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Vector-chirality driven topological phase transitions
in noncollinear antiferromagnets and its impact on
anomalous Hall effect
Subhadip Pradhan1, Kartik Samanta2, Kush Saha1 & Ashis K. Nandy 1✉

Magnetic materials showing topologically nontrivial quantum states with high tunability is an

undoubtedly important topic in condensed matter physics and material science. Based on the

first-principles electronic structure calculations and subsequent symmetry adapted effective

low-energy k.p theory, we show in a noncollinear antiferromagnet (AFM), Mn3Sn, that the

switching of the vector-chirality, κ, is an unconventional route to topological phase transition

from a nodal-ring to a Weyl point semimetal. Specifically, we find that the switching of κ via

staggered rotation leads to gapping out an elliptic nodal-ring everywhere at the Fermi-level

except for a pair of points on the ring. As a consequence, the topological phase transition

switches the anomalous Hall conductivity (AHC) from zero to a giant value. Furthermore, we

theoretically demonstrate how the controlled manipulation of the chiral AFM order keeping κ

unaltered favors unusual rotation of Weyl-points on the ring. In fact, without staggered

rotation, this enables us to tune and switch the sign of in-plane components of the AHC by a

collective uniform rotations of spins in the AFM unit cell.
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Over the past decade, a variety of topological semimetals
(TSMs)1–4, namely, nodal point semimetals5–7, nodal
line/ring semimetals8–12, nodal surface semimetals13–15

have taken widespread attention due to the unusual transport
phenomena related to the protected nontrivial boundary states.
Most nodal point semimetals fall into two categories: Weyl
semimetals (WSMs)16–19 and Dirac semimetals (DSMs)20–23,
depending on the degeneracies and distribution of the band
crossing nodes in the bulk band structures. A four-fold degen-
erate Dirac node can be thought of a point with a degenerate pair
of Weyl points (WPs) carrying opposite chiral charges, where
WPs can be derived by separating Dirac points in momentum
space by breaking either time reversal symmetry or inversion
symmetry. The nodal-ring semimetals (NRSMs) with two fold
degenerate one-dimensional band crossings on the other hand
can be gapped out except a pair of discrete touching points, an
alternative approach to create WPs. The advantage here is the
controlled generation of the discrete touching pairs on a loop.
Recently, coexistence of magnetism, in particular ferromagnetism
and topological quantum states in band structures has emerged as
an important platform both for fundamental and technological
interests24,25. In conventional topological ferromagnets, the
ability to externally control the magnetism by magnetic, electrical
and optical fields offers a remarkable way of transitions between
topological phases26–29. Subsequently, attention has been drawn
to nontrivial topology in magnetic materials without a net mag-
netization i.e. antiferromagnets (AFMs)30–33. Note, the recent
developments of electrical manipulation and detection of AFM
orders34,35, particularly in view of topological AFM
spintronics36–38 open up possibilities to find topological phase
transitions in AFMs too. This is due to the fact that the current
induced staggered torque39 allows unprecedented control on
AFM orders which, in turn, may change symmetries of AFMs
significantly to host various topological quantum phases. None-
theless, no noncollinear AFM has been realized to show topolo-
gical phase transitions under the change in the noncollinear order
and possibly, we need an unconventional route to manipulate the
AFM order. The noncollinear AFM orders in Mn based kagome-
like planes have been subsequently discovered in a series of
Heusler materials, cubic Mn3Y (Y = Rh, Ir, Pt)40,41 and hex-
agonal Mn3X (X = Ge, Sn, Ga)42–49 materials. Since then, such
AFM orders become an important topic of research, as they are
found to show various TSM phases50,51, however, the noncol-
linear magnetization driven transitions between various TSM
phases are missing. Here, the noncollinear AFM order can be
classified based on defining a vector spin chirality52 as,

κ ¼ 2

3
ffiffiffi
3

p ∑
<ij>

½n̂i ´ n̂j�z; ð1Þ

where < ij > runs over the nearest neighbor spins, Si = Sn̂i with n̂i
as the unit vector. The magnitude of κ is unity while the signs ‘+ ’
and ‘− ’ represent the chiral states with magnetic orders, “direct”
and “inverse” triangular AFM, respectively. Notably, the magnetic
ground state of Mn3X and Mn3Y show opposite κ value in the
kagome sublattices which remains unaltered with simultaneous
uniform spin rotations within the plane. However, materials
within Mn3Y family are crystallized into a face-centered cubic
structure (space group Pm3m46 and O1

h magnetic point group53)
where magnetic kagome planes are stacked in “−ABC−
ABC− ” order along the crystallographic (111) axis. This is dif-
ferent in compared to the hexagonal Mn3X family (D4

6h magnetic
point group53,54) where one finds “−AB− AB− ” stacking order
along the hexagonal (0001) axis. Therefore, for a fixed κ, one
would expect that the band structures in both family of materials
will be significantly different from the symmetry constraints. In
this class of chiral AFMs, κ becomes an important quantity which

by switching between+ 1 and− 1 can lead to control various
symmetries and hence, offer a possible route to tailor nontrivial
topological phases.

In this work, within a noncollinear chiral AFM, Mn3Sn, we
have shown a topological phase transition from NRSM to WSM
through an unusual vector chirality, κ switching from ‘+1’ to ‘-1’
via introducing a staggered rotation. We note that earlier studies
established the Weyl-points (WPs) physics in the “inverse” tri-
angular AFM state17. In contrast, the switching to its competing
chiral state carrying κ=+ 1 ("direct”) and exhibiting topological
NRSM state is one of the key findings of the present study. The
switching of vector chirality κ from ‘+1’ to ‘-1’ tunes the
anomalous Hall conductivity (AHC) value from zero to a giant
value. Moreover, even in the absence of staggered rotation, a
simultaneous uniform rotation of Mn moments keeping
κ=− 1 serves to rotate the Weyl points and hence, tailor the
anomalous Hall effect (AHE). This therefore switches the sign of
the in-plane components of the AHC. Finally, we theoretically
demonstrate by tuning the chiral AFM order how the TSM
phases switch and tailor the nontrivial transport properties.

Results
To uncover the topological phase transition within the electronic
structure theory of noncollinear AFMs, we adopt the density
functional theory (DFT) formalism as implemented in the full-
potential linearized augmented plane wave (FLAPW) all-electron
code, FLEUR55 and the plane-wave projected augmented wave
(PAW) pseudopotential code, Vienna ab initio Simulation
Package (VASP)56,57. Details of the computational and numerical
approaches are provided in the Method subsection. In the fol-
lowing section, we discuss the interplay between the vector
chirality κ and κ induced nontrivial topological phases in band
structures of a noncollinear AFM, Mn3Sn. As a consequence, we
show how the onset of various topological phases via controlled
manipulation of the chiral AFM order drives the system into
AHC switching and further tuning of its in-plane components.

Noncollinear chiral antiferromagnet: Mn3Sn. Bulk Mn3Sn,
shown in Fig. 1a, crystallizes in a layered hexagonal lattice with
space group, P63/mmc, in which Mn atoms form a magnetic
kagome layer, see Fig. 1b–d. Each two-dimensional (2D) kagome
geometry formed by Mn atoms contains Sn atom at the center of
the hexagon of Mn. The following discussions are based on the ab
initio results calculated with experimental lattice parameters,
a= b= 5.65 Å, and c= 4.522 Å58. The “direct” triangular AFM
state in Fig. 1(b) is distinguished by the handedness of the spin
rotations: a counterclockwise 120° rotation turns the spin S1 in
one atom into S2 in the neighboring atom. The “inverse” trian-
gular AFM texture in Fig. 1(c) on the other hand is the result of
clockwise 120o rotation while moving from S1 to S2. One easy way
to switch κ from ‘+ 1’ to ‘− 1’ is by a staggered rotation of any
two spins while keeping the third one unaltered in the unit cell.
Here, the staggered rotation means a simultaneous counter-
clockwise and clockwise rotation of the in-plane spins, e.g. S1 and
S2, respectively with respect to the z-axis as depicted in the small
square box in Fig. 1. By doing so, the C3z rotational symmetry, a
special symmetry that is protected in κ=+ 1 state is broken. In
our magnetic calculations without spin orbit coupling (SOC),
both noncollinear states are equivalent; i.e., they are degenerate in
total energies. The calculated magnetic moment of each Mn atom
is about 3.12μB, confined in the xy-plane. These two magnetic
states become inequivalent when SOC is switched on and the
coplanar κ=− 1 AFM state is found to be the ground state. The
stability energy with respect to the competing κ=+ 1 state is
found to be very small, about 4.5meV/f. u. Moreover, the
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calculated energy difference as a function of staggered rotation is
found to exhibit two inequivalent minima corresponding to the
κ=+ 1 and− 1 states (see Supplementary Fig. 1 and Supple-
mentary Note 1). This indeed corroborates the breaking of vector
chiral symmetry in the presence of SOC.

Topological footprints associated with κ. The ab initio bulk
band structure of Mn3Sn calculated within local density
approximation without considering the SOC is shown in Fig. 1f
along the high symmetry directions including the special points
marked in the 2D projected Brillouin zone (BZ), Fig. 1e. The band
structure remains the same for all 120° triangular noncollinear
states i.e. irrespective of the κ. The band structure clearly shows
two band crossing points around the K point along the MK and
KΓ directions. Generally, in the presence of spin-orbit coupling
(SOC), the band crossing points have the possibility of either
completely gapped out or decaying into WPs. However, for the
particular κ=+ 1 magnetic state shown in Fig. 1b, the band
crossings are impervious to the presence of SOC, see the region
near Ef, marked by a red circle in Fig. 1g. Switching to κ=− 1
magnetic state as in Fig. 1c, the band structure in Fig. 1h shows
one crossing point near Ef along KΓ direction. The gapped
crossing is lying at Ef along MK direction. The gapless node
around which band dispersion is linear is called the 3D WP, lying
slightly above Ef along ΓK direction. Therefore, the change in
band structure is related to the κ value of the underlying AFM
order. The band structure further changes vigorously with the
uniform collective rotation of all Mn moments while keeping κ
constant. For a spin configuration in Fig. 1d named 3-in-3-out
state, the band crossings are all gapped out, see Fig. 1i. We note
that there exists another AFM state with κ=− 1 where the band
crossing remains intact along the direction perpendicular to the
ΓKM line, see Supplementary Fig. 2 and Supplementary Note 2,

indicating a rotation of the band crossing points around the K
point in the BZ. Thus, it is expected to have interesting nontrivial
topological features in the band structures with the magnetic
order dynamics in Mn3Sn.

The bulk band structures of Mn3Sn presented in Fig. 1f–i are
complex with a plethora of band crossings. However, it is evident
that the intrinsic AHE in these systems is the result of non-zero
Berry curvature related with magnetic monopoles, WPs, near the
Ef59. We focus on the band crossings around the high symmetry
K points in the BZ, in an energy window ( ± 0.1eV) around the Ef.
Note, the band crossings in Fig. 1f around K point within the
energy window− 0.2 to− 0.14 eV are all gapped out in the
presence of SOC, see Supplementary Note 5 for more details. The
energy dispersions with very high precision, considering several
path segments within a circle centered at K point as indicated by
the radial black lines inside the red circle in Fig. 1e, are presented
in Fig. 2a. The crossing points without any gap are clearly visible
in the band dispersion plots and all these gapless points together
form a nodal-ring (NR) in the kz = 0 plane, as shown by marking
a red line in the three-dimensional (3D) energy band dispersion
in Fig. 2c. A finite energy variation along the ring is observed and
its projection on the constant energy surface shows an ellipse with
its minor axis along the ΓKM direction. Hence, this particular
magnetic state in Fig. 1b is an unusual example of a noncollinear
AFM where the NRSM phase is protected. Next, moving to the
κ=− 1 chiral AFM configuration (Fig. 1c), we summarize
the electronic band structures in Fig. 2b, calculated along the
same path segments as stated earlier. The band crossing pointsare
completely gapped out along all k-paths except the k-path
segment, “1–2”, along ΓKM direction, as indicated in the red box.
The gaps are clearly visible for other segments, as an example, see
k-path segment “19–20”. We have identified a pair of bulk WPs as
presented in the 3D energy band dispersion plot in Fig. 2d.

Fig. 1 Noncollinear antiferromagnetic structures with non-zero vector chirality and the corresponding electronic structure of Mn3Sn. a Mn3Sn bulk
crystal structure, blue and magenta balls represent the Mn atoms in top and bottom magnetic kagome layers at z= 1/4 and 3/4, respectively. The yellow
balls represent the Sn atoms. The noncollinear chiral antiferromagnetic textures are presented in one kagome layer, named b “direct'', c “inverse” and d
3-in-3-out magnetic states with their corresponding κ values. The square box here depicts how switching of κ can be achieved via simultaneous staggered
rotations of S1 and S2. e The 2D projection of the hexagonal Brillouin zone (BZ) of Mn3Sn. Essential high symmetry points are marked here. f The band
structures without considering the spin-orbit coupling (SOC). Note, for all 120° noncollinear states band structures remain identical unless the SOC is
switched on. After considering the SOC effect, g–i shows the band structure for the magnetic states “direct'', “inverse” and 3-in-3-out, respectively. The
nontrivial features near Ef are highlighted within the red circles. The thick green line in e and the corresponding band structure plots f–i highlights the k-path
for the kz= 0 plane of the BZ.
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To elucidate further, topologically nontrivial surface states
corresponding to different κ values are calculated based on the
tight-binding model which is constructed with the maximally
localized Wannier functions60 within WannierTools software
package61. The calculated results are presented in Fig. 3. The NR
state is, in general, confirmed by the drumhead-like surface states
in the surface calculations and hence, one can find surface bands
across any pair of diametrically opposite points on the NR. In
case of a particular AFM state carrying κ=+ 1, Fig. 3a, c, d show
the surface dispersion spectrum for left and right surfaces,

respectively, considering a number of discrete k-path segments as
drawn inside a red circle in Fig. 3b. Once we examine all k-lines
connecting opposite points on the NR, the corresponding surface
states together form the topologically nontrivial drumhead-like
surface spectrum on both sides of the (001) slab. Next, for the
κ=− 1 AFM state in Fig. 3e, the topological charges of the WPs
are identified along the ΓKM direction. These WPs are further
projected to different surface momenta paths as shown in Fig. 3f,
leading to surface energy spectrum with Fermi arcs as shown in
Fig. 3g, h for the left and the right surfaces, respectively.
Therefore, the projected surface band spectrum around the high-
symmetry K-point confirms the existence of topologically
nontrivial NRSM and WSM phases in the bulk Mn3Sn associated
with the κ=+ 1 and κ=− 1 AFM configurations, respectively.
Furthermore, we can conclude that by switching κ from ‘+ 1’ to
‘− 1’, the NR gets gapped out and evolves into a pair of WPs
lying along the minor axis of the ellipse. The finding of such WPs
is also consistent with earlier noncollinear AFM ground state17.

Stability of NR state, controlled generation (rotation) of WPs
and the associated AHC response. Here now, we explore inter-
play between the noncollinear AFM order dynamics and the
associated TSM phases. Keeping κ unaltered, two additional
magnetic textures are derived from the AFM configurations in
Fig. 1b, c via collective co-rotations (same sense of rotation, here
counterclockwise) of spins {Si} in the unitcell by 90o around the
local z-axis. We find the NR is completely destroyed via fully
opening up the gap for 3-in-3-out state (κ=+ 1) as indicated
earlier in Fig. 1(i) and clearly visible in the Supplementary
Fig. 3e–h with a discussion in Supplementary Note 2. It is
important to mention that the NRSM state survives only for a
very special 120o noncollinear AFM arrangement. Therefore, the
stability of such NR state is inferred from subtle features in the

Fig. 3 Calculated surface states representing the topological drumhead and the Fermi arc. a 120° noncollinear antiferromagnetic configuration carrying
vector chirality κ=+ 1. b Different k-path segments around K point in the 2D projected Brillouin zone of (001) surface of Mn3Sn. c, and (d) are the surface
state spectrums along the k-path segments in b for the left and right surfaces, respectively. e, f are the 120o noncollinear antiferromagnetic configuration
having vector chirality κ=− 1 and its (001) surface Brillouin zone showing different k-path segments, respectively. g, h show the surface band dispersion
for the (001) slab calculated within WannierTools. The red and white dots along “1-2” direction denote the projected Weyl-points carrying different
topological charges, `−' and `+', respectively. The color bar represents the surface local density of states (LDOS).

Fig. 2 Nodal line semimetal and Weyl semimetal phases for different
vector chirality (κ = ‘ ± 1’) states. a, b Band structures calculated with
spin-orbit coupling for a particular κ=+ 1 and− 1 magnetic states,
respectively. The k-path segments are shown in Fig. 1b. c, d 3D band
structures for κ=+ 1 and− 1, respectively calculated within kz= 0 plane.
The red line drawn along the band crossings defines the nodal-ring state
whose projection on a constant energy plane is an ellipse.
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noncollinear AFM configurations carrying κ=+ 1. On the con-
trary, the WPs in the other magnetic texture with κ=− 1 are
rotated by 90o, which are now located at the major axis of the
ellipse perpendicular to the ΓKM line (see Supplementary
Fig. 3a–d). Note, the rotation of WPs has been proposed
experimentally by electrical probing of the AHC in this
material50.

Furthermore, various noncollinear AFM textures keeping κ
constant to− 1 are derived from collective co-rotations of {Si},
either by 120o rotation with respect to the crystallographic c-axis
(CR) as shown in Fig. 4(i) or by continuous rotations with respect
to the local z-axis (LR) as described in Fig. 4(j). The calculated
energy differences for all configurations in Fig. 4 with respect to
aþ1 are summarized in Table. 1. Each configuration with κ=− 1

is now defined with an uniform LR angle ϕ which is zero for a�4
configuration and a�5 is connected with a�4 by 30° uniform LR. It
is clearly evident that for configurations with odd multiplicative
of rotation angle 30o, e.g. a�1 /a

�
7 , a

�
2 , a

�
3 , a

�
5 in Fig. 4, the total

energy is about 0.02 meV/f. u. lower than that for the even
multiplicative configurations, e.g a�4 , a

�
6 in Fig. 4. Therefore, we

observe two energetically competitive spin textures with the same
κ value. Although the energy difference is very small in our
calculations, the Table. 1 clearly indicates there are six
energetically degenerate magnetic ground state as found within
extended Heisenberg model62. So, the presence of SOC in our
calculations not only breaks the vector chiral symmetry (see the
Supplementary Note 1 for more details), it also determines the
degeneracy of the magnetic ground state. The magnetic textures
in Fig. 4b–h confirm the existence of a pair of WPs with opposite
topological charges, as shown in the bottom panel for each AFM
state. Note that, all pairs of WPs are found lying on the perimeter
of the elliptic NR. This, therefore, can be viewed as if the NRSM
state is completely gapped out except a pair of points at different
locations related to the magnetic textures. However, to our
surprise, the rotation of the WP pair goes in-phase with CR, b–d,
while out-of-phase with the LR, e–h. In fact, the configurations
a�2 and a�5 are connected through uniform LR of spins by 180o, or
equivalently by the time-reversal operation. Hence, the manip-
ulation of noncollinear AFM order allows one to access a plethora
of quantum states which is expected to tailor various intrinsic
electron transport properties.

The NRSM to WSM phase transition by switching κ as well as
the rotation of WPs further leads us to explore how the controlled
manipulation of chiral AFM order tailors the intrinsic AHC, σ. The
Table 1 shows the ab initio calculated σx and σy components for all
magnetic textures presented in the top panel of Fig. 4a–h. The
σ turns out to be zero in case of NRSM state observed for aþ1 spin

Fig. 4 Rotation of Weyl points and the associated tuning of anomalous Hall response. Various topological semimetal phases, nodal-ring semimetal
(NRSM) and Weyl semimetal (WSM) states, are calculated for different 120° noncollinear AFM states obtained by two types of collective rotations of {Si};
crystalline rotation (CR) and local rotation (LR). a Vector chirality κ=+ 1 state considering aþ1 AFM order clearly shows NRSM state. b a�1 , c a

�
2 and d a�3

configurations all have vector chirality κ=− 1, obtained by CR. Another set of κ=− 1 states, e a�4 , f a
�
5 , g a�6 , (h) a

�
7 , are connected by clockwise LR of

about 30o. Here, CR and LR both create Weyl-points at different locations of the ellipse. The locations and nontrivial topological charges of Weyl-points are
calculated using the code WannierTools61 based on the Wannier tight-binding model constructed using the Wannier9060. i, j are Schematic
representations of CR and LR.

Table 1 Calculated anomalous Hall conductivity for different
noncollinear antiferromagnetic phases.

Spin Energy/f.u. σx σy
configuration (meV) (S ⋅ cm−1) (S ⋅ cm−1)

aþ1 0 0 0
a�1 ðϕ ¼ 90oÞ −4.472 −226 0
a�2 ðϕ ¼ 210oÞ −4.472 116 −204
a�3 ðϕ ¼ 330oÞ −4.472 116 204
a�4 ðϕ ¼ 0oÞ −4.451 0 223
a�5 ðϕ ¼ 30oÞ −4.472 −116 204
a�6 ðϕ ¼ 60oÞ −4.451 −200 −104
a�7 ðϕ ¼ 90oÞ −4.472 −226 0

The stability energies of vector chirality κ=− 1 noncollinear antiferromagnetic states with
respect to κ=+ 1 one and the corresponding intrinsic anomalous Hall conductivity, σx(y). The
angle ϕ in parenthesis is defined with respect to the a�4 antiferromagnetic configuration,
representing uniform spin rotation measured in integer multiple of 30°.
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configuration in Fig. 4a as it generates zero Berry curvature around
the NR29,63. In all noncollinear AFM configurations, σz component
is found to be zero. Remarkably, a giant tunable σ value is found
once we switch to the WSM phase in the κ=− 1 AFM states.
Comparing a�1 and a�4 spin configurations in Fig. 4b, e, respectively
and their corresponding nonzero values of σx and σy, see Table. 1,
we infer that the AHC is highly tunable depending on the
noncollinear spin arrangements of AFMs. Furthermore, the sign
difference in σx and σy values is clearly associated with the sense of
rotation connecting a�1 and a�4 , e.g., a 90° counterclockwise LR
(see also Supplementary Fig. 4 and Supplementary Note 2).
Likewise, the overall sign change in σ is observed when one moves
from AFM texture a�2 to a�5 by flipping all spins and each WP
takes opposite chiral charge, see Fig. 4c, f. Therefore, by controlling
noncollinear magnetic order in Mn3Sn, the TSM phases can be
altered between two semimetals, one carries NR state while the
other one carries rotating WPs. This, in turn, opens the possibility
of switching σ from zero to a giant value as well as tailoring its
components in a single material.

Discussion
In Mn3Sn, the essential topological footprints near the Ef are
captured by constructing a low-energy k.p effective model
Hamiltonian of two bands around the high-symmetric K points
in the BZ. Here, in the construction, we take into account all
relevant symmetries in the noncollinear AFMs and the detailed
construction of the theory is given in the Supplementary Note 3.
The Hamiltonian for the existence of a NR solution takes the
form

HNR ¼ a1k
2
zkxσx þ ðm0 �m1k

2
x �m2k

2
y �m3k

2
zÞσz; ð2Þ

where {σi} are the Pauli matrices and the momentum, k = (k∣∣, kz),
is measured relative to the K point. a and m are the free para-
meters in the model. The eigenvalue solutions, E ± k , are degen-
erate in the kz= 0 plane, forming an elliptical NR state satisfying
m1k

2
x þm2k

2
y ¼ m0. The constructed Hamiltonian is invariant

under important symmetries, C3z , Mx , MyT and MzT ,
observed in the particular κ=+ 1 AFM state, aþ1 in Fig. 4a (also
see Fig. 1b). As stated earlier, a simultaneous local rotation of {Si}
in the unit cell keeps κ value unchanged along with the C3z
rotation symmetry intact, however, can change the other sym-
metries. If we replace the a1k

2
zkxσx in Eq. (2) with a1k

2
jjkyσx, the

new k.p Hamiltonian on the hand preserves symmetries, MxT ,
My , MzT and C3z which are protected in another κ=+ 1 AFM
state, 3-in-3-out configuration. In that case, the NR solution
disappears as the bands are completely gapped out for all k∣∣
points. The ab initio band structure is in good agreement with the
model solution and the fully gapped state is clearly visible in the
3D energy band dispersion, see Supplementary Fig. 3h. Therefore,
the existence of NR solution on the kz= 0 plane is found for the
coexistence of C3z , Mx and MzT symmetries, particularly pre-
served in aþ1 magnetic texture. Above combination of symmetries
is very unique as moving to κ=− 1 AFM state, a�1 in Fig. 4b
(constructed via 120° staggered rotation), Mx , MyT and MzT
symmetries remain conserved while the C3z symmetry is broken.
The effective low energy Hamiltonian in that case takes the form

HWP ¼ vxkxσx þ ðm0 �m1k
2
x �m2k

2
y �m3k

2
zÞσz; ð3Þ

where the vxkxσx is the perturbing term. The energy dispersion
solution for kz= 0 plane shows a pair of gapless points at kjj ¼
ð0; ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0=m2

p
Þ along the ky axis which is the minor axis of the

elliptic NR solution earlier. Therefore, we infer that the pertur-
bation leads to generate two crossing points on the minor axis of
the ellipse, consistent with the ab initio band structure. On the
other hand, by replacing vxkxσx to vykyσx in Eq. (3), we find a pair

of gapless points at kjj ¼ ð±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0=m1

p
; 0Þ along the kx axis. This

Hamiltonian is invariant under MxT , My symmetries which are
conserved for a�4 AFM state in Fig. 4e. This is hence consistent
with the location of the ab initio calculated WPs, lying along the
major axis of the ellipse. The rotation of WPs related to the
collective spin rotations, therefore, has led to choose a pertur-
bation of the form (v ⋅ k∣∣)σx in Eq. (3). Most importantly, a pair
of gapless points is always found as the solution of the k ⋅ p
Hamiltonian in the kx-ky plane. Depending on the vector v in the
Hamiltonian, a pair of band touching points in the solution
change their positions on an elliptic ring. This is consistent with
the rotation of the WPs around K point in the band structure of
various magnetic textures with κ=− 1. The vector v here can be
closely associated with the magnetic octupole moments in Mn3Sn
which is believed to break the time reversal symmetry50,53.

In our results, we have established the intimate connection
between vector chirality driven topological phase transition and
AHE in antiferromagnets. Importantly, the noncollinear AFM
spin texture has a significant impact on its band structure, Berry
curvature and hence, on the intrinsic AHE. The NR state in case
of aþ1 is found to exhibit net zero Berry curvature in its vicinity
and thus does not generate any AHE. We also find that the fully
gapped NR state found in 3-in-3-out AFM texture does not
induce Berry curvature, which is responsible for the absence of
AHE. This therefore, is in contrast with the ferromagnetic
topological semimetal Co2MnAl29 that generate large AHE only
by gapping out NRs in the presence of net magnetization in the
system. On the other hand, the elliptic NR has evolved into a pair
of WPs when the aþ1 texture turns into a�1 texture by 120o stag-
gered rotation. The WPs contribute in generating large Berry
curvature, which is responsible for the observed giant AHC. The
absence of intrinsic AHE may arise either from nontrivial topo-
logical NR phase or from the gapped phase, depending on the
underlying noncollinear AFM texture. Nonetheless, the switching
of AHC from zero to a giant value may indirectly justify our claim
of topological phase transition from the NRSM to the WSM
phase. Moreover, the smooth variation of σx or σy component
(including switching between positive value to negative value and
vice-versa) is consistent with the rotation of the WPs on an
elliptic ring, compare the results in Fig. 4 and Table 1. The
important point to be noticed is that the giant σx (σy) value,
particularly in case of a�1 (a�4 ) AFM state, arises due to the odd
nature of the Berry curvature Ωy (Ωx) under the symmetry
operation MyT (MxT). Therefore, the odd Berry curvature does
not contribute in the AHE. In case of intermediate 120o AFM
configurations (e.g. a�5 and a�6 connected by LR), the relevant
symmetries are broken which then lead to nonzero values of σx
and σy both.

In summary, based on the detailed electronic structure calcu-
lations and low energy k ⋅ p effective theory, we systematically
reveal that multiple nontrivial TSM phases can be realized in 120o

noncollinear AFM, Mn3Sn, by controlled alternation of the spin
configurations. The analyses demonstrate that the NR and the
gapless nodes in the form of WPs are strongly rely on the chiral
orders characterized by the vector chirality, κ=+ 1 and− 1,
respectively. This work suggests that a staggered rotation invol-
ving two spins in the kagome triangle is an unconventional route
to topological phase transition from an elliptical NR to a pair of
WPs through the switching of κ from ‘+ 1’ to ‘− 1’. It is worth to
mention that the staggered torque with sufficient strength
required for switching κ is difficult to generate at low tempera-
ture. However, at elevated temperatures when multiple magnetic
phases may coexist64, the required torque can be reduced sig-
nificantly. Notably, such types of staggered rotations, albeit small
in magnitude, have been recently realized in this class of materials
via an external magnetic field65 and uniaxial strain66. Later,

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01385-9

6 COMMUNICATIONS PHYSICS |           (2023) 6:272 | https://doi.org/10.1038/s42005-023-01385-9 | www.nature.com/commsphys

www.nature.com/commsphys


depending on the nature of rotation (CR or LR) of spins in the
κ=− 1 AFM texture, the WPs are found to rotate as if the
topological charges can be created at preferred locations on the
ring. The symmetry adapted k ⋅ p theory moreover captures our
findings in good agreement and, hence, brings an unconventional
way of generating a pair of WPs from a ring in noncollinear
AFMs. We further find a remarkable switching of AHC from zero
to a giant value associated with the TSM phase transition in the
system carrying nonzero vector chirality. Finally, it shows that the
components of AHC, σx and σy, can be tuned smoothly
depending on the location of the WPs on an elliptic ring. These
topological features in the band structures are also observed in the
sister compounds in the hexagonal Mn3X family (see the dis-
cussion in Supplementary Note 4 and Supplementary Figs. 5 and
6 for Mn3Ge and Mn3Ga, respectively). We thus believe that the
TSM phase dynamics in hexagonal 120o noncollinear AFM will
offer a new avenue to develop concepts on staggered torques for
the manipulation of vector chiral order in AFMs and it possibly
adds an alternative component to antiferromagnetic spintronics.

Methods
Ab initio electronic structure calculations. Density Functional
Theory (DFT) calculations are carried out with two different
approaches: the full-potential linearized augmented plane wave
(FLAPW) method as implemented in the Jülich DFT code
FLEUR55, and the plane-wave projected augmented wave (PAW)
method as implemented in Vienna ab initio Simulation Package
(VASP)56,57. We have carefully checked the consistency of our
calculations in the above-mentioned approaches in terms of
density of states, band structures and stability of magnetic states.
The total energy calculations for different noncollinear anti-
ferromagnetic (AFM) structures with and without spin-orbit
coupling (SOC), are carried out in the plane wave basis with
projector-augmented wave (PAW) potentials. A plane-wave cut-
off of 500 eV and Γ-centered k-mesh of 8 × 8 × 9 are found to
provide a good convergence of the total energies. On the other
hand, for the self-consistent calculations in FLEUR, we consider a
plane-wave cutoff of kmax= 4.2 a.u.−1 for expanding the LAPW
basis functions where the charge densities are converged using a
Monkhorst-Pack67 k-mesh of 8 × 8 × 9 in the whole Brillouin
zone (BZ). The muffin-tin radii for Mn and Sn are set to 2.57 a.u.
and 2.64 a.u., respectively. We use the Vosko-Wilk-Nusair
(VWN)68 exchange-correlation functional within the local den-
sity approximation (LDA) for the self-consistent calculations. The
plane wave cutoff for the potential (gmax) and exchange-
correlation potential (gmax,xc) are chosen to be 14.0 and 12.0
a.u.−1, respectively. These choices of the numerical parameters
are found to provide good convergence of the total energy. Our
calculations include the effect of SOC self-consistently. The total
energies calculated in both FLEUR and VASP are consistent and
comparable. The calculated total energy difference in the presence
of SOC between κ=+ 1 and− 1 noncollinear AFM states is
3.8 meV/f.u. within FLEUR whereas it is 4.5 meV/f.u. in VASP
calculation. To construct the three-dimensional (3D) energy band
dispersion of each noncollinear AFM state using ab initio
method, we take a very dense circular k-mesh around the high
symmetry point K. The electronic band structures with SOC are
further parameterized with maximally-localized Wannier func-
tions (MLWFs)60 within all electron full potential methods of
LAPW as implemented in FLEUR55. Atomic orbital-like MLWFs
of Mn-d, Sn-p states are considered to construct the tight-binding
(TB) Hamiltonian, which reproduces the spectrum of the system
accurately within a large energy window ( ≈ 7.5 eV) around the
Fermi energy. From the constructed TB Hamiltonian based on
MLWFs as implemented in the WannierTools software61, the

surface spectrum for (001) surfaces is calculated using Green’s
function iterative approach. The position of Weyl-nodes and their
topological charges are also calculated using the same tool. The
Fermi arcs connecting two Weyl-points are clearly identified in
the surface band spectrum.

Then to compute the anomalous Hall conductivity, we evaluate
the intrinsic Berry curvature contribution employing the Wannier
interpolation technique69 as implemented in the FLEUR code70.
The Berry curvatures are computed from a well-constructed TB-
model based on the MLWFs71. The linear response Kubo formula
approach72 has been employed as follows:

ΩnðkÞ ¼ �_2 ∑
n≠m

2Imhunkjv̂ijumkihunkjv̂jjumki
ðϵnk � ϵmkÞ2

; ð4Þ

where Ωn(k) is the Berry curvature of band n, v̂i ¼ 1
_ ∂ĤðkÞ=∂ki is

the velocity operator with i∈ {x, y}, unk and ϵnk are the eigenstates
and eigenvalues of the Hamiltonian ĤðkÞ, respectively. Subse-
quently, we calculate the anomalous Hall conductivity (AHC) as
given by:

σAH ¼ �_e2 ∑
n

Z
BZ

dk

2πð Þ3 f nðkÞΩnðkÞ; ð5Þ

To compute σAH , we use a very dense k-mesh of 300 × 300 × 300,
and such a dense mesh is found to give well-converged values of
the AHC.

Data availability
The data of this study are available from the corresponding author upon reasonable
request via email: aknandy@niser.ac.in.
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