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Non-normal interactions create socio-economic
bubbles
Didier Sornette1,5, Sandro Claudio Lera 1,2,5✉, Jianhong Lin3,4,5 & Ke Wu 1✉

In social networks, bursts of activity often result from the imitative behavior between

interacting agents. The Ising model, along with its variants in the social sciences, serves as a

foundational framework to explain these phenomena through its critical properties. We

propose an alternative generic mechanism for the emergence of collective exuberance within

a broad class of agent-based models. We show that our model does not require the fine-

tuning to a critical point, as is commonly done to explain bursts of activity using the Ising

model and its variants. Instead, our approach hinges on the intrinsic non-symmetric and

hierarchical organization of socio-economic networks. These non-normal networks exhibit

transient and unsustainable surges in herd behavior across a wide range of control para-

meters even in the subcritical regime, thereby eliminating the need for the - arguably arti-

ficial - fine-tuning proximity to a critical point. To empirically validate our framework, we

examine the behavior of meme stocks and establish a direct linkage between the size of

financial bubbles and the degree of non-normality in the network, as quantified by the Kreiss

constant. Our proposed mechanism presents an alternative that is more general than

prevailing conceptions of instabilities in diverse social systems.
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Many complex dynamical systems are characterized by
periods of relative stability which are interrupted by
transient regimes during which the dynamics exhibits

sudden bursts of unsustainable growth (a “bubble”) or shifts sud-
denly to another attractor. A large corpus of knowledge andmethods
have been developed in the last two decades to account for these
phenomena, which are based on the underlying concept of tipping
points, wherein a critical threshold is reached at which the system
bifurcates to a new state1–5. Typical financial models that account for
such instabilities contain two classes of traders: fundamentalists who
maximize their expected utility function and noise traders6,7. Noise
traders are usually assumed to influence each other according to an
Ising-like dynamics, with interaction dependencies captured by an
adjacency matrix A and interaction strength captured by a coupling
constant κ. When the imitation strength between noise traders is
large enough, collective social behavior can occur, such as polariza-
tion of noise traders toward buying (selling), which in turn creates
bubbles (crashes)8,9.

These bubbles and crashes are generally associated with the
underlying Ising phase transition separating a disordered opinion
regime for low imitation strength κ from an ordered regime
where all noise traders tend to be synchronized. In all existing
models of this type, bubbles require the imitation strength κ to be
close to or larger than a critical value κc associated with the
underlying phase transition. In other words, in this class of
models, bubbles and crashes are the signatures of the fact that the
financial market has entered a “critical regime”, in the technical
sense of the emergence of collective order in the decisions of a
large fraction of traders. There is an extensive literature on agent-
based models and generalized Ising models10–14. To the best of
our knowledge—in all cases—the abnormal stylized facts, such as
excess volatility and transient bubbles and crashes, require the
system to be close to, at or slightly above the critical point in the
ordered polarizing regime.

In this work, we document a general mechanism for the
nucleation and growth of transient bubbles. We suggest that this
new mechanism is much more general than previously existing
ones and likely to be often the dominant process at work, because it
does not require the fine-tuning close to or sweeping15 of the
system over a critical point. Our proposed mechanism is based on
the fact that social influence is characterized by two critical prop-
erties: it is directed and hierarchical16,17. For instance, in our
example of financial markets, the influence of a famous investor on
a retail investor is likely much larger than the other way around.
Together, these two ingredients give rise to networks with non-
normal adjacency matrices A, called non-normal networks18–20,
whose associated dynamical systems are known to induce transient
bursts21–24. Interpreted in terms of socioeconomic interactions,
these transient bursts are responsible for short-lived social con-
tagion even well below any critical threshold. We demonstrate this
mechanism in the context of the formation of financial bubbles and
their following crashes that lead to enormous economic losses.
Analyzing Reddit discussion forums of meme stocks, we show that
patterns of influence are highly non-normal, and that the rate of
reciprocity is dependent on a user hierarchy. Using a previously
validated agent-based model25,26, we show that non-normal net-
works give rise to transient bubbles even when the imitation
strength is sub-critical. Intuitively, some traders are more influ-
ential than others and information does not spread evenly but
along cascading circuits. Our work thus provides a qualitative
proposal that financial systems are intrinsically generating crises27.
Due to the broad applicability of stochastic interaction models28,
our model is expected to generalize in a straightforward manner to
other hierarchical socioeconomic systems, and help explain wide-
spread phenomena such as social bubbles29 and herding in opinion
dynamics11.

Results and discussion
Agent-based price simulation. Agent-based models (ABMs)
have become a popular tool in interdisciplinary research over the
last decades30–32, primarily due to their flexibility in accounting
for heterogeneous and non-linear interactions. Here, we imple-
ment an ABM that simulates a financial market consisting of
fundamentalists and noise traders who trade a risky and a risk-
free asset25,26. The risky asset is a dividend paying stock. The risk-
free asset pays a constant return in each time-step and represents
a bank account or risk-free government bond. Each trader for-
mulates their excess demand for the next time step and the price
Pt of the risky asset is calculated as the Walras equilibrium in
which supply equals demand. Fundamentalists are rational risk-
averse investors who invest by maximizing their expected utility
under a constant relative risk aversion utility function. At each
time step, they allocate their wealth between the two assets in
order to maximize their expected utility over the next period.
They buy (sell) or sell (buy) the risky (riskless) asset in order to
move their portfolio towards their desired optimal portfolio,
given the information they have on price and volatility of the
risky asset. They play a role akin to price-setters, in contrast with
noise traders who are pure price-takers. Their demand for the
risky asset combines with that of the noise traders to fix the price
at each time step. We refer to the Supplementary Note 1 for more
details on the fundamentalists.

The crucial component for our model are the noise traders.
Their investment strategy is based on an Ising-like social influence
model, where they can be modeled as nodes in a network with
directed edges. While previous implementations25,26 have con-
sidered a mean-field approximation in terms of a fully connected,
symmetric network, here we make the network topology an
explicit component of our model. As will become clear below,
relaxing the assumption of fully connected, symmetric interactions
is not only realistic, but also a crucial ingredient for the
observation of sub-critical bubbles. Each trader i is considered
to be in one of the two possible states, +1 (the noise trader holds
the risky asset), and −1 (the noise trader holds the risk-free asset).
The states are denoted as si= ± 1, respectively. The directed
network of N nodes (noise traders) is described by its adjacency
matrix A= {aij}, where aij= 1 if there exists a directed edge
(influence) from node j to node i, and aij= 0 otherwise.
Introducing further the transition matrix M which is proportional
to A (see Methods section for details) allows us to represent the
state dynamics of the Ising-like noise traders as

4 s!ðtÞ ¼ M s!ðtÞ ð1Þ
At each time step t, the collective opinion ("magnetization” in the
Ising language) mt is defined as

mt ¼
1
N

∑
N

i¼1
sit 2 ½�1; 1�: ð2Þ

This system remains stable as long as the real parts of all
eigenvalues of M are negative. As is well known, by continuously
tuning M, systems whose linear stability is controlled by (1) can
undergo a bifurcation (or phase transition) from a stable fixed
point with zero average change of spin to a state where all spin
change state to align to each other (a state described by higher-
order terms beyond the linear expansion M s!ðtÞ). The existence
of such states has been related to the emergence of financial
bubbles (crashes), diagnosed by the existence of transient super-
exponential growth (loss)9,33. System (1) is well-known to be a
generic representation of the aggregate behavioral outcomes of
financial markets where investors are driven by group psychology
and herding6,34–36. Moreover, as will become clear below, our
results are not restricted to the detailed assumptions of our model
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and generalize to a large class of stochastic interaction models
(from hereon referred to as ‘Ising-like’). In the remainder of this
article, we will analyze the sub-critical regime of M, but with M
being non-normal. We will show that this non-normal structure
gives rise to transient dynamics that induce bubbles and crashes
much like at or close to criticality in normal networks.

Non-normal matrices. Early contributions to the study of non-
normal matrices have originated from hydrodynamics, where
non-normality plays a role in the emergence of turbulence21. Ever
since, non-normal matrix theory has helped explain phenomena
such as perturbations in ecosystems37, non-Hermitian quantum
mechanics38, population dynamics39, synchronization of optoe-
lectronic oscillators40, amplification of neural activities23, che-
mical reactions41, network synchronization18,42,43, neuronal
networks44,45, ecological reactions46, and the formation of Turing
patterns24,47.

A matrix M is called non-normal if MTM ≠MMT. Non-normal
matrices, unlike their normal counterparts, contain at least one
set of eigenvectors which are non-orthogonal to each other. We
refer to the Methods section for a primer on non-normal
matrices. For the purposes at hand, one key property of non-
normal matrices M is that the dynamics they describe via (1) is
significantly different from the long-term asymptotic behavior
governed by the largest eigenvalue. It is well-known that the
asymptotic behavior for t→∞ is governed by the largest real-part
of all eigenvalues of M. In particular, so long as all real parts of M
are negative, the dynamics is stable (Fig. 1d). Our main interest
lies in transients, which are described by intermediate values of t.

It can be shown that, for intermediate times, there is transient
growth according to

sup
t⩾0

etM
�� ���� ��⩾KðMÞ: ð3Þ

Importantly for our application below, this initial transient
growth is exponential (Fig. 1c). Given an interaction matrix M as
in Eq. (1), we can calculate the Kreiss constant KðMÞ (see
Methods) to obtain lower bounds for the transient growth of net
magnetization. An example of such transient growth is shown in
Fig. 1c and in the inset of Plot (e). As we shall see, these transients
are responsible for socioeconomic bubbles in our agent-based
model.

Level-dependent reciprocal connections. A system such as Eq.
(1) with non-normal M can be interpreted as a dynamical process
on a complex asymmetric and partly hierarchical network. Such
non-normal networks have been observed in a wide variety of
biological and socioeconomic networks19,20,48, and their role in

the transmission of noise has been studied49. Recall that asym-
metry of M is a necessary, but not a sufficient condition for non-
normality. For instance, consider a simple cyclical, directed net-
work of three nodes {X, Y, Z} where X→ Y, Y→ Z and Z→ X.
An adjacency matrix with such cyclical symmetry still gives rise to
a normal adjacency matrix. The condition MMT ≠MTM is
instead satisfied when the network is directed and hierarchical,
which are both intrinsic properties of socioeconomic
systems17,50,51. Indeed, it is well-established in anthropology that
people organize their social interactions along one or more of the
four elementary modes: communal sharing, authority ranking,
equality matching, and market pricing, with the latest one being
particularly relevant in finance52,53. Of these four modes, only
equity matching is symmetrically directed, while the others
exhibit some direction asymmetry and a degree of hierarchy.
Assuming that non-normal matrices govern the interaction of
humans in socioeconomic and financial systems is thus natural.

Recently, methods to generate non-normal networks have been
proposed by taking into consideration asymmetrical reciprocity48

and hierarchy19 that are typical of non-normal systems. Drawing
from these insights, we implement here an algorithm that allows
us to control the rate of non-normality along with the number of
top nodes, that can be interpreted as thought leaders. In contrast
to previous work48, our rate of reciprocity explicitly depends
on the hierarchical level which is a realistic addition as has been
evidenced in a variety of biological and social non-normal
networks19.

The non-normal network with a total of N nodes is initialized
with N0 so-called top nodes. These top nodes account for the
largely independent N0 backbones of the communication network
common to typical hierarchical, non-normal networks19,48. The
remaining N−N0 nodes are added to the existing network
sequentially, one node at a time. Each newly added node receives
m in-edges, i.e., channels of communication through which it can
be influenced. The source of each such edge is selected with
probability proportional to the existing nodes’ out-degree. As is
well-known, this type of preferential attachment creates a skewed
degree distribution whereby the network is dominated by a few
central nodes54,55. Once the m source nodes of an added node are
determined, each of the m newly formed directed edges may be
reciprocated with some probability ρ. Figure 2a–c exemplifies
several cases where ρ is equal to a fixed value θ. Setting θ≪ 1
gives rise to strongly non-normal systems48, whereas θ= 1
recovers a symmetric, i.e., normal, network.

Based on empirical evidence19 and to reflect the fact that nodes
that are higher up in the hierarchy are harder to be influenced, we
assume further that this probability ρ is modulated by the
hierarchical level ℓ of each node, ρ= ρ(ℓ). The lower the node in

Fig. 1 Difference between normal and non-normal transients. a, b These show the geometry of pseudo spectra. In each plot, the contours represent the
boundary of σϵ(M) for two values of ϵ (see Methods). c Initial, transient and asymptotic behavior of etM

�� ���� �� for a non-normal matrixM. The graph indicates
that here σ(M) < 0 and hence that the asymptotic behavior is stable. However, the asymptotic behavior is not at all predictive of the transient behavior in
caseM is non-normal. d Plot shows the eigenvalues (black dots) and some ϵ-pseudospectra for a normal matrix (different colors represent different values
of ϵ). All eigenvalues as well as the epsilon-spectral lines are confined to the left half plane of C. Accordingly, ∣∣st∣∣ decays exponentially as shown in the
inset plot. e Plot shows the case of a non-normal matrix M. While its eigenvalues are also confined to the left half plane of C, its ϵ spectral lines are not.
According to inequality (3), in the inset plot, we see intermittent transient growth before the asymptotic decay as in (c).
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the hierarchy (the larger ℓ), the more likely the node is
reciprocated. Loosely speaking, the hierarchical level ℓ of any
node i is defined as the shortest path from a top-node to node i.
More precisely, the level ℓ is defined as the trophic hierarchical
level56,57. We have analyzed the Reddit discussion forum for the
Blackberry meme stock below. An edge is drawn from user i to
user j if j replies to a comment of user i. In Fig. 2d, we show that
the rate of reciprocity is not constant, but an increasing function
of ℓ. In other words, the more popular a user’s comments, the less
likely that user is to reciprocate (comment on) any given edge.
For social communication networks, this observation is natural
and rationalized as the approximately constant finite capacity of
any given individual to respond to comments.

We detail in the Methods section our algorithm to generate
non-normal adjacency matrices. Such a matrix A has six
parameters: N,N0,m, θ, a and b. The four parameters m,N, a
and b play a subordinate role in the qualitative interpretation of
our results. For the remainder of this paper, we thus fix N= 1000,
m= 2, a= 2.552 and b= 3.668 unless mentioned otherwise. The
parameters θ and N0, on the other hand, have qualitatively
important implications on the behavior of our model. The
parameter θ characterizes the asymmetric nature of the system.
The smaller θ, the more directed the network, and the less the top
nodes may be influenced. The parameter N0 denotes the number
of top nodes. If θ is small, then N0 may be interpreted as the
number of (largely) independent, leading opinions in the system.
As we will now show, our results do not depend on the specific
implementation of the non-normal mechanism, but are primarily
mediated by the Kreiss constant (see Primer on Non-Normality
in the Methods section).

Transient bubbles induced by non-normal interactions.
Building on the above insights, we now run agent-based simu-
lations with a non-normal adjacency matrix M. While it has been
well-established that the formation of bubbles in agent-based
models with Ising-like interactions is associated with the proxi-
mity to the critical point of the underlying Ising model with the
occurrence non-zero net opinion (non-zero magnetization)9,58,59,
we investigate here the regime where the net magnetization (net
opinion) fluctuates around zero (sub-critical phase). In the fol-
lowing analysis, we therefore set the coupling strength κ to a sub-
critical value (κ= 0.98). The eight panels of Fig. 3a, b confirm
that mt fluctuates around zero approximately symmetrically, as
expected from the fact that the imitation strength κ has been

chosen so that the underlying Ising model is subcritical. Fur-
thermore, for fixed parameters (N0, κ), we compare two types of
social networks: θ= 0 and θ= 1. The former corresponds to a
case of no reciprocity, and hence large non-normality of A and
hence M. The later corresponds to an almost symmetric—and
hence normal—matrix A, which coincides with a much less non-
normal matrix M (see also Supplementary Note 2). Comparing
Fig. 3a, b, we see that the strongly non-normal case (small θ)
corresponds to much more pronounced long-lived deviations of
the magnetization from its zero average, as is expected from
transient dynamics (Fig. 1c, e).

Figure 3c shows the associated price Pt as a function of time,
obtained as the Walras’ equilibrium between fundamentalists and
noise traders (Supplementary Note 1). It is striking to observe the
drastic differences in the price dynamics between highly non-
reciprocal (non-normal) interactions compared to reciprocated
(normal) ones. In the former, very strong price peaks are
preceded by periods of strong price growth, following by fast large
asymmetric drawdowns. This qualifies the existence of large
amplitude bubbles as a clear diagnostic of this type of non-normal
networks. In contrast, for normal networks (and weakly non-
normal M matrices), the price dynamics appears compatible with
a standard geometric Brownian motion at least at the qualitative
level. As we now show, both of these phenomena are explained as
a function of the transients induced by non-normality.

A hallmark of a financial bubble is the existence of
unsustainable super-exponential price growth9,33,60. The term
super-exponential refers to a special regime where the price grows
much faster than exponential, with its growth rate growing itself
as a function of time, compared with exponential growth
characterized by a constant growth rate. Within our ABM, it
can be shown25 that, to a first approximation, the price is an
exponential function of the net magnetization, Pt ¼ Cecmt ; where
the scaling coefficient c > 0 is a function of the model parameters.
This result is a direct consequence of the fact that, on short time-
scales, the price is mostly driven by the demand of noise-traders.
Thus, our results are not specific to the details of our
implementation of the social imitation model and are expected
to hold for general classes of stochastic interaction systems61 and
common assumptions about fundamentalists35.

We recall that mt is defined as the average state across all trader
states s!ðtÞ. The states s!ðtÞ are themselves governed by equation
(1) involving the non-normal interaction matrix M, such that
s!ðtÞ � eMt s!ð0Þ. In a globally stable regime, all eigenvalues of M

1 3 5 7 9 11 13 100 101 102 103
0

0.1

0.2

0.3

Fig. 2 Hierarchical levels and rates of reciprocity in complex networks. a–c Three examples of directed networks with different levels of non-normality,
different number of top nodes, and different but constant rates of reciprocity ρ given by different values of θ. The colors indicate the hierarchical (in general
non-integer) level ℓ of the nodes. A value of θ= 0 means no edge can be reciprocated, whereas a value of θ= 1 means every edge is reciprocated (since
level-dependence is ignored). Network (c) is then normal, since it is symmetric. d Empirical analysis of the Blackberry subreddit network. The rate of
reciprocity is not constant, but a function of the hierarchical level, ρ= ρ(ℓ). The higher the level, the higher the rate of reciprocity, up to some level of
saturation. Error bars represent standard deviations of average rate of reciprocity measured across all users. The red line shows the sigmoid function that
best fits the data.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01379-7

4 COMMUNICATIONS PHYSICS |           (2023) 6:261 | https://doi.org/10.1038/s42005-023-01379-7 | www.nature.com/commsphys

www.nature.com/commsphys


associated with the stable equilibrium s!ðtÞ ¼ 0 are negative
(Supplementary Note 1). The standard expectation is thus that mt

remains small and thus Pt should not exhibit abnormal
fluctuations. But this is forgetting the transients induced by the
non-normality of M. As shown in Fig. 1c, e, the asymptotically
stable fixed-point s!¼ 0 is punctuated by initially exponential,
repelling dynamics over finite time scales. Furthermore, inequal-
ity (3) provides us with a lower bound of the size of these
transients, which are mainly a function of the Kreiss constant
KðMÞ. Combining Pt ¼ Cecmt with the transient approximately
exponential growth of mt, we thus predict the occurrence of finite
lived bubbles qualified as transient super-exponential growth of
price. Here, the super-exponential behavior is approximately
described by an exponential of an exponential.

This reasoning leads us to hypothesize that various properties
of emergent bubbles should be mostly driven by metrics
characterizing the non-normal nature of the network of
interacting noise traders. The most obvious candidate to
characterize non-normal networks being the Kreiss constant
KðMÞ, we hypothesize that the dependence of the size of
emerging bubbles on parameters (N0, θ, κ) should reduce to a
sole dependence on KðMÞ. To test this dependence, we measure
the size of the bubbles as the difference in price between the

beginning and the end of a regime of super-exponential growth
(see Supplementary Note 5 for details). It turns out that the sizes
of bubbles are almost entirely explained by just the Kreiss
constant, for various parameter constellations, as shown in Fig. 3.

More precisely, for different parameter combinations of
(N0, θ, κ), we generate 100 price simulations according to the
following procedure. We first generate a matrix M according to
our algorithm described above, and we subsequently run the
agent-based model to generate a time-series with 25, 000 time-
steps, corresponding to 100 years (considering 250 trading days
per calendar year). On each time series, we measure the size of all
bubbles. These sizes are subsequently averaged across all
100 simulations, with the standard deviation serving as error
bars. Figure 3d demonstrates the existence of a collapse of all
curves when the average bubble sizes are plotted as a function of
the Kreiss constant KðMÞ of the non-normal matrix M. A large
Kreiss constant is associated with large bubble sizes, for different
network non-normality and social coupling κ.

The theory of transients does not only make a prediction about
the size of the transients, but also about their steepness. As
visualized in Fig. 1c, we expect the steepness of the transients, and
therefore of the magnetization and then price, to be increasing in
the numerical abscissa ω(M). Figure 3e shows that the bubble
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Fig. 3 Normal vs. non-normal price dynamics. a Magnetization (2) for an ABM simulation with a non-normal interaction matrix M for different parameter
constellations. The net magnetization of the N0 opinion leaders is shown in gray lines in the background. The opinion leaders change their opinion randomly
at rate p±/2, as dictated by equation (4). b Same as in (a), but for a symmetrized (i.e., normal) interaction matrix 1

2 ðMþMTÞ. The parameter κ is chosen at
a sub-critical value, hence the net magnetization is, on average, 0. In contrast to (a), the transient bursts are much less pronounced. c Price trajectory
generated by the agent-based model dynamics with magnetization from (a) and (b), respectively. Only the non-normal matrices induce bubbles. d Bubble
size as a function of Kreiss constant for different parameter constellations. e Bubble steepness as a function of numerical abscissa for different parameter
constellations. f Bubble size as a function of fraction of nodes receptive to antagonistic opinion. Error bars represent standard deviations obtained from
100 simulations.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01379-7 ARTICLE

COMMUNICATIONS PHYSICS |           (2023) 6:261 | https://doi.org/10.1038/s42005-023-01379-7 | www.nature.com/commsphys 5

www.nature.com/commsphys
www.nature.com/commsphys


steepness is indeed mostly explained by the numerical abscissa
ω(M) of the non-normal network, for different sets of parameters.

These results underline the crucial role of the non-normality of
the noise traders interaction network in shaping the bubbles and
their properties in our agent-based model. The key insight is that
different parametrization indeed all collapse onto this scaling law
relating the bubble size to the Kreiss constant and the bubble
steepness to the numerical abscissa of the matrix M characteriz-
ing the social network of noise traders. The intuition behind this
mechanism is related to the hierarchical organization associated
with non-normal matrices19. The information flow is structured
such that it is driven by a few leaders, thereby reducing the
effective number of independent opinions and increasing the level
of polarization.

Finally, we test the effect of an influential contrary opinion on
the size of the bubble. We first simulate a price dynamics with a
single top node, N0= 1, with N= 1000, m= 2 and θ= 0. Upon
formation of a bubble (continuous price increase for 50 time-
steps), we interfere with the system by holding a contrary opinion
(opposite state of N0) for Δt time-steps. That contrary node is
connected to a fraction f of all nodes with the exception of the top
node. Figure 3f shows the dependence of the bubble size as a
function of f. The larger f is, the larger is the decrease of the
bubble size. This result is encouraging, suggesting that an external
controller can partially counteract the development of sub-critical
bubbles. However, this control remains limited even when f→ 1
and requires one to reach to a large fraction of noise traders. A
more scalable approach, that we leave for future research, would
be a minimal influence of a few key nodes in order to achieve
overall noise-cancellation, as has been recently shown in
communication networks49, and which could improve on the
more standard market intervention involving large balance sheet
build-up of major financial agents such as a central bank62.

Non-normal communication in meme stock trading. So far, our
assessment of bubbles has relied on agent-based simulations,
where we can control the experimental conditions. The difficulty
with empirical data is that, in general, one cannot observe the
matrix A that governs trader interactions. On social trading
platforms, such as eToro, interactions can be measured
precisely55, but the trading volume relative to the entire market is
small, such that its influence on the price is negligible. This is not
the case for so-called meme stocks which have enjoyed recent
popularity. Driven primarily by retail traders, meme stock trading
activity has been shown to be largely influenced by Reddit dis-
cussion forums63–65.

Reddit is organized into subreddits on which specific topics are
being discussed. Users interact by submitting new posts and
adding comments to existing posts or comments. Here, we
analyze the posts and comments related to four popular meme
stocks (Blackberry, Nokia, GameStop and AMC) under the
famous subreddit r/wallstreetbets (also known as WallStreetBets
or WSB) that has become notable for its colorful and profane
jargon, aggressive trading strategies, and for playing a major role
in the GameStop short squeeze in early 2021. For each of the four
stock, at time t, we draw a directed edge from user j to user k if k
has commented or replied to a stock-related text by user j in the
time interval [t− Δt, t]. In other words, k has been influenced by
j’s action in the past Δt days. With this procedure, for each meme
stock, we extract a dynamically evolving influence network A(t),
for which we can measure the Kreiss constant KðtÞ.

The evolution of the Kreiss constant, along with the trading
price, is shown in the top plot of Fig. 4 for the Blackberry stock
(see Supplementary Note 6 for similar plots for the other three
meme stocks). The two most prominent price peaks around

January 2021 and June 2021 coincide with the two largest peaks
of the Kreiss constant trajectory. This gives force to our
proposition that increased non-normality (quantified by large
values of the Kreiss constant) favors the occurrence of transient
super-exponential price behavior (bubbles) associated with the
transient growth of perturbations before their relaxation. In
other words, we interpret the presence of financial bubbles in
these meme stocks as reflecting at least partially the asymmetric
hierarchical structure of the reddit discussion forum that
induced a polarized bullish opinion among retail traders, which
then in-turn pushed the price up. And indeed, the mostly
mentioned words in Jan 2021 among the reddit submissions
and comments related to BlackBerry are rocket, bb, gme, shares,
and buy. In particular, among the 58,793 mentions of “rocket”
and 12,132 mentions of “buy” in 2021, 69% of “rocket” and 43%
of “buy” were in January. More generally, as is shown in
Supplementary Note 6, we do find a positive correlation
between the Kreiss constant and price bubbles across meme
stocks. This suggests that the non-normal structure of the
Reddit meme stock discussion forum is an important driver of
the observed price instabilities.

A strong asymmetric hierarchical structure of the reddit
discussion forum quantified by a large value of the Kreiss
constant provides a powerful catalysis for the emergence of
transient price bubbles. But in a world of mass communication
and a plurality of social media and information channels, not all
observed price perturbations can realistically be expected to be
attributed to the discussions on Reddit forums. As for general
dynamics with non-normal operators, not all perturbations go
through a non-monotonous transient amplification. The
realized trajectory of the transient very much depends on the
projection of the perturbations onto the pseudo-
eigenvectors22,24,66. Not all large Kreiss constant values should
thus lead to a bubble, as the market dynamics is more complex
and cannot just be reduced to one source of influence. The
mapping between large Kreiss constant and bubbles becomes
rigorous when considered in terms of ensembles of price
trajectories. To show this, and to isolate the effect of discussions
on Reddit, we insert the empirical Blackberry discussion forum
influence network A(t) as input to our ABM. We simulate the
resulting price time-series 100 times and keep track of
the average price as well as its average standard deviation (see
Supplementary Note 6 for details). In the bottom plot of Fig. 4,
one can observe indeed that price spikes coincide—in their
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Fig. 4 Evolution of real and simulated meme stock prices based on
discussions on Reddit forums forming non-normal networks of influence.
a Co-evolution of Reddit network Kreiss constant and Blackberry meme
stock price. b ABM price time-series resulting from the simulated
magnetization mt of noise traders, with distinct peak around the same time
as the real price trajectory. The bands around the thick lines represent
confidence intervals obtained across 100 simulations.
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ensemble average—with peaks of the Kreiss constant, support-
ing our hypothesis that the non-normality in the Reddit
discussion forum contributes to explain the observed price
bubbles. While meme stocks happen to be a prime example of
price dynamics that are driven by opinion leaders64, human
interactions in general and financial markets in particular are
known to be subject to non-normal interactions36,50,52. We thus
hypothesize that the mechanism described in this article is an
important contribution to the manifold observations of bubbles
in socioeconomic systems29,33,58.

Our simulations exemplify the possibility to diagnose regimes
of financial instabilities by measuring the evolution of the Kreiss
constant of the underlying network of social interactions between
traders. Periods in which the Kreiss constant is large should be
interpreted as prone to bubble regimes and large price volatility.
The mapping of the detection of (financial) instabilities to the
measurement of the Kreiss constant improved conceptually and
operationally on the previous approaches attempting to anticipate
critical phase transitions13,55,67–69, which do not incorporate the
ubiquitous non-normality of complex system dynamics.

Conclusions
In most of the literature, financial and socioeconomic bubbles
have been thought of as being associated with special regimes
where self-reinforcing interactions strengthen transiently towards
a critical point and lead to some form of collective exuberance.
This has been formalized by models in physics, ecology and
mathematics assuming the presence of an underlying phase
transition, criticality, bifurcation or catastrophe. The focus put
mainly on critical points is particularly surprising insofar as the
existence of non-critical transients via non-normal dynamics has
been well-established in other fields of science such as in
hydrodynamic turbulence.

Here, we have demonstrated, via agent-based model simula-
tions and empirically, that such transient phases of exuberance
are also generic in real social systems ubiquitously characterized
by non-normal properties of asymmetric hierarchical interactions
and Ising-like imitative interactions. Our key insight is that we
find seemingly critical behavior in the sub-critical regime as a
result of transient collective behavior. This is reminiscent of the
behavior that would result in the agent-based model from the
Ising-like interactions between noise traders being at or close to
criticality in a normal network. In such normal networks of
interacting noise traders, if the Ising-like component is not
crossing criticality, one does not observe bubbles. It is the non-
monotonic burst response to perturbation in the sub-critical
regime of the non-normal network of interactive noise traders
that creates transient bubbles.

An important corollary is that financial bubbles should be
expected as intrinsic, rather than abnormalities appearing in very
special conditions. This may explain their ubiquity in financial
markets, from past centuries to the present. Our results have been
derived based on first-order principles that are not specific to our
implementation but instead rely on the fact that, on short time-
scales, opinion-leaders can significantly lead opinions astray from
rational ones. With these general assumptions and the broad
applicability of models involving hierarchical and stochastic
imitative interactions, our framework is expected to explain
ubiquitous crowd-forming patterns and collective structures in
general hierarchical social networks.

Methods
Dynamics of noise traders. In any ABM of financial markets, it is
crucial to have at least two classes of traders. When market
participants become too homogeneous, liquidity rarifies and no

trades occur. We initiate the model with equal weight between the
fundamentalists and the noise traders, where their weights is
determined by their financial capital. As their wealth evolves with
time, the relative importance of each group varies with time. The
specific description of the investment strategy of fundamentalists
is found in the Supplementary Note 1 and refs. 25,26.

We label the set of N noise traders (or nodes in the network)
from 1,…,N. We denote the state of each node i= 1,…,N as
si= ± 1. The transition probability π that trader i flips its state sit
at time t depends on the opinion of its in-neighbors, according to

πðsitþ1 ¼ �sitÞ ¼
p±

2
1� κ

1

kini
sit ∑

j
aijs

j
t

 !
ð4Þ

where p± controls the average holding time (net of social
influence) of each asset and the social coupling strength κ
determines the noise traders’ susceptibility to social imitation.
Here, A= {aij}, where aij= 1 if there exists a directed edge
(influence) from node j to node i, and aij= 0 otherwise. The in-
degree of node i is the number of directed edges pointing to node
i, which is given by kini ¼ ∑N

j¼1 aij. In the Ising model, if node i
switches its state from time step t to time step t+ 1, i.e.,
sitþ1 ¼ �sit , the change of the value of node i’s state is �2sit . Given
the probability of node i to switch its state according to (4), the
average rate of change of the spin starting in the state sit is given
by Δsit ¼ �2 sit π. We introduce the N-dimensional state column
vector s!ðtÞ ¼ ðs1t ; s2t ; ¼ ; sNt Þ. Together with (4), the average rate
of state transition can then be written as 4 s!ðtÞ ¼ s!ðt þ 1Þ �
s!ðtÞ ¼ p± ðκΛA� IÞ s!ðtÞ where Λ is an N ×N diagonal matrix
with 1=kini on the i-th diagonal entry and I is the identity matrix.
Introducing the matrix

M � p± ðκΛA� IÞ; ð5Þ
recovers the simple dynamical equation (1).

A primer on non-normality. Following a classic textbook22, we
briefly summarize the basic theory behind non-normal matrices
(see Supplementary Note 2 for details).

Let M be an (N ×N)-matrix. The set of all eigenvalues of M is
called the spectrum σ(M). A matrix is called normal if
MTM=MMT, and the spectral theorem asserts that each normal
M has a set of n pairwise orthonormal eigenvectors of M. By
contrast, if M is non-normal, MTM ≠MMT, there exist some
eigenvectors which are non-orthogonal to each other. Since
symmetric matrices are always normal, it is a necessary, but not a
sufficient condition that matrix (5) contains directed interactions
to be considered non-normal.

If λ is an eigenvalue of M, the resolvent matrix M− λI is not
invertible since there exists an eigenvector v! with
ðM� λIÞ v!¼ 0. An alternative definition of the spectrum σ(M)
is thus the set of points λ 2 C where the resolvent matrix does not
exit. But the question “Does (M−λI)−1 exist?” is binary and may
change from “yes” to “no” by just a tiny ϵ-perturbation of λ. In the
presence of noise, a better question to ask is whether ∣∣(M−λI)−1∣∣
is large with respect to some matrix norm �j jj j. This leads to the
definition of the ϵ-pseudospectrum, defined as the set of points
where ∣∣(M−λI)−1∣∣ is large (larger then ϵ−1), or formally,
σϵðMÞ � λ 2 C : ðM� λIÞ�1

�� ���� ��>ϵ�1
� �

:The ϵ-pseudospectrum
is the open subset of the complex plane bounded by the ϵ−1

level-curve of the norm of the resolvent. Intuitively, one can then
assume that the ϵ-pseudospectrum is closely confined around the
eigenvalues of M. For normal matrices, this assumption is correct.
However, for non-normal matrices it is not, and ∣∣(M−λI)−1∣∣may
be large even when λ is far away from the spectrum (Fig. 1a, b).
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Consider the proportional growth equation d s!=dt ¼ M s!
with explicit solution s!ðtÞ ¼ etM s!ð0Þ. It is well-known that the
asymptotic behavior for t→∞ is governed by the largest real-part
of all eigenvalues of M. For the short-term behavior, t↓0, it can be
shown that d

dt etM
�� ���� ��

t¼0
¼ ωðMÞ � sup σð12 ðMþMT ÞÞ where

ω(M) is called the numerical abscissa of M (Fig. 1(c)). Our main
interest are, however, intermediate values of t. To describe such
transient behavior, one has to consider the ϵ-spectral abscissa of a
matrix M defined by αϵðMÞ ¼ sup ReðσϵðMÞÞ; i.e., the supremum
of the real part of the ϵ-pseudo-spectrum. An important special
case is the spectral abscissa α(M)≡ αϵ=0(M), defined as the largest
real-part of all eigenvalues of M.

We now consider the case where α(M) < 0, i.e., where the long-
term behavior is asymptotically stable (Fig. 1c), but αϵ(M) > 0 for
some ϵ > 0. In that case, the pseudospectra of M protrude
significantly into the right-half plane of C, such that the real-
parts of the pseudo-spectrum remain positive (Fig. 1e). For any
such non-normal matrix M, the Kreiss constant

KðMÞ � sup
ϵ>0

αϵðMÞ
ϵ

ð6Þ

is well-defined, and it can be shown that, for intermediate times
(Fig. 1c), there is transient growth according to (3).

In contrast to the “single-shot” dynamics in which the system
relaxes back to the stable state after a short-lived shock, our
model (1) is stochastic such that the trajectory may get perturbed
before it can equilibrate. It has been shown that, in such
stochastic models, non-normality will increase the variance of the
fluctuations, producing amplifications beyond what is expected
from its normal counterpart24,41,42,70.

Finally, we note that an alternative measure to characterize an
operator’s degree of non-normality is Henrici’s departure from
normality

dFðAÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aj jj j2F � ∑

λ2σðAÞ
λj j2

r �
Aj jj j2F : ð7Þ

Henrici’s index is based on the observation that the Frobenius
norm of a normal matrix is given by
Aj jj j2F ¼ trðATAÞ ¼ ∑λ2σðAÞjλj2. It attains its minimum at zero

once the matrix is normal and increases the more the matrix
deviates from normality.

As we show in the Supplementary Note 4—at least within the
realms of our application—the relationship between K and dF is
strictly monotonous. Therefore all of our results presented below
are also valid when expressed in terms of dF(M).

Parametrization of non-normal matrices. The non-normal
network with a total of N nodes is initialized with N0 top
nodes. Each newly added node receives m in-edges, i.e., channels
of communication through which it can be influenced. The
source of each such edge is selected with probability proportional
to the existing nodes’ out-degree. Once the m source nodes of an
added node are determined, each of the m newly formed directed
edges may be reciprocated with some probability ρ. Based on
empirical evidence from Reddit, we assume further that this
probability ρ is modulated by the hierarchical level ℓ of each node,
ρ= ρ(ℓ). We thus model the rate of reciprocity as a sigmoid-
function

ρð‘Þ ¼ θ

1þ e�að‘ðjÞ�bÞ �
θ

1þ e�að1�bÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
�γ

ð8Þ

where θ now serves as an upper asymptotic bound. In the
remainder of this article, we fix θ= 0.2110, a= 2.552 and

b= 3.668 as determined empirically on meme-stock reddit data
(Fig. 2d). The offset γ ≈ 0.0002 has been added so that nodes in
the highest level of the hierarchy, ℓ= 1, are never reciprocated,
ρ(ℓ= 1)= 0 ∀ θ. This offset is merely for convenience, so that we
can keep the number of top nodes (“opinion leaders”) fixed. For
large values of ℓ, we converge to the constant rate of reciprocity
θ− γ ≈ θ as in ref. 48. Parameter θ now has the interpretation of
the asymptotic level of reciprocity at high levels ℓ. A value of
θ= 1 implies that most, albeit not all edges are reciprocated.
Details are found in Supplementary Note 3.

Our algorithm to generate non-normal adjacency matrix A has
six parameters: N,N0,m, θ, a and b. The price dynamics from (1)
is not directly governed by A, but rather by the related matrix M.
The two parameters κ and p± allow us to control the
characteristics of M for given A. In the remainder of this article,
we fix p±= 0.05 and we tune κ. We refer to the Supplementary
Note 4 for a detailed list of parameters, including parameters for
the fundamental agents and macro-economic quantities. These
parameters serve to fix the overall price scale, but do not
qualitatively affect our results. This leaves us with a three-
parameter model, N0, θ and κ. Importantly for what follows, the
Kreiss constant K is strictly decreasing in θ and increasing in κ,
irrespective of N0, as long as N0≪N. Throughout this article, we
constrain the parameter such that α0(M) < 0, i.e., the asymptotic
system dynamics is stable.

Data availability
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