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Signatures of a Majorana-Fermi surface in the
Kitaev magnet Ag3LiIr2O6
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Detecting Majorana fermions in experimental realizations of the Kitaev honeycomb model is

often complicated by non-trivial interactions inherent to potential spin liquid candidates. In

this work, we identify several distinct thermodynamic signatures of massive, itinerant

Majorana fermions within the well-established analytical paradigm of Landau-Fermi liquid

theory. We find a qualitative and quantitative agreement between the salient features of our

Landau-Majorana liquid theory and the Kitaev spin liquid candidate Ag3LiIr2O6. Our study

presents strong evidence for a Fermi liquid-like ground state in the fundamental excitations of

a honeycomb iridate, and opens new experimental avenues to detect itinerant Majorana

fermions in condensed matter systems.
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Kitaev honeycomb materials are among the most promising
means of realizing itinerant Majorana fermions in a con-
densed matter setting1–3. In the quantum spin liquid (QSL)

phase, localized spins on the 2D hexagonal lattice fractionalize,
allowing us to map the original spin degrees of freedom onto a
Hamiltonian describing itinerant fermionic quasiparticles and
localized Z2 fluxes4–6. Unfortunately, real materials are more
complex than Kitaev’s original formulation, and are often char-
acterized by additional interactions such as an anti-ferromagnetic
(AFM) Heisenberg coupling and a symmetric off-diagonal
exchange7–14. Due to the ubiquitous nature of these non-Kitaev
interactions in real-world honeycomb materials, the full effect of
off-diagonal contributions to the underlying Majorana excitations
is an important question in the study of topological matter.
Recent work on α-RuCl3 suggests that the combination of zigzag
AFM order and off-diagonal exchange interactions can drastically
change the Majorana fermion’s band structure in a nearby spin
liquid phase, ultimately transforming the original Kitaev model’s
Majorana-Dirac point at zero energy into a Majorana-Fermi
surface of finite area15. As a consequence, such a Majorana-Fermi
surface might be induced in a Kitaev material whenever spins
exhibiting AFM order are coupled to those in the QSL phase via
some exchange interaction.

Inspired by previous works on Majorana-Fermi surfaces16–25,
in this paper, we combine theoretical and experimental techni-
ques to address whether or not the specific heat data of
Ag3LiIr2O6 suggests the presence of a Majorana-Fermi surface.
Ag3LiIr2O6 has recently been proposed as a promising spin liquid
candidate26–28, with an enhanced trigonal distortion in the lattice
of this compound (See the Methods Section for the details)
supporting proximity to the Kitaev QSL phase due to consider-
able off-diagonal exchange interactions28,29–31. In a similar vein, a
comparative study of the magnetic susceptibility, heat capacity,
and muon spin relaxation of Ag3LiIr2O6 hints at some form of
incommensurate AFM order32, a phase previously suggested to
exist in close proximity to the spin liquid state and dependent on
a finite off-diagonal exchange term in the Kitaev Hamiltonian7. In
relation to previous theoretical work on the off-diagonal exchange
in candidate Kitaev materials15, this raises the question of whe-
ther or not the exotic thermal signatures found in Ag3LiIr2O6

26

are consistent with the presence of a Majorana-Fermi surface and
for massive Majorana excitations themselves. We answer this
question in the positive by analyzing three aspects of the low-
temperature specific heat data: (i) the Sommerfeld coefficient, (ii)
the next-to-leading-order temperature dependence of the specific
heat at zero magnetic field, and (iii) the low-temperature behavior
of the specific heat as a function of the external magnetic field.
This is done theoretically by virtue of a modification of the
Pethick-Carneiro calculation of the non-analytic contribution to
the Fermi liquid-specific heat33,34, which we extend to the case of
a robust Majorana-Fermi surface first introduced in the work of
Heath and Bedell35,36. Experimentally, we build upon previous
work done on the Kitaev magnet candidate Ag3LiIr2O6 by Bah-
rami et al.26, which is synthesized from the parent compound α-
Li2IrO3. The experimental parameters we extract from our ana-
lysis show an interdependence in good agreement with the Fermi
liquid predictions. In particular, we find (i) a finite Sommerfeld
coefficient in the absence of an external magnetic field, (ii)
leading-order quadratic-T dependence in the specific heat, and
(iii) magnetic-field dependence of the specific heat which all may
be explained in the context of the Landau-Majorana liquid
theory35,36. These findings are significant, especially in the con-
text of recent resonant inelastic x-ray scattering (RIXS) experi-
ments, where a continuum of magnetic excitations has been
found well above the Néel temperature (TN) in α-Li2IrO3

37, with
similar collective magnetic excitations observed in Ag3LiIr2O6

28.

Since well-defined magnons cannot exist at T > TN, the RIXS
results have been interpreted as spin-spin correlations within the
Kitaev model37. Our experimental results for T << TN comple-
ments and expands upon the conclusions of the RIXS experi-
ments, as we will illustrate that our specific heat data is consistent
with a Landau-Majorana liquid and is inconsistent with a
dominant magnonic contribution. As such, the combined theo-
retical and experimental analysis presented here could assist in
the selection of potential candidate systems for further investi-
gation and detection of Majorana excitations.

Results and discussion
Theory of the Majorana-Fermi surface. The many-body
Majorana model we consider is built off of a modification of
fermionic combinatorics, where self-annihilation results in a
modulo-2 correction to the traditional “stars and bars" argument
of the statistical weight35. At low temperatures, the resulting
distribution function resembles a Fermi-Dirac distribution, albeit
with a much more sharply defined discontinuity in the thermo-
dynamic limit. More specifically, the “Majorana-Fermi surface"
discussed in35 retains a strong step function-like behavior in
momentum space even at finite temperature, whereas the tradi-
tional Fermi surface of complex Dirac fermions is characterized
by some finite “smearing" as we raise the temperature. This sharp
Majorana-Fermi surface has been found to be a universal many-
body feature of independent self-conjugate particles, and as a
result, the Fermi-Dirac Sommerfeld coefficient is modified by a
multiplicative factor dependent on the dimensionality35. At
T= 0, the ground state of the Majorana-like system is a filled
Fermi sea and, hence, the Fermi energy ϵF and the Fermi tem-
perature TF are identical to that of a weakly correlated Fermi
liquid. Nevertheless, the sharp Majorana-Fermi surface results in
a suppression of quasihole excitations36, and thus we expect
important deviations from traditional Fermi liquid behavior.

In a conventional Fermi liquid, correlations between quasi-
particles and quasiholes at finite temperatures result in long-
wavelength fluctuations of the statistical quasiparticle
energies33,38. Here, “statistical" quasiparticle energies obey the
same equations as the quasiparticle energies defined by Landau,
and are therefore different from the “dynamical" quasiparticle
energies corresponding to the poles of the propagator. Long-
wavelength fluctuations of these energies lead to a non-analytic
scattering amplitude, and as a consequence apparent logarithmic
divergences emerge in low-temperature quantities of physical
interest33,34,39,40. Such a phenomenon stems from the total
energy contribution of a quasiparticle of momentum p interacting
with other quasiparticles of momentum p+ q, given as
Δϵpσ ¼ ∑qf pσ;pþqσ 0npþq;σ 0 , where fpσ, p+q= ∂ϵp/∂np+q is the
Landau parameter and np+q, σ is the equilibrium distribution
function. The underlying q-dependence of the Landau parameter
results in the non-analytic behavior seen in Δϵpσ and the specific
heat. From a k-matrix analysis of these scattering events, a
Landau parameter f λp; pþq ¼ f λð0Þ þ bλðp̂ � q̂Þ2 þ ¼ is found,
where λ= s (a) for the spin (anti-)symmetric channel and bλ is
a function of the k-matrix33,38.

Theoretically, we find the presence of a sharply defined
Majorana-Fermi surface modifies the q-dependence of the
Landau parameter (See the Methods Section for the details),
which now goes as f λp; pþq ¼ f λð0Þþ бλðp̂ � q̂Þ þ bλðp̂ � q̂Þ2 þ ¼ ,
with coefficients bλ and бλ (Cyrillic b) related to the scattering
amplitude. As seen in the explicit calculation of bλ and бλ (See the
Methods Section), both parameters have strong dependence on
the value of the “Majorana parameter" α, which controls
how “sharp" the distribution function is at the Fermi energy.
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More explicitly and as introduced in ref. 36, α is a phenomen-
ological parameter in the number distribution that quantifies the
affect fermionic self-conjugation has on collective, many-body
behavior. As α→∞, we recover the Fermi-Dirac distribution, with
Ƃλ→0 and a value of Bλ identical to the standard Fermi liquid
result33. As α→0, the fermionic number distribution retains a
more step-function-like behavior, and as such the Fermi surface
becomes more sharply defined against external perturbations. As
a consequence, terms in the Landau parameter proportional to бλ

become more prominent. Intermediate values of α correspond to
systems in which the statistical effects of self-conjugation are
subjugated either by repulsive interactions, external effects, or
other similar behavior.

With the full form of the q-dependent Landau parameter derived,
the change in the quasiparticle energy Δϵpσ from quasiparticle-
quasihole scattering in a Majorana liquid can easily be calculated via
standard phase space integrals. Note that the final form of Δϵpσ is
found by only considering interactions between quasiparticles of
momentum p within a cutoff qc; i.e., ∣p−pF∣ << qc << pF, thereby
restricting ourselves to a “window" around the Fermi surface where
Fermi liquid theory remains valid. The resulting change to the
specific heat is then found to be

ð1Þ

where we have defined the cut-off temperature to be Tcut= ℏvFqc/2kB,
the “Majorana temperature" to be TM= ℏvFα/2kB, and we focus on a
single scattering channel λ. The cutoff temperatureTcut is equivalent to
the cutoff temperature given in33 for the traditional Landau-Fermi
liquid system, and corresponds to vFqc in temperature units. The
Landau-Fermi liquid approach discussed in this article remains
applicable only for temperatures T <Tc. The first term in Eqn. (1) is a
unique feature in the specific heat explicitly connected to the presence
of Majorana-like behavior in the underlying fermionic excitations35,36,
and is a direct result of particle-hole scattering near the more sharply
defined Majorana-Fermi surface. The Majorana temperature (i.e., the
parameter vFα in units of temperature) quantifies the multiplicative
constant defining the first term in Eqn. (1). As such, in the limit of
α→∞, the leading-order expression in Eqn. (1) disappears, as expected
in a conventional Fermi liquid with a traditional Fermi surface. Note
that the specific heat now has strong dependence on three new
parameters: Tcut, TM, and Aλ

0. The leading-order term in Cv/T is
therefore greatly enhanced if TM/Tcut≪ 1. More specifically, we see
that the first-order term in Eqn. (1) dominates over the logarithmic
term if T2=TMTF>>T

2=T2
F log jT=Tcutj, or, equivalently, if

Tcut expðTF=TMÞ>>T . As such, we see that if TM is very small, there
is a large temperature range where the logarithmic term in Eqn. (1) is
negligible compared to the leading-order term. As such, we will
proceed in the next section to fit the zero-field data to a quadratic
polynomial, and from the fit extract the parameters of physical
interest.

Experimental signatures at zero external field. We now test our
theoretical predictions for a Majorana liquid by analyzing the
temperature and magnetic field dependence of the specific heat in
the proposed Kitaev magnet Ag3LiIr2O6

26,32. Ag3LiIr2O6 was
synthesized from the parent compound α-Li2IrO3, with the inter-
layer Li atoms replaced by Ag atoms. As shown previously26, the
weaker O-Ag-O bonds results in unique behavior in the magnetic
susceptibility and the magnetic entropy which are consistent with
Ag3LiIr2O6 being closer to the Kitaev limit than its parent com-
pound α-Li2IrO3. In particular, our motivation to consider
Ag3LiIr2O6 comes from previous specific heat measurements:

whereas the low-temperature behavior of Cv/T for Ag3LiIr2O6 and
α-Li2IrO3 are fairly similar, the parent compound undergoes an
AFM transition at 15 K, whereas long-range order begins to set
into Ag3LiIr2O6 at 8 K26,32. As such, the thermodynamic obser-
vables of Ag3LiIr2O6 describe the collective behavior of fermionic
excitations in a material closer to the Kitaev limit than α-Li2IrO3,
and therefore we will primarily focus on Ag3LiIr2O6 in the present
work. Nevertheless, our analysis could just as easily be applied to
any potential spin liquid candidate close to the Kitaev limit.

The silver intercalated Kitaev magnet in question was
synthesized via a topochemical exchange reaction as described
in ref. 32. The quality of our samples was confirmed by powder
x-ray diffraction, transmission electron microscopy32, and
magnetization measurements, where the short-range (TF) and
long-range (TN) transitions characteristic of a Kitaev magnet are
clearly observed in the magnetic susceptibility. As mentioned in
ref. 32, the peak in the magnetic specific heat at 14 K is due to
static magnetism, as opposed to originating from many-body
quantum entanglement. Note that the low-temperature peaks
observed in α-Li2IrO3, Na2IrO3, and α-RuCl3 are similarly due to
AFM ordering26,41,42. The higher-temperature peak may signal
the onset of fractionlization, but in our material the sample
develops an instability towards the gapped AFM phase at this
temperature instead of melting into the spin liquid phase (a
phenomenon also observed in α-RuCl3 at low external magnetic
field43). The specific heat was measured from 80mK to 4 K using
a custom-built cell installed in a dilution refrigerator. Ruthenium
oxide thick film resistors were used for thermometry, and the data
were collected with a quasiadiabatic technique44. Note that all
data shown in this letter were taken on samples in the “clean limit
batch" discussed in ref. 32, where disorder originating from silver
inclusion within the honeycomb layers is negligible, and a long-
range order at 8 K is observed.

In Fig. 1a, b, the quantities γ(T) and δ(T)≡ (γ(T)− γ(T= 0))/T,
respectively, are plotted vs. T for our Ag3LiIr2O6 sample. In
Fig. 1c, d, the same quantities are plotted, except for α–LiIr2O3. In
Fig. 1a, a finite Sommerfeld coefficient γ(0)≡ γ0 is apparent
from the low-temperature data of Ag3LiIr2O6. The contribution
γSch from the Schottky anomaly45,46 is subtracted off, with
the anomaly modeled as a two-level system with a gap Δ; i.e.,

γSchðTÞ ¼ σT�3e�Δ=T=ð1þ e�Δ=T Þ2, where σ~Δ2 is the Schottky
coefficient. As explained in the Methods section, a strong nuclear
origin to the Schottky anomaly does not fit to the model used in our
temperature/magnetic-field analysis. Alternatively, the observed
increase of the low-temperature specific heat could originate from
Z2 fluxes, which may be modeled by a two-level Schottky-type
formula47. With this contribution subtracted, we fit γ(T) as a
function of temperature for Ag3LiIr2O6 to a quadratic polynomial,
finding good agreement above 0.2 K and up to 5 K. Our motivation
for taking such a fit comes from the form of Eqn. (1), where the
presence of Majorana-like quasiparticle scattering near the Fermi
surface results in a dominant contribution to the specific heat
which goes as T2/TMTF. Disagreement from the quadratic fit below
0.2 K in Fig. 1a, b may be attributed to residual nuclear effects in
γSch(T) at very low temperatures; namely, the nuclear-specific
Schottky anomaly results in the sharp upturn and decline in the
low-temperature behavior of γ(T). From the fit, the Sommerfeld
coefficient is estimated to be ≈2.5 mJmol−1 K−2. Note that, if we
take the inter-particle distance (i.e., the Ir-Ir distance in the
honeycomb layer) in the Ag3LiIr2O6 sample to be a= 3.03Å, the
mass of the fermionic-like excitations is found to be within the
same order of magnitude as the bare electron mass. The relative
comparability of the bare electronmass to the emergent mass of the
fermionic quasiparticles in Ag3LiIr2O6 may be seen as evidence of a
weakly correlated Fermi liquid-like phase in Ag3LiIr2O6. The
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breakdown of nearly massless, Dirac fermion-like behavior in said
excitations may be seen as a consequence of the off-diagonal
exchange interactions in our Ag3LiIr2O6 sample15, and may
therefore be inferred as evidence that the fermionic quasiparticles
in Ag3LiIr2O6 exhibit a quadratic energy dispersion.

Our evidence of a finite T= 0 Sommerfeld coefficient and
massive quasiparticles is surprising, as similar Kitaev magnets are
generally considered to have aMott insulating bulk48. Nevertheless,
while the above analysis suggests that Ag3LiIr2O6 may host massive
fermionic excitations of some kind in the bulk, we cannot decipher
the possible presence (or lack thereof) of self-conjugate fermionic
excitations from the Sommerfeld coefficient alone. As such, we plot
δ(T)≡ (γ(T)− γ0)/T in Fig. 1b, d for Ag3LiIr2O6 and α–LiIr2O3,
respectively. From Eqn. (1), if we ignore the log jT=Tcutj
contribution and the T-dependent terms from the non-
interacting specific heat, the value of (γ(T)− γ0)/T should result
in a linear function, with a y-intercept / TcutT

�1
M T�1

F and a slope
/ T�1

cut after renormalization by the former. The plot in Fig. 1b
indeed shows clear linear behavior with a finite y-intercept, the
latter of which agreeing with our Majorana liquid model. We
emphasize here that the linear−T behavior seen in Cv/T after we
subtract the Sommerfeld coefficient is the hallmark of a sharply
defined Fermi surface at finite temperature, and is therefore a
telltale signature of the Majorana liquid phase proposed in35.
A Landau-Fermi liquid would not have this linear-T dependence,
but instead would be approximately a constant in T.

From the y-intercept of δ(T) we find a value of the cutoff
temperature, Tcut, on the order of 2−5 K. An exceedingly small
cutoff temperature is expected in the itinerant Majorana theory
we consider here, as a suppression of hole-like excitations near
the Majorana-Fermi surface should severely reduce the difference
between the momenta of a quasiparticle and its quasihole
neighbors, effectively “narrowing" the Fermi liquid regime about
the Fermi momentum40. From the renormalized slope, the value
of the Majorana temperature may be approximated by

TM � Aλ
0

� �3
10�3K . For strong repulsive interactions, the Major-

ana temperature saturates to a value much lower than the cutoff
temperature, while attractive interactions lead to a breakdown of
the underlying theory (both of which are expected35,36).

Before we precede, it is important to perform the above analysis
on α–LiIr2O3. In Fig. 1b, we plot the specific heat γ(T)≡C(T)/T vs.
T and δ(T)≡ (γ(T)− γ0)/T vs. T, respectively, for α–LiIr2O3

41. The
specific heat data of α–LiIr2O3 reveals a nearly vanishing (i.e.,
below the mJ range) Sommerfeld coefficient, a dominant linear–T
dependence in γ(T), and the lack of any temperature-dependence
in δ(T). Compare this to the features seen in Ag3LiIr2O6, where the
Sommerfeld coefficient is finite, γ(T) is strongly quadratic, and δ(T)
exhibits near-linear T dependence. From our analysis, this would
suggest that the Majorana temperature in the parent compound is
much larger than that of Ag3LiIr2O6, which in turn implies that
Ag3LiIr2O6 is closer to the Kitaev limit than its parent compound.
This conclusion agrees with previous results on these two iridate

Fig. 1 Specific heat vs. temperature for Ag3LiIr2O6 and α–LiIr2O3. Measured values of the specific heat C(T) divided by temperature T (denoted by
γ(T)≡ C(T)/T) vs T for a Ag3LiIr2O6 and c α–LiIr2O3, both with the Schottky contributions subtracted. We also give the plots of δ(T)≡ (γ(T)− γ0)/T for the
same compounds (shown in b and d, respectively). The specific heat data for α–LiIr2O3 is taken from the work of Mehlawat, Thamizhavel, and Singh41. For
plots of the raw data of the Ag3LiIr2O6, see Figs. 6 and 7 in the Methods section. The data in a fit to a general quadratic, in agreement with Eqn. (1).
However, the general temperature dependence for the specific heat in α–LiIr2O3, as shown in c, lacks the strong quadratic behavior predicted from Eqn. (1).
The plotted values of δ(T) in b and d represent the same specific heat data, but plotted in such a way as to discern possible linear-T dependence. The blue
dots (left axis) are the unrenormalized data of δ(T) defined in text, while the red dots (right axis) are the data renormalized by the projected T= 0 value. A
finite y-intercept in b suggests a finite T/Tcut term in γ(T).
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materials, where it was illustrated that Ag3LiIr2O6 is closer to the
Kitaev limit than α–LiIr2O3

26,32. Similarly, the vanishing Sommer-
feld coefficient seen in α–LiIr2O3 agrees with the analysis of
Mehlawat et al.41, and suggests that exchange interaction terms in
α–LiIr2O3 are not substantial enough to open a gap in the
dispersion and subsequently lead to the formation of a Fermi
surface15. As a consequence, we emphasize that the data shown in
Fig. 1 is a clear signature of massive, Majorana-like fermionic
excitations in Ag3LiIr2O6 in the limit of zero external magnetic
fields.

Note that the leading-order linear-T dependence of γ(T) for
α–LiIr2O3 suggests that this material may host intra-planar
complex fermions with a near-linear dispersion, although future
research on this material would need to be done to confirm this.
Finally, we emphasize that the results given above, for both
Ag3LiIr2O6 and α–LiIr2O3, support our claim that the analysis
presented in this paper provides a general framework to
characterize potential Kitaev spin liquid candidates through the
lens of specific heat measurements, and is not specialized to just
Ag3LiIr2O6.

Experimental signatures at finite external field. Additional
experimental signatures of a Majorana-Fermi surface can be
extracted by turning on a finite magnetic field. To measure spe-
cific heat, thermometry was calibrated as a function of tem-
perature in a magnetic field H up to 9 T. In Fig. 2, we plot the
Schottky coefficient as a function of H2, revealing clear linear
behavior above H= 5−6 T. From our two-level Schottky formula,
this behavior suggests that the gap Δ of the Z2 fluxes is linearly
dependent on the magnetic field. As a consequence, the Majorana
gap should also go linear with H when the external field is
large15,47,49, a result which agrees with recent experiments on the
related material α-RuCl350,51.

In Fig. 3a, b, we plot the experimental values of the change in
specific heat Δγ(H, T)= γ(0, T)− γ(H, T) as a function of T. The
data shows a restricted temperature interval with apparent linear
T-dependence on the semi-log scale (orange background in
Fig. 3), in addition to non-monotonic H-dependence exhibited in
γ(H, T). We propose that, much as in the case of H= 0, such

unconventional behavior can be explained as a consequence of
some liquid-like phase of itinerant Majorana fermions. In a
regular Fermi liquid, the magnetic field dependence of the
specific heat is found by calculating the magnetic susceptibility
and exploiting fundamental Maxwell relations52,53. Utilizing
the form of the Majorana liquid’s quasiparticle energy we
have already derived, it can easily be shown that
ΔγðH; TÞ � �H2 log jT=Tcutj(See the Methods Section for the
details). As such, we expect Δγ(H, T) to increase logarithmically
in temperature before reaching the cutoff temperature, Tcut, after
which a Fermi liquid-like description is no longer appropriate.
This crossover is clearly observed in Fig 3, with Tcut marked by a
dashed line with the label Tcut. Directly below Tcut, the
experimental data confirms the emergence of a logarithmic
temperature dependence as predicted by our theory. Similarly, in
Fig. 4, we see the general behavior of Δγ(H, T) roughly follows
quadratic dependence in the magnetic field H for a finite
temperature range below Tcut, which provides further evidence of
a Fermi liquid-like phase at finite magnetic field.

Fig. 2 Schottky coefficient vs. external magnetic field. Magnetic field
dependency of the Schottky parameter, found by fitting to the experimental
specific heat data. Blue dots are raw experimental data, while the dotted
line is the linear fit to the raw data. Above an external field H= 4 T, linear
behavior suggests a gap Δ of the Z2 fluxes which grows proportional to H.
As the Majorana gap ΔM should go as HxHyHz/Δ2 in extended Kitaev-
Heisenberg materials at high fields15, this would suggest that ΔM ~ H in our
case, in agreement with related Kitaev-like materials such as α-RuCl350,51.

Fig. 3 Change in specific heat vs. temperature at finite magnetic field.
a The temperature dependence of Δγ(H, T)= γ(0, T)− γ(H, T) at various
values of the external magnetic field H, where γ(H, T)≡ C(H, T)/T denotes
the specific heat at finite magnetic field divided by temperature T.
Within an intermediate temperature regime (orange background), the
experimental data at low H follows a straight line on the semi-log scale
before sharply decreasing around Tcut= 3 K (vertical dotted line). The
dashed grey line is used as a guide to the eye for the proposed near-linear
trend in the data for this region. Above Tcut, the logarithmic behavior breaks
down (yellow background), as predicted by our itinerant Majorana model.
Suppression of Δγ(H, T) at low magnetic field (blue background) may be
attributed to the effects of strong correlation. b At high values of H,
rescaling the temperature with inverse field yields behavior reminiscent of
the scaling features seen in H3LiIr2O6

68, where the low-T data approaches
the same general curve for high values of the magnetic field, with the grey
dashed curve serving as a guide to the eye for this data collapse.
Experiments on the silver lithium iridate at higher values of H are needed
for more conclusive evidence of an eventual collapse to a single scaling
curve in this compound.
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In Fig. 3, the temperature at which logarithmic growth in
Δγ(H, T) appears to vanish is on the order of 3 K, which is of the
same scale as the cutoff temperature estimated from the zero-field
data. Such agreement between the zero and finite field estimates of
Tcut also suggests a negligible contribution to the specific heat
from magnons or phonons, which is inline with previous work on
related spin liquid candidates37,54,55. The breakdown of linear
behavior on the semi-log scale for temperatures above 0.4 K
(orange background in Fig. 3) for increasing magnetic field
strengths may be attributed to strong magnetic field-induced
interactions which dominate over the logarithmic temperature
dependence in the weakly interacting Fermi liquid approximation.

Turning to Fig. 5, the behavior of γ(H, T) as a function of the
external magnetic field can also be seen as evidence of a Fermi
liquid-like phase. The initial rise of γ(H, T) with increasing H is
often seen in Fermi liquids in close proximity to a field-induced
quantum critical point, where the effective mass is enhanced and
consequently the Fermi temperature is lowered56,57. The
subsequent fall of the specific heat at larger values of the
magnetic field may then be attributed to the non-analytic
behavior in γ(H, T), which becomes enhanced as H is increased53.
The low-temperature behavior of γ(H, T) as a function of external
field is therefore in good agreement with the predictions of a
liquid-like phase of fermionic excitations, with the data in Fig. 5
showing similar trends to a related analysis done on the proposed
local Fermi liquid phase of the layered cobalt oxide
[BiBa0.66K0.36O2]CoO2

57. Finally, note that, as we raise the
temperature, the sharp decline of γ(H, T) with increasing
magnetic field strength becomes less appreciable. As a conse-
quence, the non-analytic behavior in γ(H, T) becomes sub-
dominant for higher temperatures, which, as previously men-
tioned, may explain the breakdown of linear behavior in the plot
of Δγ(H, T) vs. T on the semi-log scale of Fig. 3a.

Possible magnon contribution to the specific heat. Before we
precede, it is important to bring to light the possible issue of a
magnonic contribution to the specific heat measurements. Recent
powder inelastic neutron scattering data of the parent compound
α-Li2IrO3 suggest magnonic excitations at a few meV54,58,

however, direct detection of magnons in the lithium iridates is
often challenging as Ir is a strong neutron absorber. Recent RIXS
data on the parent compound, α-Li2IrO3, have shown a broad
continuum of magnetic excitations that persist to 90 K, well above
TN= 15 K37, with similar magnetic excitations observed in
Ag3LiIr2O6

28. Since well-defined magnons do not exist at T > TN,
the RIXS experiments suggest that exotic spin-spin correlations
within the Kitaev model are responsible for the continuum
observed at high energies (above 10 meV). Our results may be
interpreted as indirect evidence for a sub-dominant magnon
contribution to the specific heat in the low-temperature regime
T < TN, as a finite Sommerfeld coefficient cannot be explained by
magnonic excitations and a linear T-dependence in γ(T) would
imply an unconventional magnon dispersion of ω~k3/2 unfoun-
ded in the iridates59–61.

We now turn to the possibility of a magnonic contribution to
the specific heat data at high magnetic fields. Theoretically, the
magnonic spectrum in an extended Kitaev-Heisenberg system has
been studied in the context of nonlinear spin-wave theory62, in
which case a finite Kitaev exchange ensures a nonzero gap in the
magnonic spectrum at high external magnetic fields. The gap, Δ,
in the bosonic spectrum would then manifest as an exponential
supression e�Δ=kBT to the bosonic specific heat. At temperatures
on the order of the gap, the gap itself would affect the magnonic
dispersion so that CV/T ~ T1/2 with a positive coefficient of
proportionality, which is a feature we do not see in our data. As a
result, due to the ubiquitous nature of a gap in the magnonic
spectrum of the Kitaev-Heisenberg model at finite magnetic field,
we conclude that the magnonic contribution to our specific heat
measurements is negligible compared to the clear Fermi liquid-
like signatures seen in Figs. 3 and 5. Agreement between the zero
and finite magnetic field estimates of Tcut provide further
confirmation for a negligible magnon contribution to the zero-
field specific heat data.

Note that our theory of the Landau-Majorana liquid does not
completely rule out the presence of magnons in a generic Kitaev
magnet. Rather, our theoretical analysis and experimental results
suggest that, were magnons leading to a dominant contribution
to the specific heat, those magnonic excitations must have
very unusual dispersions inconsistent with current theories.
In contrast, our data appears to nicely follow the behavior
expected from a Landau-Majorana liquid. For future work, it
would be helpful to obtain a similarly complete set of temperature

Fig. 4 Change in specific heat vs. external magnetic field. Magnetic field
dependency of Δγ(H, T) for several temperatures, where γ(H, T)≡C(H, T)/T
denotes the specific heat at finite external magnetic field H divided by
temperature T. For low temperatures, we have a very fast suppression of
Δγ(H, T) as we increase the external magnetic field. However, as we
increase the temperature, we see the data approach a near-linear function
of H2. This agrees with the prediction made in the text and derived in this
article, where we propose ΔγðH; TÞ � �H2 log jT=Tcutj. Deviation from the
linear trend at small magnetic fields and high temperatures (seen for
T= 2.25 K and H⪅ 3 T) may be attributed to the breakdown of a dominant
quasiparticle contribution to the specific heat at weak magnetic fields as we
approach Tcut from below.

Fig. 5 Specific heat vs. external magnetic field.Magnetic field dependence
of γ(H, T)≡C(H, T)/T, where C(H, T) is the magnetic-field dependent
specific heat C(H, T) divided by temperature T and H is the external
magnetic field, with data renormalized so the maximum is near unity. As
the temperature is lowered, the non-monotonic behavior of γ(H, T)
becomes more pronounced. Temperatures are taken such that T < Tcut.
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and field-dependent specific heat data for other Kitaev spin liquid
candidates, and follow a similar analysis as explained here.

Conclusions
In this article, the low-temperature specific heat γ(H, T) of
Ag3LiIr2O6 was presented at several values of the external mag-
netic field H. A finite Sommerfeld coefficient, in addition to the
T- and H-dependence of Δγ(H, T)= γ(0, T)− γ(H, T), is in
agreement with a Fermi liquid-like ground state in this material.
Likewise, the effective mass of the fermionic-like quasiparticles in
Ag3LiIr2O6 has been found to be, rather surprisingly, comparable
to the effective mass of the bare electron. However, the leading
order linear-T dependence of γ(0, T), the linear-T coefficient of
γ(0, T), and the particular breakdown of apparent T-logarithmic
behavior in Δγ(H, T) all deviate from a traditional Fermi liquid
description, and are instead consistent with a Majorana-Fermi
surface exhibiting suppressed quasihole excitations35. Similarly,
by comparing the specific heat data between Ag3LiIr2O6 and its
parent compound α-Li2IrO3, our analysis suggests the former is
closer to the Kitaev limit than the latter, as was found in previous
work26,32. The high quality of our samples, in addition to the
particular T-dependence of γ(0, T) and recent theoretical work on
the magnonic spectrum of the extended Kitaev-Heisenberg model
in an external magnetic field62, are inconsistent with a con-
tribution from disorder or magnons, at least in the conventional
framework. As the underlying theory makes use of the phe-
nomenological framework of the Landau-Fermi liquid, our ana-
lysis is not specific to Ag3LiIr2O6, and may be used to discern
proximity to the Kitaev limit for a wide range of promising spin
liquid candidates, such as the recently proposed Na3Co2SbO6 and
Na2Co2TeO6

63.
In terms of future work, further evidence of itinerant Majorana

fermions in Ag3LiIr2O6 may be discerned from the low-tem-
perature, high-magnetic field dependence of Δγ(H, T). In related
honeycomb materials such as H3LiIr2O6, the low-temperature
behavior of the specific heat exhibits a collapse onto a single
universal curve when C(H, T) and T are appropriately rescaled by
H64–68. Such scaling behavior is highly non-trivial, and is often
considered the hallmark of a minority of nucleating spins forming
random long-range valence bonds68–70. The pairing of such spins
results in a power-law distribution of exchanges71,72 and is the
consequence of a paramagnetic majority in the presence of
quenched disorder73. In contrast, the Ag3LiIr2O6 sample studied
in this work is in the clean limit32, and is hence incompatible with
the theoretical framework of ref. 69. Our data in the right graphic
of Fig. 3 confirms that Δγ(H, T) as a function of T/H does not
exhibit a clear collapse onto a single scaling curve, and instead
approaches a limiting behavior at high magnetic fields (high-
lighted in grey). Whether such uniform limiting behavior is a
universal feature of a Majorana liquid in the clean limit remains
an open question.

Methods
Trigonal distortion in Ag3LiIr2O6 and α-Li2IrO3. The iridium
atoms are octahedrally coordinated with six oxygen atoms (IrO6)
in the honeycomb layers. In the ideal case, the O-Ir-O bond
angles are 90∘ in an octahedron. However, in real materials, a
trigonal distortion is commonly observed as a deviation of the

bond angles from their ideal values. The degree of trigonal dis-
tortion can be quantified by the bond-angle variance31,

ð2Þ

where m and ϕ0 are the number and ideal value of O-Ir-O bond
angles in an octahedron without distortion, respectively. The values
for ϕi are calculated from the Crystallographic Information File
(CIF) for both iridate compounds and are presented in Table 1.

The bond angle variance (σ) is 3.46(1)∘ for α-Li2IrO3 and
6.39(1)∘ for Ag3LiIr2O6. Trigonal distortion is twice as large in the
Ag-exchanged compound. One can expect an enhancement in the
effect of off-diagonal exchange coupling and a significant difference
between the magnetic behavior of parent and exchanged
compounds due to a stronger trigonal distortion in Ag3LiIr2O6,
as demonstrated by quantum chemistry calculations29,30.

Electronic and nuclear Schottky contributions to the specific
heat. The specific heat was obtained via a quasi-adiabatic method.
The heater was mounted on one side of the sapphire stage, and the
pressed pellet of the polycrystalline sample was mounted on the
other side with GE varnish. A ruthenium oxide resistance ther-
mometer was glued to the free side of the sample pellet, and the
weak link to the bath was attached with GE varnish directly to the
sample. A heat pulse was delivered to the heat capacity stage at t0,
and the temperature of the thermometer was measured as a
function of time. The thermometer was directly attached to the
sample, and since the heat capacity of the thermometer is negligible
in comparison to that of the sample, the heat flowing between the
thermometer and the sample is negligible. The thermometer is
therefore in good thermal equilibrium with the sample (its lattice,
to be precise), and there is no traditional τ2 effect. The multi-
exponential relaxation of thermometer’s temperature is due to
internal equilibration processes, as described below.

At temperatures below ~100 to 150 mK, depending on the
magnetic field of the measurement, the raw temperature decay
curves display two regimes: initial fast relaxation followed by a
very long relaxation, as displayed in Fig. 6.

The short time scale temperature decay may reflect both the
electronic and nuclear degrees of freedom (so-called spin-lattice
relaxation). We argue below that the nuclear contribution is
reflected in the long-time tail of the temperature relaxation curve.
At that time, the system (electrons and lattice) is slowly decaying
down to the bath temperature. The long-time decay, therefore,
reflects the total (electronic plus nuclear) specific heat of the
sample, and the short-time decay reflects the electronic specific
heat only.

The analysis of the zero field data is particularly instructive.
The electronic-specific heat is determined from the fast decay.
The nuclear-specific heat can be approximated by the extrapola-
tion of the long time tail of the data back to t= 0, fitting the last
25% of the temperature trace to either slow exponential or
(perhaps better) linear dependence. A linear fit may be more
reliable due to the small part of the temperature curve used for
extended extrapolation to t0. Perhaps the strongest indication of
the separate contribution from the nuclei is the offset of the short
decay exponential fit’s equilibrium temperature from the initial
temperature (before the heat pulse is applied). This offset is

Table 1 The experimental bond angles for α-Li2IrO3 and Ag3LiIr2O6, where n is the number of angle repetitions.

Material O-Ir-O bond angle

α-Li2IrO3 85.7∘(n= 3) 86.3∘(n= 1) 89.5∘(n= 3) 90.3∘(n= 2) 93.9∘(n= 1) 94.9∘(n= 2)
Ag3LiIr2O6 82.6∘(n= 1) 83.7∘(n= 2) 83.9∘(n= 2) 85.5∘(n= 1) 95.9∘(n= 4) 96.5∘(n= 2)
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clearly present in the data below roughly 120 mK, as seen in the
inset of Fig. 6.

The long temperature tail of the temperature decay curves in
zero field gives an insight into the origin of the nuclear Schottky
anomaly. Generally, it can be either due to the nuclear magnetic
spins in the internal magnetic field generated by the magnetically
ordered electronic spins, or due to the nuclear electrical
quadrupolar moment of nuclei located in positions of non-zero
electrical field gradient due to neighboring ions. Li or Ir, both of
which have nuclear spin 3/2, have nuclear electrical quadrupolar
moment, and potentially may lead to a nuclear quadrupolar
anomaly. However, both Li and Ir atoms are situated in high
symmetry positions in the crystal lattice (see, for example,27). In
accordance with this, the quadrupolar splitting of the 7Li NMR
line was not observed in a recent study of Ag3LiIr2O6

27. We can
safely assume that the same is true for Ir nuclei in the center of
the oxygen octahedra cage, i.e. we should expect no quadrupolar
Schottky anomaly from Ir nuclei.

The zero field nuclear Schottky contribution must therefore
come from the internal magnetic field on Ir nuclei due to the
antiferromagnetic order observed to set in at the Néel
temperature TN= 8 K32. The results of the analysis of the low-
temperature data in zero applied magnetic field are displayed in
Fig. 6. The fast decay (orange line in the inset) reflects the
electronic degrees of freedom, and the long decay (olive line) is
due to the total specific heat, a sum of electronic and nuclear
contributions, assuming that a good spin-lattice equilibrium is
reached at long times. Electronic contribution can be fitted well
by C/T= a/T3, with a= 7.2J/mol K. The presence of the two
different relaxation time constants in zero field, with the long
relaxation time constant due to Ir nuclei in the internal magnetic
field produced by the AFM order, proves that the fast relaxation
in zero field is entirely of the electronic origin.

We will now consider possible nuclear magnetic moment
(spin) contributions in applied magnetic fields. Figure 7 shows
the Schottky tail (black solid diamonds) obtained from the
analysis of the fast temperature decay. Nuclear magnetic specific
heat of Li, Ag, Ir are shown with red, green, and blue symbols,
respectively. Contribution from each of the nuclei is calculated as

Csch ¼ Td2ðRT logðzÞÞ=dT2, where z ¼ ∑gr expð�ϵr=kTÞ46. Spe-
cific heat from Li nuclei greatly overestimates the measured
specific heat in external magnetic fields of 6 T and 9 T. This is
clearly the result of a very long spin-lattice relaxation rate 1/T1 of
7Li, which was observed to crash to zero below the AFM ordering
temperature TN= 8 K27. Similar low-temperature behavior was
observed in H3LiIr2O6

68, with 7Li’s spin relaxation rate 1/T1
dropping precipitously in a scaling fashion as a function of T/H as
a high exponent power law. Thereby Li nuclei are effectively
isolated from the electron-phonon lattice, and their specific heat
is not measured in our experiment. We therefore rule out any
contribution of Li nuclei to the specific heat data resulting from
the short decay analysis. Specific heat from Ag nuclei in an
external magnetic field is rather negligible at 6 T compared to the
measured short decay contribution. There is no information at
present on the relaxation time behavior of Ag spins. Therefore,
Ag nuclei-specific heat may contribute to the long relaxation
analysis, leading to some uncertainty in the determination of the
internal magnetic field on Ir nuclei.

Finally, we can obtain a rough estimate of the internal magnetic
field on the Ir nuclei, using the measured electronic (short
relation) and total (long relaxation) specific heat. Ir nuclei
contribute to the long temperature relaxation process (see
discussion of Fig. 6). Black solid lines in Fig. 7 indicate Schottky
anomalies from Ir nuclei in a magnetic field that is a sum of the
internal magnetic due to the AFM order and the external magnetic
field. Because the sample is polycrystalline, the internal magnetic
field due to the AFM order is randomly distributed. We therefore
calculated the specific heat due to Ir nuclei with magnetic field

Htot ¼ 1
2π

R 2π
0 dθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðHint cosðθÞÞ2 þ ðHint sin θ þHextÞ2

q
, where Hext

and Hint are external and internal magnetic field, respectively. An
internal magnetic field of Hint= 45 ± 5 T accounts for data at 6
and 9 T.

We, therefore, conclude from our analysis that a dominant
nuclear origin to the fast-relaxation Schottky anomaly in the
silver lithium iridate is inconsistent with the temperature and
field dependence of the low-temperature data. For this reason, we
interpret the observed increase of the low-T specific heat as
primarily originating from Z2 fluxes, which may be modeled by a
two-level Schottky-type formula47 as described in the main text.

Non-analytic contributions to the specific heat in a Majorana
liquid I: zero external magnetic field. In many cases, the
interactions between quasiparticles and quasiholes complicate a
simple “renormalized Fermi gas" picture of the Fermi liquid. A
non-analytic contribution to the quasiparticle interaction as the
result of some dynamical screening at finite temperature was
proposed by Anderson to explain the unusual T-dependence in
the specific heat of liquid 3He39. This argument was later refined
by Carneiro and Pethick33,34 who, in light of previous perturba-
tive calculations, suggested that the low-temperature behavior of
the 3He specific heat could be explained by long-wavelength
fluctuations of the statistical quasiparticle energies. We will use
their derivation as a basis for our own study of quasiparticle-
quasihole collisions in a Majorana liquid.

To be more specific, our goal in this appendix is to derive the
form of Eqn. 1 in the text. Namely, we wish to show that the
values of the Landau expansion coefficients bλ and бλ are given by

ð3aÞ

ð3bÞ

where V is the real-space volume, wλ is the spin multiplicity
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Fig. 6 Specific heat vs. temperature from fast-relaxation analysis. Specific
heat C divided by temperature T (orange diamonds) obtained from the fast
relaxation analysis (20−80 sec, e.g., orange curve in the inset). Inset:
Temperature decays as a function of temperature for 61 mK in zero
magnetic field. Clear offset between the temperature before the heat pulse
and the final (equilibrium) temperature of the fast relaxation exponential fit
is a reflection of the presence of the nuclear Schottky anomaly from Ir nuclei.
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factor, Aλ
0 ¼ Fλ

0=ð1þ Fλ
0Þ is the ℓ= 0 scattering amplitude in the

λ-channel, and we take Fλ
0 ¼ νð0Þf λ0, Ƃλ≡ ν(0)бλ, and Bλ ≡ ν(0)bλ,

where ν(0) is the density of states. As discussed in the main text,
the “Majorana parameter" α is an experimentally determined
constant that controls how “sharp" the distribution function is at
the Fermi energy36.

To derive the form of the q-dependent Landau parameter, we
must first consider the scattering of a quasiparticle-quasihole pair
in a regular Fermi liquid, the scattering process is dictated by the
following equations for the t- and k- matrices:

ð4Þ

ð5Þ

where f λp p2 is the Landau parameter for the λ scattering channel

and n0p is the equilibrium distribution function. In the case of
particle-particle scattering, the interaction energy is given by the
equation

ð6Þ

where K(E) is some general k-matrix that describes mutual
particle collisions. For a Fermi liquid, however, we need to
consider the quasiparticle-quasihole version of the above, and
thus we obtain

ð7Þ

where we have defined ωp q= ϵp+q− ϵp, where ϵp is the
quasiparticle energy. The interaction energy of the quasiparticle
and quasihole singlet spin state is given by 2Δωs

p q, while the
triplet state is given by 2Δωa

p q. Note that the specific heat is
dependent on the spin-symmetric part of the interaction. Given
that

ð8Þ

ð9Þ
we can write the symmetric Landau parameter in the form

ð10Þ

In the Majorana liquid, we consider in the text, the form of the
k-matrix differs from that of a traditional Fermi liquid. To see
this, recall from35,36 the form of the distribution function en0p0 of
the Majorana system:

ð11Þ
That is, for p0 > pF , we have en0p0 ¼ n0p0 , while for p

0 < pF we have
n0p0 ¼ 1. As such, we see

ð12Þ

We will now take the approximation that p0 is slightly above
(but very close) to the Fermi surface, eliminating the second term.
Now, for the remaining terms, we have

ð13Þ
The first term on the right-hand side of the above is the direct

result of the underlying Majorana statistics, which yields a sharp
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Fig. 7 Finite-field specific heat vs. temperature from temperature trace. Specific heat C divided by temperature T obtained from the short time (orange
diamonds) and long time (olive circles) parts of the temperature traces in a 6 T and b 9 T external field. Schottky anomalies for each nuclei (Li, Ag, Ir) in an
externally applied magnetic field only are shown by red, green, and blue curves, respectively. Solid black lines represent model calculation of the Schottky

anomaly due to Ir nuclei with randomly distributed internal magnetic field (Htot ¼ 1
2π

R 2π
0 dθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðHint cosðθÞÞ2 þ ðHint sin θ þ HextÞ2

q
due to the polycrystalline

nature of the sample, as described in the text. Inset shows an example of the linear analysis of temperature trace in the range of 60−80 sec. The missing Li
nuclei Schottky anomaly in the data is likely due to the very slow relaxation of the Li nuclei spins, similar to that reported for H3LiIr2O6 by ref. 68.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01403-w ARTICLE

COMMUNICATIONS PHYSICS |           (2023) 6:348 | https://doi.org/10.1038/s42005-023-01403-w |www.nature.com/commsphys 9

www.nature.com/commsphys
www.nature.com/commsphys


Fermi surface. However, in the case discussed in ref. 35, we have
particle-hole suppression isotropically across the entire Fermi
surface, as the smearing from thermal excitations is isotropic (i.e.,
there is no thermal gradient over p= pF). In this case, the
“smearing” is the direct result of a perturbation along the
q̂-direction; i.e., in the direction of particle-hole propagation. As
such, the divergent term we will see is the direct result of an
“eternally sharp" point in the distribution along the direction of
particle-hole propagation only, and thus the first of the above will
be independent of the relative angle between q̂ and p̂. Hence,

ð14Þ
and therefore

ð15Þ
Letting the Heaviside step function be approximated by a

generalized Fermi-Dirac-type function f, we find that

ð16Þ

Once again, in the above, we have assumed that we are close to
the Fermi surface. Otherwise, this term disappears. We are left
with

ð17Þ
Performing the relevant phase space integrals, we find that

ð18Þ
Hence, for the Majorana liquid,

ð19Þ

The fact that Δωpq has linear and quadratic terms in p̂ � q̂
means that the Landau parameter Fλ

p; pþq will also have linear and
quadratic terms in p̂ � q̂. We can now write

ð20Þ
Our goal now is to find the value of Ƃλ≡ ν(0)бλ. This is done

by expanding the k-matrices in the expression for νð0ÞΔωλ
pq about

s≡ ω/qvF= 0:

ð21Þ

The term proportional to ðp̂ � q̂Þ2 is identical to the similar term
seen in a regular Landau-Fermi liquid33,34. The term linear in
p̂ � q̂ is given by

ð22Þ

where we have expanded the k-matrix in terms of partial waves,
taken the ℓ= 0 channel as dominant, and used the fact that

ð23Þ

ð24Þ

ð25Þ
Throughout this derivation, note that we have neglected the

additional energy unit and taken ℏ= 1. Without loss of general-
ity, we can use the same underlying mathematics to calculate Bs

for the Majorana liquid:

ð26Þ

This completes our derivation of the Landau parameter
Fλ
p; pþq ¼ Fλð0ÞþƂλp̂ � q̂þ Bλðp̂ � q̂Þ2 þ ¼ . So how does this

affect the specific heat? We know that the total contribution to
the quasiparticle energy coming from Δϵpσ is given by

ð27Þ
We will deal with the term linear in ðp̂ � q̂Þ first. Defining

Ƃλ= ν(0)бλ and writing p̂ � q̂ ¼ p̂� q!
jqj ¼ qkffiffiffiffiffiffiffiffiffiffi

q2kþq2?
p , the change in the

quasiparticle energy from this term is given by

ð28Þ

where we have utilized the fact that

ð29Þ

We then find the change in the quasiparticle energy is given by

ð30Þ

where we found the above by solving Fermi-Dirac type integrals
of the form

ð31Þ

We will now derive the change in thermodynamic entropy for
the Majorana system. The change in the entropy can be simplified
to an integral equation:

ð32Þ
where we have used the fact that

ð33Þ

Now, we can run through every term in the above equation for
Δϵp(T) and subsequently find the total change in the entropy.
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These integrals are easy to perform, and are left as an exercise for
the reader. The end result is

ð34Þ

The change in the specific heat ΔCv can now be readily
calculated from ΔS:

ð35Þ

Hence, simplifying and using our previous expressions for the
factors Ƃλ and Bλ, and limiting ourselves to a single scattering
channel λ, we find the specific heat to be

ð36Þ
where we have defined the Majorana temperature as

ð37Þ
in analogy to the Fermi temperature

ð38Þ
and defined the cutoff temperature to be

ð39Þ
This completes the zero-field expression for ΔCv/nT given in

the text.

Non-analytic contributions to the specific heat in a Majorana
liquid II: finite external magnetic field. Building off of our pre-
vious derivation of the specific heat, we will now consider the effects
of turning on some finite external magnetic field. Recall the change
in the quasiparticle energy due to Majorana quasiparticle interac-
tions:

ð40Þ

The effects of a magnetic fieldM on the specific heat can be found
by first calculating the dependence ofM on the density of states ν(T)
and Landau parameter f a0, given as

ð41Þ

where g is the gyromagnetic ratio52,53. By using the fact that M=
χHH, the temperature-dependence of the susceptibility is contained
within the change of the density of states at finite field. Finally, using
the Maxwell relation

ð42Þ
the H-field dependence of the specific heat γ≡C(H, T)/T can be
extracted. Note that the integral over dp in the calculation of the
density of states will yield zero for any term proportional to
ðp� pFÞ2 or higher. Hence, we only care about the following terms:

ð43Þ

ð44Þ

Simplifying, we have

ð45Þ

The new, temperature-dependent density of states ν0ðTÞ is therefore

ð46Þ

where a � k2B=v
2
F , β and ζ are unitful constants, and G is a function

of bλ summed with бλ. The susceptibility is then

ð47Þ

We will now take the second derivative of χ with respect to T:

Taking G~δ(bλ+ бλ) and assuming бλ is very large, the above
becomes

ð48Þ

For small values of Ƃλ, ∂2χ/∂T2 becomes temperature-
independent. For larger values, we get

ð49Þ
Therefore, the specific heat should go as

ð50Þ

where we have used the fact that Ƃλ� π2

8
pF
α ðFλ

0Þ
3
. As such, the weak

coupling limit of the Majorana system (i.e., small α and Fλ
0) will

result in an apparent lowering of the Sommerfeld coefficient, and
thus we have derived the T-dependence of the specific heat at finite
H as discussed in the text.
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