup, the impedance peaks are observed at both
the edges. The penetration length of the topological edge state is
0.771 unit cell for the left edge and 0.916 unit cell for the right
edge, while the theoretical value is 0.680 unit cell.

Topological interface states. We have so far observed the topo-
logical edge states. There is also a topological interface
state between topological and trivial phases. It is possible to switch
the topological and trivial phases for each segment. Figure 3
summarizes the 2-point impedance at the resonant frequency with
3 different switch configurations for the Kitaev chains with 7.3 GHz
and 13.1 GHz designs. In Fig. 3a we divided the chain into 4 seg-
ments. The impedance peak that corresponds to the topological
interface state emerges at the edges of the topological segments.
When we move the left topological segment to the right by one
unit, the location of the edge states moves accordingly as shown in
Fig. 3b. Then if the two separated topological segments are com-
bined into one segment as shown in Fig. 3c, we observe only two

Fig. 1 Kitaev chain. a–c The electronic-circuit representation of the Kitaev chain. a All-topological configuration where the topological edge state emerges
at both the left and right edges of the chain. b All-trivial configuration that does not have a topological edge state. c The implemented state-configurable
Kitaev chain circuit. d By using two single-pole double-throw (SPDT) switches with inverters in the unit cell, the connection of L0 and C0 can be swapped to
change its topological/trivial state. The SPDT switch is realized by two Complementary Metal-Oxide-Semiconductor (CMOS) transmission gate switches.
e A picture of an 16-unit cell integrated circuit for the Kitaev chain. f A picture of a unit cell. g A zoom of SPDT switches in f. Each SPDT switch is composed
of an inverter and two transmission gates with n-type and p-type Metal-Oxide-Semiconductor field-effect transistors as in d.

Table 1 Parameters used for the Kitaev chain.

7.3 GHz 13.1 GHz

C 440 fF 220 fF
L 747 pH 384 pH
Cx 396 fF 204 fF
Lx 830 pH 427 pH
C0 880 fF 440 fF
L0 374 pH 192 pH

C, Cx and C0 represent the capacitance, while L, Lx and L0 represent the inductance.
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impedance peaks at the left and right edges of the single topological
segments. This clearly demonstrates the movement of the topolo-
gical interface state that emerges on the electronic-circuit realiza-
tion of the Kitaev chain implemented onto the integrated circuit.
We also observe the same behavior for two chains with different
resonant frequencies, which proves that the topological interface
state emerges independent of the designed resonant frequency.

Conclusion
We have materialized the Kitaev model in integrated circuits. The
model has topological and trivial phases. It is possible to create
several segments which are either topological or trivial in a single
chain. Topological edge states emerge at both the edges of a
topological segment, which are observable by mean of the
impedance resonance.

We have demonstrated that the segment size can be as small as
one unit cell because the penetration length can be made smaller
than one unit cell: See Fig. 3b. Furthermore, we have equipped our
integrated circuit with a switchable structure, which enables us to
control the position of a topological interface state arbitrarily along
a chain. Such a possibility is a great merit of topological electric
circuits over other artificial topological systems, where an inte-
grated topological pattern is printed once and for all.

We have observed that the resonant frequency is lower than
the theoretical value estimated from ωresonant ¼ 1=

ffiffiffiffiffiffi
LC

p
. This is

due to the parasitic inductance present in the wires. Details are
shown in Supplementary Note 4 and Supplementary Fig. 4.

The integrated circuit has small inductance and capacitance,
which leads to high frequency operation. Indeed, the characteristic
frequency is 13GHz. It is much larger than the previous integrated
circuit implementation48, where the characteristic frequency is
730MHz. The size of the unit cell is 200μm and hence, largely
integrated circuits are possible. The sample randomness is of the
order of 1% in our sample. It is much smaller than that of com-
mercially obtained inductors, where the randomness is of the order
of 10%. The preciseness of circuit elements is beneficial for a sharp
topological peak. Actually, particle-hole symmetry is slightly bro-
ken in our electric circuit due to the randomness. However, the
topological peak is experimentally well observed because the
topological peak is robust with 1% randomness as shown in Sup-
plementary Fig. 5 in Supplementary Note 5. Mass production is
possible in integrated circuits, which will benefit for future indus-
trial applications of topological electronics.

In48, Floquet’s topological insulator is implemented onto the
integrated circuit chip with 40 nm technology, which is applied to
a wireless communication with a 4-element phased array antenna
using 730 MHz carrier frequency. Since our 1-dimensional Kitaev
chain enables the impedance switching by changing the position
of the interface between topological and trivial segments,
this structure can be applied as a high-frequency path selectors
or switches based on impedance matching. Especially, our
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implementation achieves the resonant frequency more than
10 GHz and can be extended to higher frequency bands. Our
results will be applicable to future 5G technology as in the case of
the previous study48.

Methods
Measurements. A block diagram and a photo of the measure-
ment setup are shown in Fig. 4. We observed the topological edge
state based on two-point impedance measurement.

We observe two-point impedance with a vector network
analyzer (VNA), Keysight N5222B. The chip measurement is
done on the probe station, Formfactor Summit11000. A 2 × 2
Z-matrix is derived from the 2 × 2 S-parameter measured by the
VNA. The chain configuration (the state of the SPDT switches) is
controlled by the serial-parallel interface (SPI) integrated on the
same chip, whose configuration data are written from an external
PC.

Simulation is done with a circuit simulator, Cadence Spectre.
The S-parameters of the passive components such as capacitors
and inductors are extracted for circuit simulation with Cadence
EMX, which is a planar 3D electromagnetic simulator based on
the Fast Multipole Method (FMM) designed for high-frequency
integrated circuits.

1D p-wave Kitaev topological superconductor model. The ori-
ginal Kitaev p-wave superconductor model is defined on the 1D
lattice as

H ¼� μ∑
x
cyxcx �

t
2
∑
x

cyxcxþ1 þ cyxþ1cx
� �

� 1
2
∑
x

Δeiϕcxcxþ1 þ Δe�iϕcyxþ1c
y
x

� �
;

ð1Þ

where μ is the chemical potential, t > 0 is the nearest-neighbor
hopping strength and Δ > 0 is the p-wave pairing amplitude of the
superconductor.

By introducing the Nambu representation Ψy
k ¼ ðcyk; c�kÞ and

Ψk ¼ ðck; cy�kÞ
T
one can write the Hamiltonian in the Bogoliubov-

de Gennes form

H ¼ 1
2
∑
k
Ψy

kHðkÞΨk; ð2Þ

with a 2 × 2 form Hamiltonian

HðkÞ ¼ 1
2

�t cos k� μ iΔ0 sin k

�iΔ0 sin k t cos kþ μ

� �
: ð3Þ

The zero-energy state of the Bogoliubov-de Gennes Hamiltonian
is a Majorana state, and hence, there appear Majorana edge states
in the topological phase of the Kitaev model.

Here, t, μ, σi and Δi represent the hopping amplitude, the
chemical potential, the spin degree of freedom, and the super-
conducting gap parameter, respectively. It is well known that the
system is topological for ∣μ∣ < ∣2t∣ and trivial for ∣μ∣ > ∣2t∣
irrespective of Δi provided Δi ≠ 0.
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We then realize this p-wave Kitaev model by way of an
electronic circuit. As shown in Fig. 1a, this circuit chain contains
two main lines, one connected by a series of capacitors C
implementing the electrons band, while another connected by a
series of inductors L implementing the holes band, respectively.
Pairing interaction between the two bands is simulated by
bridging capacitors Cx and inductors Lx. Each electron node and
each hole node is connected to the ground via a capacitor C0 and
inductors L0, respectively. The hopping amplitudes t realized in
the electrons band and holes band are opposite since the
capacitors C contained in the electrons band contribute the terms
iωC while the inductors L contained in the holes band contribute
the terms 1/(iωL).

The circuit Laplacian is given by

JabðωÞ ¼
f 1 g1
g2 f 2

� �
; ð4Þ

where

f 1 ¼ � 2C cos kþ 2C � ω2L0
� ��1

f 2 ¼ 2 ω2L
� ��1

cos k� 2 ω2L
� ��1 þ C0

g1 ¼ � Cxe
ik þ ω2Lx

� ��1
e�ik

g2 ¼ ω2Lx
� ��1

eik � Cxe
�ik;

ð5Þ

for topological phase and

f 1 ¼ � 2C cos kþ 2C þ C0

f 2 ¼ 2 ω2L
� ��1

cos k� 2 ω2L
� ��1 � ω2L0

� ��1

g1 ¼ � Cxe
ik þ ω2Lx

� ��1
e�ik

g2 ¼ ω2Lx
� ��1

eik � Cxe
�ik;

ð6Þ

for trivial phase.
The essence to realize the 1D model in circuit form is to make

the circuit Laplacian equal to the system Hamiltonian. Clearly, to
make it possible, particle-hole symmetry (PHS) must be
respected, which requires these three pairs of LC resonators
shares the same resonant frequency, that is,

ωresonant � 1=
ffiffiffiffiffiffi
LC

p
¼ 1=

ffiffiffiffiffiffiffiffiffiffi
L0C0

p
¼ 1=

ffiffiffiffiffiffiffiffiffiffi
LxCx

p
: ð7Þ

Once PHS is respected, the relationship between circuit
components and Hamiltonian parameters could be induced and
expressed as follows:

t ¼ �C;

μ ¼ �2C þ C0;

Δ0 ¼ �Cx:

8><
>: ð8Þ

To make the 1D circuit chain topological, we set μ to 0 to meet
the topological mode requirements of ∣μ∣ < ∣2t∣. This topological
property is satisfied by the emergence of grounded capacitors C0

and inductors L0, since the system will be precisely located at the
critical point between the topological and trivial states. Therefore,
by exchanging the connections of C0 and L0, we could perform
transitions between these two states.

Impedance resonance. The emergence of a topological edge
states is observed via impedance resonance. The topological edge
state is a zero-energy eigenstate of the Hamiltonian. It corre-
sponds to the zero admittance, and hence, the emergence is
observable by the divergence in the impedance.

The two-point impedance between the a and b nodes is given
by32

Zab � Va=Ib ¼ Gab; ð9Þ
where G is the Green function defined by the inverse of the
Laplacian J, G≡ J−1, Va is the voltage at site a and Ib is the current
at site b.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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