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High-dimensional time-frequency entanglement in
a singly-filtered biphoton frequency comb
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Matthew D. Shaw2, Boris Korzh 2, Andrei Faraon 5, Franco N. C. Wong6, Jeffrey H. Shapiro 6 &

Chee Wei Wong 1✉

High-dimensional quantum entanglement is a cornerstone for advanced technology enabling

large-scale noise-tolerant quantum systems, fault-tolerant quantum computing, and dis-

tributed quantum networks. The recently developed biphoton frequency comb (BFC) pro-

vides a powerful platform for high-dimensional quantum information processing in its

spectral and temporal quantum modes. Here we propose and generate a singly-filtered high-

dimensional BFC via spontaneous parametric down-conversion by spectrally shaping only the

signal photons with a Fabry-Pérot cavity. High-dimensional energy-time entanglement is

verified through Franson-interference recurrences and temporal correlation with low-jitter

detectors. Frequency- and temporal- entanglement of our singly-filtered BFC is then quan-

tified by Schmidt mode decomposition. Subsequently, we distribute the high-dimensional

singly-filtered BFC state over a 10 km fiber link with a post-distribution time-bin dimension

lower bounded to be at least 168. Our demonstrations of high-dimensional entanglement and

entanglement distribution show the singly-filtered quantum frequency comb’s capability for

high-efficiency quantum information processing and high-capacity quantum networks.
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Quantum entanglement, referred to as “spooky action at a
distance”1, has enabled tremendous advances in both
fundamental science and engineering technologies2,3. As

a technological resource, quantum entanglement has revolutio-
nized communications4,5, computation6,7, metrology8, and
sensing9. High-dimensional entanglement10, owing to its higher
information capacity and resilience to noise, has been proposed
for noise-resilient large-alphabet quantum key distribution11–16

and universal photonic quantum computation17–20. High-
dimensional quantum states of entangled photons have already
been demonstrated in a variety of degrees-of-freedom, such as
spatial modes21, orbital angular momentum22, optical
frequency23, and time bins24. Recently demonstrated BFCs25–31,
which can carry information in their spectro-temporal quantum
modes, are ideal candidates for high-dimensional quantum sys-
tems. Such BFCs can be produced by spontaneous parametric
down-conversion (SPDC) with post-generation filtering25,28,29,31,
optical parametric oscillation (OPOs) operating far below
threshold32,33, or spontaneous four-wave mixing in integrated
microring resonators23,26,34. The first approach is realized by
sending SPDC-generated biphotons through a cavity, while the
second relies on cavity-enhanced SPDC, in which the biphoton
generation is both enhanced and spectrally confined by the cavity
modes. The third approach utilizes third-order nonlinearity to
generate photon entanglement over a broad range of frequency
modes in a chip-scalable platform. These BFCs approaches are
usually doubly resonant, viz., the signal and idler’s spectra are
simultaneously tightly confined to the cavity modes. On the other
hand, the singly-resonant BFC has been studied, theoretically, for
a sub-threshold OPO in which only the signal photons are
resonated by the OPO cavity35. Owing to the entanglement
between signal and idler photons from biphoton generation
process, the idler photons will then exhibit the comb-like spec-
trum corresponding to the OPO cavity’s internal mode
structure36. Recently, such a singly-resonant BFC has been
demonstrated to generate frequency-multiplexed photon pairs
over 1,000 frequency modes37, and also highly multi-mode
polarization-entangled photon pairs by means of a Sagnac
interferometer38. However, a typical OPO configuration employs
a cavity that is a few cm long, to accommodate the nonlinear
crystal used for SPDC. Hence its BFC’s free spectral range (FSR)
is limited to a few GHz. That bandwidth is not compatible with
off-the-shelf dense wavelength-division multiplexer/demulti-
plexer devices, whose channel bandwidths are 50 or 100 GHz.
Although the singly-resonant BFC offers a promising platform for
quantum information processing, its high-dimensional time-fre-
quency entanglement has not been carefully investigated. More-
over, distributing its high-dimensional entanglement23,39,40,
which is a critical precursor to its enabling large-scale high-
dimensional quantum communication and distributed networks,
remains a challenge. Indeed, high-dimensional time-frequency
entanglement distribution has yet to be demonstrated for the
singly-resonant BFC.

Here we propose a flexible approach to generate a singly-
filtered BFC state with the same temporal and spectral properties
as the OPO-based singly-resonant BFC by spectrally shaping only
the signal photon of the SPDC-generated pair with a Fabry-Pérot
cavity. We observe that this singly-filtered BFC exhibits the same
temporal correlation as the singly-resonant BFC35,37,38. More-
over, high-dimensional energy-time entanglement of such singly-
filtered BFC is verified via Franson-interference recurrences over
16 times-bins. Specially, we verify the spectral phase coherence by
resolving the periodic oscillations in the cross-correlation with
single-sided decay using state-of-the-art low timing jitter super-
conducting nanowire single-photon detectors (SNSPDs), sup-
porting the high-dimensional entanglement of our BFC state. The

joint spectral intensity of the singly-filtered BFC is measured and
analyzed through Schmidt mode decomposition with 4.17
Schmidt number over 5 frequency bins. Recurrences of the
Franson-interference further enable the mapping of the BFC’s
time-binned joint temporal intensity, shown to have a Schmidt
number of 13.11 over 16 time bins, concurring with our high-
dimensional time-bin entangled state. Furthermore, entanglement
distribution of the singly-filtered BFC’s high-dimensional state is
demonstrated over a 10 km optical fiber link in an asymmetric
configuration. The post-distribution BFC state’s high-
dimensional time-frequency entanglement is examined via non-
local interferometry, with up to 98.81 ± 0.61% visibility achieved
recurrently over 16 time-bins and with an averaged 96.70 ± 1.93%
visibility across 5 frequency-bin pairs. We also estimate the
Schmidt number to be 12.99 from the distributed non-local
quantum interference revivals, which lower bounds the time-
binned Hilbert-space dimensionality to be at least 168. Further-
more, we demonstrate proof-of-principle high-dimensional
quantum key distribution with our singly-filtered BFC, exploit-
ing the lower filtering loss of the singly-filtered configuration.
This first high-dimensional time-frequency entanglement dis-
tribution paves the pathway in constructing practical long-
distance quantum networks.

Results
Generation and spectro-temporal characterization of a singly-
filtered BFC. Figure 1a illustrates the experimental setup to
generate and characterize the singly-filtered BFC. The entangled
photon pairs are generated by a 16-mm long type-II periodically-
poled KTiOPO4 (ppKTP) waveguide (AdvR Inc.) that was inte-
grated in a fiber package for high fluence and efficiency25,28. A
658 nm Fabry-Pérot laser diode, stabilized by self-injection
locking through double-pass first-order diffraction feedback
using an external grating, is used to pump the ppKTP waveguide.
The generated biphotons are orthogonally polarized and fre-
quency degenerate at 1316 nm with ≈ 245 GHz full-width half-
maximum (FWHM) bandwidth. The residual pump photons are
removed by a long-pass filter (LPF). A 1.3 nm bandpass filter
(BPF), i.e., 225 GHz FWHM bandwidth, is used to further clean
the biphoton spectrum. Then the signal and idler photons are
separated efficiently by a polarizing beam splitter (PBS) due to the
type-II phase matching. The singly-filtered BFC is generated by
passing only the signal photons through a fiber Fabry-Pérot cavity
(FFPC) (Luna Inc.). The idler photons, although not confined in a
cavity, still exhibit a comb-like spectrum when heralded by
signal-photon detections, due to frequency entanglement35. The
FFPC, which has a 45.32 GHz FSR and 1.56 GHz FWHM band-
width, is stabilized with a high-performance temperature con-
troller. We note that if the FFPC is used in a doubly-filtered
configuration – when both the signal and idler photons are fil-
tered – the FFPC’s polarization birefringence would result in
different post-filtering spectra for the signal and idler photons.
However, in the present singly-filtered configuration, only the
signal photons pass through the FFPC and we further solve the
requirement for polarization birefringence elimination.

We first characterize the temporal signature of the singly-
filtered BFC. Our singly-filtered configuration generates the
(unnormalized) BFC state whose frequency-domain representa-
tion can be usefully approximated as:

jψi ¼ ∑
N

m¼�N

Z
dΩf ðΩ�mΔΩÞsincðAΩÞâyH

ωp

2
þΩ

� �
âyV

ωp

2
�Ω

� �
j0i ;

ð1Þ

see Supplementary Note 1 for the exact result. Here: âyH and âyV
are the creation operators for horizontally (signal) and vertically
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(idler) polarized photons; ωp is the pump frequency; the sinc
function is the SPDC’s phase-matching function with
A ¼ 1:39=πBPM for BPM= 245 GHz being the FWHM phase-
matching bandwidth; ΔΩ is the FFPC’s FSR in rad s−1; Ω is the
detuning of the SPDC biphotons from their center frequency;
2N+ 1= 5 is the number of the cavity lines passed by the
bandwidth-limiting filter; and f ðΩ�mΔΩÞ is the spectral
amplitude of the FFPC’s mth cavity resonance, with f Ωð Þ ¼
1= Δωþ iΩ½ �; i.e., a Lorentzian transmission whose FWHM

linewidth is 2Δω. The temporal representation of the singly-
filtered BFC that is the dual of Eq. (1) is then (see Supplementary
Note 1 for the exact result):

jψi ¼
Z
0

1
dτ expð�ΔωτÞ ∑

N

m¼�N
sinc AmΔΩð Þ cosðmΔΩτÞâyHðt þ τÞâyV ðtÞj0i

ð2Þ
where we have used ΔΩ=2π � BPM: The state’s temporal
behavior then has recurrences with repetition period
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Fig. 1 Generation and spectro-temporal characterization of singly-filtered biphoton frequency combs. a Experimental schematic for generation and
characterization of a singly-filtered BFC. ppKTP: periodically-poled KTiOPO4 waveguide; PBS polarizing beam splitter, FFPC fiber Fabry–Pérot cavity, SPD
superconducting nanowire single-photon detector. b Experimental (black dots) and theoretical (red solid line and black shade) temporal second-order
cross-correlation function between signal and idler photons. Based on the 1.56 GHz cavity bandwidth and 45.32 GHz free spectral range (FSR) of our FFPC,
we theoretically fit our experimental results with different effective detector timing jitters. The periodic temporal oscillations of cross-correlation function
for the 45.32 GHz cavity’s singly-filtered BFC can be resolved when the effective timing jitter is set equal to or less than the cavity’s round-trip time
(detailed calculations are in Supplementary Note 1). c Measured frequency-correlation matrix of our 45.32 GHz singly-filtered BFC within the 245 GHz
SPDC bandwidth. The joint spectral intensity (JSI) is measured by using a pair of tunable bandpass filters with 300 pm bandwidths to select frequency bins
for the signal and idler photons. Only the diagonal elements of the frequency-correlation matrix show high coincidence counts, revealing the frequency-bin
entanglement. d Measured heralded single-photon second-order auto-correlation function g(2)(0) versus the pump power for each frequency-bin pair
(different colors represent corresponding frequency-bin pair in the JSI measurements). The minimum heralded g(2)(0)≈ 0.035 is measured for S0&I0 pair
(green star) at 1.3 mW pump power with a heralding rate of 16 coincidences/s. All measured heralded g(2) (0)’s are below the classical threshold, verifying
the high purity of the frequency-binned single photon states from our singly-filtered BFC.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01370-2 ARTICLE

COMMUNICATIONS PHYSICS |           (2023) 6:278 | https://doi.org/10.1038/s42005-023-01370-2 | www.nature.com/commsphys 3

www.nature.com/commsphys
www.nature.com/commsphys


ΔT ¼ 2π=ΔΩ ≈ 22.1 ps, i.e., the cavity’s round-trip time. We note
that for the doubly-filtered BFC, the integral in Eq. (2) spans from
negative to positive, which results in the symmetric temporal
behaviors25,28.

Figure 1b shows the normalized second-order cross-correlation
function as a function of relative delay between signal and idler
photons (defined as τ ¼ tidler � tsignal), measured with super-
conducting nanowire single-photon detectors (SNSPDs, ≈ 80%
detection efficiency, PhotonSpot Inc.). A single-sided exponential
decay of the cross-correlation function is the temporal signature
of a singly-resonant BFC35–37. The measured second-order cross-
correlation function matches well with our theoretical calcula-
tions assuming the detectors’ combined root-mean-square timing
jitter is tj= 3.4ΔT= 74 ps (see Supplementary Note 1 for details).
Here the temporal oscillation signature of the cross-correlation
function is not fully resolved because the timing jitter is more
than 3 times the repetition time period. Low time-jitter SNSPDs
have been recently demonstrated, which enable better temporal
resolution41. Figure 1b shows that with tj= 0.35ΔT= 7.8 ps the
temporal oscillation profile of the 45.32 GHz singly-filtered BFC
can be observed; with tj ¼ 0:0354T ¼ 0:78 ps, that signature is
fully resolved, showing an oscillation period of 22.1 ps (see
Supplementary Note 1 for details).

Next we characterize the frequency correlation of our
45.32 GHz singly-filtered BFC through joint spectral intensity
(JSI) measurements. We use a 2 mW pump for SPDC generation
to minimize multiphoton emission and reduce cross-talk between
frequency bins. The JSI of our singly-filtered BFC is measured
using a pair of tunable BPFs for signal and idler photons
respectively. The BPFs have 300 pm bandwidth, which are able to
select only one frequency bin of our BFC. Signal-idler coincidence
counts are recorded while the tunable BPFs are set to different
combinations of the signal-idler frequency-bin pairs. Within the
245 GHz SPDC bandwidth, 5 frequency bins can be examined for
the signal and idler of our 45.32 GHz singly-filtered BFC. We
sweep the BPFs from −2 to +2 frequency bins, with the 0th
frequency bin indicating the SPDC’s center frequency, i.e., half
the pump frequency. High values of photon coincidences are
measured only for symmetric frequency-bin pairs, shown as the
diagonal elements of the frequency correlation matrix in Fig. 1c.
This behavior reveals the frequency correlation of the singly-
filtered BFC, and is a characteristic of frequency-bin entangle-
ment. We note that the coincidence counts fall off at frequency
bin pairs away from the central bin, which results from the sinc-
squared spectra of the SPDC biphotons prior to signal filtering.

For each symmetric frequency-bin pair, we then measure the
signal-heralded second-order auto-correlation g(2)(0) of the idler
photons. The measurement is performed using a Hanbury-Brown
and Twiss (HBT) interferometer in which the idler light from the
singly-filtered BFC is divided into two paths by a 50:50 beam
splitter for auto-correlation measurement heralded by signal-
photon detections. A pair of tunable BPFs (300 pm bandwidth) is
placed before the HBT interferometer to select different frequency
bins. The second-order auto-correlation g(2)(0) is measured by
recording the three-fold coincidence counts between the HBT
interferometer’s output ports and the signal photons within a 2 ns
duration coincidence window. Detecting a signal photon heralds
the appearance of the idler photon, which exhibits non-classical
anti-bunching behavior. Figure 1d shows the signal-heralded g(2)

(0) versus pump power for five symmetric frequency-bin pairs.
The pump power is set to 1.3 mW, 1.8 mW, and 2.4 mW
respectively. At low pump power, the heralded g(2)(0) values for
all five frequency-bin pairs are below 0.1, showing high single-
photon purity of the frequency-filtered states from our singly-
filtered BFC. We observe that the heralded g(2)(0) is proportional

to the pump power, due to the Poisson statistics of the SPDC
emission. With increased pump power, we note that the heralded
g(2)(0) for each frequency-bin pair increases because of multi-pair
emissions. At higher pump power, the heralded g(2)(0) for S0&I0
(S0 and I0 denote the central frequency bin for signal and idler
photons, respectively) frequency-bin pair is still below 0.1. The
heralded g(2)(0) values for S+2& I-2 and S-2&I+2 increase faster
than is the case for S+1&I-1 and S-1&I+1 when the pump power is
increased. This may be due to the coincidence counts’ fall off in
Fig. 1c, which implies that the frequency bin pairs away from the
degeneracy will have worse signal-to-noise-ratio with increasing
noise photons introduced by the stronger pump. In addition, we
measured the heralded g(2)(0) for the singly- filtered BFC state
without selection of a frequency-bin pair by using only a
broadband BPF (225 GHz bandwidth) to clean up the biphoton
spectrum (detailed in Supplementary Note 2). A signal-heralded
g(2)(0) ≈ 0.154 is measured for our singly-filtered BFC with
0.2 mW pump power. We also obtain a g(2)(0) ≈ 0.130 with
0.6 mW pump power by sending the signal photons to the HBT
interferometer while all the idler photons are sent to an SNSPD
whose detections provided heralding for the three-fold coin-
cidence measurement. Both heralded g(2)(0) values are well below
the classical threshold, demonstrating a high-purity heralded
single-photon state preparation from our singly-filtered BFC.

High-dimensional energy-time entanglement witnessed via
intrinsic temporal oscillations and Franson-interference
recurrences. We verify the coherence of our high-dimensional
singly-filtered BFC states via temporal second-order cross-cor-
relation. We extract the two-photon time-correlation from joint
temporal intensity (JTI), namely, the temporal cross-correlation
measurements. In order to resolve the temporal correlation of our
singly-filtered BFC, the effective timing jitter should be equal to
or less than the cavity round-trip time. We employ two state-of-
the-art impedance-matched differential SNSPDs with low timing
jitter42 while preserving a moderate detection efficiency, in
combination with a multi-channel low-jitter time tagger (Swabian
Tagger X) to perform the cross-correlation measurements
between the signal and idler photons. First, we characterize the
combined system timing jitter of the two differential SNSPDs
using our SPDC photon source – the jitter adds in quadrature –
and obtain a full-width at half maximum of ≈ 21.6 ps from the
cross-correlation function (see Supplementary Note 5), which is
comparable to our 45.32 GHz cavity round-trip time. This allows
us to measure the temporal correlation oscillations of our singly-
filtered BFC and observe distinct correlation peaks, as shown in
the datapoints of Fig. 2a. This periodic oscillation arises from the
coherent interference of biphotons’ different frequency modes,
with a temporal spacing of 22.0 ps (corresponds to 45.45 GHz
FSR), matching well with the cavity round-trip time of 22.1 ps.
Figure 2b shows another cross-correlation measurement with a
15.15 GHz cavity. The temporal spacing in the correlation peaks
is 66.8 ps, implying a 14.97 GHz cavity FSR and matching our
selected cavity. Supported by our exact theory on the temporal
oscillations (Supplementary Note 1) with the phase-sensitive
cross-spectrum of the post-filtered baseband field operator in the
presence of detector jitter [vis-à-vis Supplementary Eqs. (2) and
(4)], the measured intrinsic temporal oscillations demonstrate
that our singly-filtered BFC is coherently generated with a flat
spectral phase38,43.

We next characterize the high-dimensional energy-time
entanglement of a singly-filtered BFC by means of its Franson-
interference recurrences. We use a 1.3 nm bandwidth BPF to
clean the SPDC spectrum before separating the signal and idler
photons with a PBS. The signal photons are passed through a
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Fig. 2 Temporal cross-correlations and non-local Franson examinations of high-dimensional energy-time entanglement of the singly-filtered BFCs.
aMeasured temporal second-order cross-correlation function between signal and idler photons and theoretical fitting with≈ 21.6 ps combined timing jitter
of the two differential SNSPDs – the timing jitter adds in quadrature. Temporal oscillation is resolved with a temporal period of 22.0 ps, which implies a
cavity FSR of 45.45 GHz, matching well with our 45.32 GHz cavity. Inset: zoom in of the temporal second-order cross-correlation function with temporal
spacing denoted by dashed lines. b Measured second-order cross-correlation function with a 15.15 GHz cavity and theoretical fitting with≈ 21.6 ps
combined timing jitter of the two differential SNSPDs. The temporal spacing of the correlation peaks is fitted to be 66.8 ps, which corresponds to a cavity
FSR of 14.97 GHz. c Measured Franson-interference recurrences within the 360 ps traveling range of arm 1’s delay line. The interference fringes are
obtained from 0 (0th time-bin) to 15 (15th time-bin) round-trip times of the 45.32 GHz FFPC, with the measured period of the interference recurrences
found to be 22.1 ps. The fringe visibilities with (without) accidental coincidence counts subtracted from 0th to 15th time-bin are: 99.46 (72.34) ± 1.09%,
90.17 (64.13) ± 1.22%, 81.03 (51.05) ± 0.71%, 72.82 (47.06) ± 1.08%, 65.60 (43.23) ± 1.29%, 59.57 (40.37) ± 1.14%, 54.03 (38.02) ± 1.29%, 48.68
(34.39) ± 0.91%, 43.54 (30.22) ± 0.97%, 38.79 (27.08) ± 1.03%, 33.71 (25.44) ± 1.17%, 31.47 (24.41) ± 1.05%, 29.12 (19.79) ± 1.04%, 25.93
(18.82) ± 1.33%, 23.79 (16.85) ± 0.81%, and 20.58 (15.07) ± 0.76%. The coincidence window for all the measurements is 2 ns. Error bars measured for
each data point arise from Poisson statistics, experimental drift and measurement noise. d Theoretical fringe envelope of Franson interference for the
45.32 GHz high-dimensional singly-filtered BFC, with superimposed experimental visibility results (red stars) (detailed theory is presented in
Supplementary Note 3). e Witnessed visibility (black dots) of high-dimensional Franson interference fringes and Schmidt eigenvalues (green bars) as a
function of relative delay between arm 1 and arm 2. The theoretical visibilities, in percent, for the nth time-bin are 100, 90.44, 81.48, 73.57, 66.44, 59.93,
54.20, 48.93, 44.18, 39.87, 35.99, 32.49, 29.32, 26.47, 23.88, and 21.57, respectively, where the exact theory from Supplementary Note 3 has been
employed. The Franson visibility decreases due to the FFPC’s finite linewidth, as captured by our theory. The Schmidt eigenvalues are extracted from
Franson-interference recurrences for 16 time bins, resulting in a Schmidt number lower bound of 13.11.
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45.32 GHz FFPC to generate our singly-filtered BFC. The signal
and idler photons are sent to a fiber-based Franson interferometer
(detailed in Methods) comprised of two unbalanced Michelson
interferometers, as shown in Fig. 1a, that are temperature-
controlled by Peltier modules and enclosed in a multilayered
thermally-insulated housing with active temperature stabilization
for long-term phase stability. The tunable delay line in arm 1
selects the different time-bins, while the thermal heater in arm 2
fine-tunes the relative phase delay between two arms to obtain the
interference fringes. The coincidence counts are recorded in a
2 ns duration time window with accidental coincidences sub-
tracted. Figure 2c shows the first observed Franson-interference
recurrences from a singly-filtered BFC. Counterintuitively, with
its cross-correlation function being single-sided, the Franson-
interference recurrences still span both positive and negative
relative delays. This originates from the overlap integral between
the singly-filtered BFC’s phase-sensitive cross-correlation and the
its delay-shifted counterpart (detailed in Supplementary Note 3).
These recurrences are only observed at periodically recurring time
bins, whereas no interference is observed between time bins. The
measured period of the interference recurrences is 22.1 ps, which
corresponds exactly to the round-trip time of the 45.32 GHz
cavity (ΔT ¼ 2π=ΔΩ). The Franson interference fringes are
measured by selecting the relative (arm 1 minus arm 2) delay
between the signal and idler from 0 (0th time-bin) to 15 (15th
time-bin) cavity round-trip times, limited by the 360 ps tuning
range of the delay line in arm 1. We obtain a high Franson
interference visibility of 99.46% at the 0th time-bin, which is
sufficiently high to violate the Clauser-Horne-Shimony-Holt Bell
inequality44. We note that, due to the limitation of our Franson
interferometer, we can only measure interferences between the
time-bin modes at near-zero delay in arm 2 and positive delay in
arm 1, and the temporal correlation oscillation supports the
coherence of the high-dimensional time-bin entanglement. With
a larger path difference in the Franson interferometer in the
future, we could access more time bins and potentially evaluate
the off-diagonal elements of the density matrix directly with
Franson interferences.

The Franson interference visibilities decrease as the relative
delay increases, i.e., at higher order time-bins. This can be
explained by the theoretical model detailed in Supplementary
Note 3, which results from the SPDC’s sinc-function phase
matching and the FFPC’s (approximately) Lorentzian lineshape.
The measured Franson-interference recurrences agree well with
our theoretical prediction, as shown in Fig. 2d. We note that,
unlike the symmetric Franson interference fringe envelope for the
doubly-filtered BFC25,28, our model for the singly-filtered BFC
exhibits asymmetric behavior. The Franson visibilities at positive
time-bins decrease faster than those at negative time-bins,
originating from the asymmetric temporal profile of the cross-
correlation function. Only the signal photon is resonant with
the cavity while the idler photon does not experience the cavity
mode (i.e. singly-filtered). Thus the signal photon can only exit
the FFPC after (n+ 1/2) round trips, where n is a non-negative
integer. Therefore, despite being created in time coincidence with
its idler companion, the signal photon arrives after an additional
time delay with respect to the idler photon, leading to the cross-
correlation asymmetry. The measured Franson visibilities are in
good agreement with our theoretical calculation, as shown in
Fig. 2e. We compare the Franson visibility fitting of our singly-
filtered BFC with that for doubly-filtered BFC in Supplementary
Note 3, and observe faster decay for the singly-filtered case. For
doubly-filtered BFC, whose signal and idler photons are both
filtered by the FFPC, its frequency-domain biphoton wave
function decays faster than the singly-filtered BFC; while for
the singly-filtered case, only the signal photons are filtered, which

consequently, by Fourier duality, results in a faster decay of its
time-domain biphoton wave functions than the doubly-
filtered case.

Based on the measured Franson-interference recurrences, we
quantify the time-bin entanglement of our singly resonant BFC
through Schmidt mode decomposition (detailed in Methods). We
extracted the Schmidt eigenvalues for each time-bin by a
parametric fitting of the experimental data as shown in Fig. 2e.
By summing up the eigenvalues from each time bin, a Schmidt-
number lower bound of 13.11 was obtained (see Supplementary
Note 4 for details). Compared to the doubly-filtered case with a
reported time-bin Schmidt number of 18.3028, the Schmidt
number for time-binned singly-filtered BFC state is lower as a
result of its Franson-interference recurrences having faster
visibility decay.

Characterizing energy-time entanglement between frequency-
bin pairs via Franson interference. Here we characterize the
energy-time entanglement between different frequency-bin pairs
of the singly-filtered BFC. We use a pair of narrowband tunable
BPFs with 300 pm bandwidth to select signal and idler frequency
bins of our 45.32 GHz singly-filtered BFC. The filtered photons
are then sent to the two arms of the Franson interferometer, as
shown in Fig. 1a. We sweep the two tunable BPFs to select fre-
quency bins from −2 to 2 according to the previous JSI mea-
surement in Fig. 1c, collecting the Franson interference fringes by
fine tuning the relative delay between the two arms using the
thermal heater in arm 2. The tunable delay line in arm 1 is fixed
at the 0th time-bin delay to obtain optimum Franson inter-
ference, with the optimized constructive and destructive Franson
interference. Figure 3a shows the Franson interference between
symmetric frequency-bin pairs, which are the diagonal elements
of the frequency correlation matrix (Fig. 1c). A high Franson
interference visibility of 99.66 ± 1.67%, after subtracting acci-
dental coincidences, is observed for the central frequency-bin pair
S0&I0, a result that agrees well with our singly-filtered BFC being
a high-purity biphoton state based on its heralded g(2)(0) mea-
surement in Fig. 1d. We also obtain high interference visibilities
for other symmetric frequency-bin pairs, with an averaged
Franson visibility of 98.03 ± 1.10% for the 5 frequency-bin pairs.
We note that the visibility of the frequency-binned Franson
interference increases slightly compared to the temporal Franson-
interference recurrences because of the narrowband filtering of
the singly-filtered BFC.

In addition to the symmetric frequency-bin pairs, we measure
the Franson interference for the asymmetric frequency-bin pairs,
i.e., the off-diagonal elements of the JSI matrix. We map the
measured Franson interference visibilities for all frequency-bin
pairs within the SPDC bandwidth in Fig. 3b; see Supplementary
Note 6 for the interference patterns from which these visibilities
are obtained. We observe that only the diagonal elements in
Fig. 3b show high visibilities, which correspond to symmetric
frequency-bin pairs, while the off-diagonal elements, representing
asymmetric frequency-bin pairs, exhibit no significant inter-
ference. This behavior demonstrates that the energy-time
entanglement will only occur between correlated spectral modes,
which exhibit time-frequency correlations due to energy con-
servation from SPDC. Moreover, when we adjust the relative
delay away from the central time-bin by sweeping the tunable
delay line in Franson interferometer’s arm 1, there is no
interference recurrence in the other time bins. This absence of
interference occurs because the narrowband tunable BPFs strictly
limit the signal and idler photons to narrow single-peak
passbands. Thus, with no beating between multiple spectral
peaks, the signal and idler’s temporal cross-correlation has an
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exponential decay without oscillation37,38. Figure 3c’s inset is a
zoom-in of the central cross-correlation peak of the constructive
Franson interference. We observe a single-sided exponential time
decay of the cross-correlation function, akin to Fig. 1b, illustrating
the temporal signature of a singly-filtered BFC.

We note that JSI does not contain any phase information
required to prove high-dimensional frequency-bin
entanglement45. Under the assumption of near-pure-state SPDC
biphoton generation based on standard perturbation theory28, as
verified for pulse-pumped SPDC by Kuzucu et al.’s JSI/JTI
measurements46, the filtered SPDC source should emit nearly
nonseparable-state BFC biphotons. Indeed, our temporal cross-
correlation measurement resolves the temporal structure of the
high-dimensional BFC, providing JTI information that verifies a
phase-coherent BFC state generation43. Schmidt mode decom-
position based on the JSI measurements is then examined to
quantify the frequency-bin entanglement of our 45.32 GHz
singly-filtered BFC (detailed in Methods). By extracting the
Schmidt eigenvalues from the measured frequency correlation
matrix, we obtain the Schmidt number for the frequency-bin
entangled state of our singly-filtered BFC as shown in Fig. 3d.
This parameter describes the lowest number of Schmidt modes
in a bipartite system, and therefore gives a lower bound on its
effective dimensionality. We obtain the Schmidt number by
summing individual Schmidt eigenvalues for each frequency bin,

measured to be 4.17 for the five symmetric frequency-bin pairs
(detailed in Supplementary Note 4). Thus, we lower bound the
Hilbert-space dimensionality of our frequency-binned singly
resonant BFC state to be at least 16 (= 4.17 × 4.17). Higher
Schmidt number of a BFC has been demonstrated in integrated
platform, with a reported Schmidt number of 20 for frequency
modes47. The Schmidt number of our singly-filtered BFC can
also be increased by using a broader band SPDC source or cavity
with smaller FSR. Note that the diagonal elements of the
frequency correlation matrix exhibit a decreasing-envelope
behavior of our singly-filtered BFC, which leads to the imperfect
Schmidt number compared to the ideal case. This behavior can
be avoided by utilizing a biphoton source with a flat-top SPDC
spectrum and an FFPC with flat-top transmission. In that case,
the generated BFC will have equal amplitude for each frequency
bin, with resultant Schmidt eigenvalues for symmetric frequency-
bin pairs to be consequently equal. This arrangement would lead
to a maximum Schmidt number, equaling the number of
frequency modes of the frequency-entangled pure state48. The
Franson-interference visibilities for five symmetric frequency-bin
pairs are also plotted together with the Schmidt eigenvalues in
Fig. 3d. We note that the Franson interference visibilities change
in accordance with the eigenvalues at each frequency-bin pair,
which agrees well with the trend of the heralded g(2)(0) for each
frequency-bin pair.
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Fig. 3 Frequency-binned energy-time entanglement verification via Franson interference. a The measured Franson interference fringes, after accidentals
were subtracted, for symmetric frequency-bin pairs. All the fringes were obtained at zero relative delay between arm 1 and arm 2 for optimum Franson
interference. Maximum frequency-binned Franson interference is observed for S0&I0 pair with visibility up to 99.66 ± 1.67%. The averaged frequency-
binned Franson visibility for 5 pairs is 98.03 ± 1.10%. The coincidence window for all the measurements was 2 ns. The error bars represent one standard
deviation of the mean assuming Poissonian statistics. b The Franson interference visibility map for frequency-bin pairs within the SPDC bandwidth.
Frequency bins were selected using a pair of tunable BPFs with 300 pm bandwidths, that were manually tuned to scan from the −2 to +2 frequency bins
from frequency degeneracy. Only the symmetric frequency-bin pairs in anti-diagonal terms show high Franson interference visibility. c Recorded signal-
idler cross-correlation function for constructive (top) and destructive (bottom) Franson interference. The inset is the zoom-in of the central correlation
peak, showing the single-sided decay temporal signature of a singly-filtered BFC. d Extracted Schmidt eigenvalues (color bars represent different
corresponding frequency-bin pairs in the frequency-correlation matrix) and Franson visibilities (red dots) for 5 symmetric frequency-bin pairs. Frequency-
binned Franson interference visibilities with (without) background subtracted are 97.24 (82.88) ± 1.96% for S2&I-2, 98.42 (90.90) ± 1.81% for S1&I-1, 99.66
(92.06) ± 0.60% for S0&I0, 98.38 (88.86) ± 1.62% for S-1&I1 and 96.45 (81.53) ± 2.07% for S-2&I2, respectively. The error bars represent one standard
deviation of the mean. We extract the lower bound of the Schmidt number to be 4.17 across 5 symmetric frequency-bin pairs (detailed calculation is
presented in Supplementary Note 4).
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High-dimensional time-frequency entanglement distribution
of a singly-filtered BFC. Extending from the spectro-temporal
entanglement of our singly-filtered BFC and the high-
dimensional time-frequency entanglement verification, we
asymmetrically distributed the high-dimensional BFC states
through a 10 km fiber link to demonstrate our singly-filtered BFC
is suitable for long distance quantum communication. The
experimental scheme for high-dimensional entanglement dis-
tribution is shown in Fig. 4a. The singly-filtered BFC is generated
by placing the FFPC on the signal channel after the PBS. The
signal photons are then sent to the Franson interferometer’s arm
2, a local unbalanced Michelson interferometer arranged to act as
a Mach-Zehnder interferometer, while the idler photons propa-
gate through 10 km of standard single-mode optical fiber and are
analyzed by the Franson interferometer’s arm 1. With our SPDC
biphoton generation at ≈1316 nm, close to the zero-dispersion
wavelength for standard single-mode optical fibers, there is little
temporal walk-off caused by fiber dispersion. Thus, a dispersion-
compensating module, which is normally lossy, is not required
for the distribution of our high-dimensional BFC states. This
entanglement distribution scheme is specially designed to be

asymmetric according to the nature of the singly-filtered BFC. In
the generation configuration of our singly-filtered BFC, only the
signal photons suffer from the insertion and filtering loss of the
FFPC. Thus, the idler photons with higher photon flux are sui-
table for long-distance transmission and sent through the 10 km
optical fiber with 3.63 dB transmission loss. Note that our
entanglement distribution system is built using commercially
available off-the-shelf components, and can be readily imple-
mented in many existing quantum key distribution (QKD)
systems.

We first measure the high-dimensional energy-time entangle-
ment of the distributed singly-filtered BFC states via Franson
interferometry. High-visibility Franson interference recurrences
are observed even after 10 km distribution, with our singly-
filtered BFC states. Figure 4b shows the measured Franson-
interference visibilities at different relative delays after 10 km
distribution, supported by our theoretical model. The insets of
Fig. 4b show the Franson fringes for different time bins, yielding a
high visibility of 98.81 ± 0.61% at central time-bin with Bell
inequality violation (The Franson interference fringes at all 16
time-bins are detailed in Supplementary Note 3). In particular,
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compared to the Franson-interference recurrences in Fig. 2c, the
averaged degradation of the Franson interference visibility after
10 km distribution is only 1.21%. The high visibilities of the
Franson-interference recurrences verify the successful distribu-
tion of the high-dimensional energy-time entanglement of our
singly-filtered BFC. Furthermore, to quantitively lower bound the
dimension of the distributed high-dimensional energy-time
entanglement, we estimate the time-bin Schmidt number using
the Franson interference recurrences. In Fig. 4b, we calculate the
time-bin Schmidt number from the eigenvalues at each time bin
and obtained a post-distribution Schmidt number of 12.99, with
only 0.92% degradation compared to Fig. 2e. Therefore, we lower
bound the Hilbert-space dimensionality of the distributed time-
binned singly-filtered BFC state to be at least 168
(=12.99 × 12.99)49.

Next we measure the energy-time entanglement between
symmetric frequency-bin pairs of the singly-filtered BFC after
10 km asymmetric distribution. The frequency-binned energy-
time entanglement is especially useful for wavelength-division
multiplexing an entanglement-based quantum communication
network50. Narrowband tunable BPFs are used to select different
frequency bins for the signal and idler photons, cascaded with the
Franson interferometer for energy-time entanglement measure-
ment. Franson interference fringes for five symmetric frequency-
bin pairs are observed as shown in the inset of Fig. 4a. A high
Franson interference visibility of 98.85 ± 0.50% after accidentals
subtraction, is obtained for the central frequency-bin pair S0&I0
after 10 km asymmetric distribution. The Franson visibilities for
frequency-bin pairs away from the central bin decrease as
anticipated, but are still well above the quantum threshold to
violate the Bell inequality. The frequency-binned Franson
interference visibilities before and after 10 km asymmetric
distribution are summarized in Fig. 4c. An averaged Franson
visibility of 96.70 ± 1.93% was obtained for all 5 frequency-bin
pairs after distribution, with only 1.33% degradation compared to
the near-distance frequency-binned energy-time entanglement
verification described earlier (Fig. 3). These high Franson
interference visibilities certify the coherent transmission of the
frequency-binned energy-time entanglement of our singly-filtered
BFC. Simultaneously, we examine the coincidence counts of the

central correlation peak (example noted in Fig. 3c) for
constructive interference, to extract the JSI of the singly-filtered
BFC after 10 km asymmetric distribution. As summarized in
Fig. 4c, only the diagonal elements of the JSI have high
coincidence counts, revealing the preserved frequency-bin
entanglement after link distribution.

With the high-dimensional dual-basis platform of our singly-
filtered BFC, we demonstrated high-dimensional QKD utilizing
frequency multiplexed time-bin encoding based on the distribu-
tion setup (detailed in Supplementary Note 7). Our QKD
measurements, however, were made without the 10-km-long
fiber connection owing to an equipment limitation in our
coincidence-counting setup that precluded accommodating that
fiber’s propagation delay. For key generation, Alice and Bob
record a 10-second-long time stream of photon detections for
post-detection processing, where their time streams are synchro-
nized and divided into time-bins for discretization with variable
bin durations. We use the layered low-density parity-check code
to calculate the Shannon information upper bound on the photon
information efficiency (PIE), the bits we can send per photon
under highly-erroneous channel conditions51. The key rate is
then obtained by multiplying each PIE with the number of
photon pairs per second in the corresponding keystream. The
total PIE of up to ≈ 14 bits/coincidence and total key rate of
≈ 4.7 kbits/s are obtained for 5 correlated frequency-bin pairs. We
also compare the performance with the doubly-filtered BFC by
relocating the FFPC before the PBS in Fig. 4a and implementing
the same QKD protocol. We observe ≈ 2.8 × improvement in PIE
and ≈ 49 × improvement in raw key rate in Fig. 4d, which benefit
from the less filtering loss of our singly-filtered configuration.
Secured by our Franson interference visibilities, we compute the
upper bound on Eve’s Holevo information from which the secure
key rate can be obtained for the frequency-bin pairs51 (detailed in
Supplementary Note 7). As shown in Fig. 4e, three frequency-bin
pairs of our singly-filtered BFC achieve positive secure PIE after
subtracting the upper bound of Eve’s Holevo information.
Utilizing the same protocol, we also calculate the secure key rate
for the doubly-filtered BFC28, and compare the two configura-
tions in Fig. 4f. Our singly-filtered BFC achieved a total secure key
rate of 1.1 kbits/s, which still presents ≈ 7.5 × improvement under

Fig. 4 High-dimensional time-frequency entanglement distribution of a 45.32 GHz singly-filtered biphoton frequency comb at 10 km distances.
a Illustrative experimental scheme for asymmetric entanglement distribution of high-dimensional time-frequency entanglement of a singly-filtered BFC.
The singly-filtered BFC is generated by only passing the signal photons through an FFPC, while the idler photons are distributed via a 10 km fiber link. After
distribution, a pair of tunable bandpass filters are used to select frequency bins for the signal and idler photons, which are then analyzed by a Franson
interferometer for energy-time entanglement. The inset shows the Franson interference fringes for 5 symmetric frequency-bin pairs after 10 km
distribution. The error bars represent one standard deviation of the mean assuming Poissonian statistics. b The measured visibilities of Franson-
interference recurrences (black dots) and Schmidt eigenvalues (green bars) after 10 km distribution from 0th to 15th time-bin with (without) background
subtracted: 98.81 (63.90) ± 0.61%, 89.28 (55.29) ± 1.55%, 80.54 (49.44) ± 1.15%, 71.28 (40.10) ± 1.35%, 64.81 (32.90) ± 1.57%, 58.54 (28.83) ± 1.68%,
52.57 (20.92) ± 1.80%, 47.52 (19.87) ± 1.84%, 42.03 (17.40) ± 1.95%, 37.18 (14.67) ± 2.03%, 33.50 (14.62) ± 2.06%, 29.46 (13.78) ± 2.12%, 27.90
(13.64) ± 2.15%, 24.93 (13.06) ± 2.26%, 22.79 (11.21) ± 2.24%, 19.83 (10.79) ± 2.35%. The error bars represent one standard deviation of the mean. The
insets show the interference fringe for the 0th, 7th and 15th time-bin. The Franson interference visibility decay matches well with our theoretical prediction
after 10 km distribution, full data of the Franson interference fringes for 16 time bins is provided in Supplementary Note 3. The time-bin Schmidt number
after 10 km distribution is measured to be 12.99, which only shows degradation of 0.92% compared to Fig. 2e. Detailed Schmidt eigenvalues are presented
in Supplementary Note 4. c The measured frequency-binned Franson-interference visibilities (black inverse triangular and red dots) and the coincidence
counts for 5 symmetric frequency-bin pairs (different colors represent corresponding frequency-bin pairs in the frequency-correlation matrix) of the singly-
filtered BFC after 10 km distribution. Frequency-binned Franson interference visibilities after distribution with (without) background subtraction are 94.95
(73.86) ± 2.07% for S2& I-2, 97.99 (84.12) ± 1.04% for S1&I-1, 98.85 (87.60) ± 0.50% for S0&I0, 97.84 (82.77) ± 1.12% for S-1&I1 and 93.89 (70.76) ± 2.71%
for S-2&I2, respectively. Averaged frequency-binned Franson visibility of 96.70 ± 1.93% is obtained, with only 1.33% degradation after distribution. These
results demonstrate that the frequency-binned energy-time entanglement of our singly-filtered BFC is well preserved after 10 km distribution. The error
bars represent one standard deviation of the mean. d Raw key rate (dots) and photon information efficiency (square) of the frequency-multiplexed
quantum key distribution using the singly-filtered (red solid line) and doubly-filtered (blue dashed line) BFCs. e Secure key rate (bars) and secure PIE
(stars) at different frequency-bin pairs. Three frequency-bin pairs show positive PIE after subtracting Eve’s Holevo information. A total SKR of 1.1 kbits/s is
achieved using our singly-filtered BFC. f Secure key rate comparison between singly-filtered BFC and doubly-filtered BFC. The singly-filtered BFC
shows≈ 7.5 × enhancement of secure key rate under the same system condition.
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the same system condition (photon source, detection system,
etc.). Compared to the state-of-the-art QKD using high-
dimensional encoding with several Mbit/s secure key rate51, our
scheme can be further improved by exploiting denser frequency
multiplexing, brighter photon source, and more efficient
detectors. This proof-of-principle demonstration clearly illus-
trates the utility of our singly-filtered BFC for frequency-
multiplexed QKD.

Discussion
To the best of our knowledge, this is the first demonstration of
high-dimensional entanglement distribution of a singly-filtered
BFC in both time and frequency domains. Quantum information
encoded in time- and frequency-bins of entangled photons is
naturally suitable for transmission over long distances using
optical fibers or free-space links10. In particular, energy-time
entanglement is ideally suited for high-dimensional QKD, with
security monitored by the measurement of Franson visibility51.
Franson and conjugate Franson interferometry52, the latter of
which has been recently demonstrated45, can support the
unconditional security of high-dimensional QKD systems. The
long-distance distribution of frequency bins has been demon-
strated using a dispersion cancellation system23, with possible
applications in wavelength-multiplexed quantum networks. Our
singly-filtered BFC, due to its inherent time-frequency entangled
nature, can achieve high-dimensional encoding in both time- and
frequency-bins, and our entanglement distribution demonstra-
tion exemplifies the singly-filtered BFC’s potential as a practical
high-dimensional entanglement platform for constructing future
quantum networks.

We note that our singly-filtered BFC can be readily exploited
to generate high-dimensional hyperentanglement by combining
the polarization degree-of-freedom (DoF). With our type-II
configuration, we can generate the post-selected polarization
entanglement by mixing the signal and idler photons on a 50:50
beam splitter25,28. Another common approach to generate
polarization entanglement is using a Sagnac interferometer38,
which can also be adapted to suit our singly-filtered BFC. With
polarization DoF, the dimensionality of our singly-filtered BFC
can be doubled with an extra qubit encoded in the BFC photon
pairs’ polarization. High-dimensional hyperentangled BFC
states provide a useful resource for applications, such as high-
capacity quantum communication53 and superdense quantum
teleportation54.

Our singly-filtered BFC platform also supports higher dimen-
sional state generation. The dimensionality of frequency bins is
determined by the bandwidth of the SPDC and the FSR of the
FFPC. For example, using a SPDC source with 2 THz bandwidth
and an FFPC with 10 GHz FSR will leads to a 200 × 200
dimensional system, which corresponds to 15 frequency-bin
qubits. On the other hand, the BFC’s time bins are the Fourier
duals of the state’s frequency bins, thus the scaling of time-
frequency dimensionality is complementary. The time-bin and
frequency-bin number product satisfies Nt ´Nf ¼ πBSPDC=Δω,
where BSPDC is the SPDC bandwidth and 2Δω is the cavity
linewidth28. Thus, the ideal dimensionality of the time-frequency
space is determined by the FFPC linewidth with a given SPDC
source. For example, with 2 THz SPDC bandwidth, 100 GHz
cavity FSR and 1 GHz cavity linewidth, the time-bin number Nt

will increase to 100 with time-bin interval of 10 ps while the
frequency-bin number will become Nf= 20, which leads to 13
time-bin qubits. The scaling of the BFC state generation can also
be realized by integrating the Fabry–Pérot cavity with the SPDC
source, which demonstrates frequency-multiplexed photon pairs
covering 1,400 modes with 3.5 GHz FSR of the cavity37; or using

an integrated microring resonator23,26,27, where the achievable
dimensionality is also bounded by the phase-matching bandwidth
of the spontaneous four-wave mixing and the FSR of the
microring resonator. The on-chip realization of high-dimensional
BFCs can assist the examination of large-scale integrated quan-
tum information processing55.

The singly-filtered BFC will be particularly useful and readily
implemented in a quantum repeater-based quantum internet56.
In our singly-filtered configuration for BFC generation, the FFPC
is external to the SPDC source, unlike the OPO approach. In a
quantum repeater scheme with two entanglement sources57, by
inserting a Fabry-Pérot cavity in the path from each entanglement
source to the Bell-state analyzer, the photons on the other path of
both sources will be entangled in high-dimensions due to the
singly-filtered configuration. This scheme enables possible high-
dimensional quantum repeaters for use in long-distance quantum
networks. Our singly-filtered BFC could thus provide a practical
and flexible approach to increase the dimensionality of the time-
and frequency-bases at a node of the quantum internet.

Methods
High-dimensional Franson interferometry. In each Michelson
interferometer, the output ports of the fiber 50:50 beam splitter
are spliced to Faraday mirrors that compensate the stress-
birefringence of the single-mode fiber within the interferometer.
Single photons are collected from the reflection, and the
Michelson interferometers thus function as Mach-Zehnder
interferometers, with polarization instability inside the fibers
accurately self-compensated. The long-short path difference of
each arm shown in Fig. 1a is measured to be δT= 4.84 ns,
satisfying the general requirement of phase-sensitive Franson
interference25,28. A tunable delay line is introduced in the long
path of arm 1 to increase the time-delay difference between arm 1
and arm 2 by up to 360 ps. This allowed us to measure the
Franson interference at different temporal recurrences for up to
16 positive-delay time bins between the idler and the signal. A
thermal heater in the long path of arm 2 with ≈ 1 mK
temperature-control accuracy fine tunes the relative phase shift
between the two arms of the Franson interferometer. Coincidence
counts are collected, with a 2 ns duration coincidence window,
between the Franson interferometer’s two output ports, and the
interference fringes are obtained after subtracting the accidental
coincidences, which are measured by using the same 2 ns coin-
cidence window with a 3 ns electronic delay introduced between
the signal and idler channels.

Schmidt mode decomposition in the frequency and time
domains. The singly-filtered BFC affords discrete-variable (bin-
ned) entanglement in both the frequency and time domains,
which can be quantified by Schmidt mode decompositions. A
frequency-entangled two-photon state can be described using its
joint spectral amplitude (JSA) and joint temporal amplitude
(JTA). Each domain (frequency-bin or time-bin) has a Schmidt
number given by

K ¼ ð∑λ2nÞ
�1
;where∑λn ¼ 1 ð4Þ

with the {λn} being that domain’s Schmidt mode eigenvalues. It is
challenging to directly measure the JSA, because such measure-
ments would require reconstruction of the full phase information
of the entangled state. Instead, the JSI can be obtained by per-
forming spectrally-resolved coincidence measurements. There-
fore, we will use our frequency-binned JSI data, viz.,
Ψ nsΔΩ; nIΔΩ
� ��� ��2, and assume that the JSA satisfies

Ψ nsΔΩ; nIΔΩ
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ nsΔΩ; nIΔΩ
� ��� ��2q

ð5Þ
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as predicted by perturbation theory28 and supported by the
resolved cross-correlation in Fig. 2a. Then, by extracting
the Schmidt eigenvalues {λn} from the JSI measurements (i.e., the
measured frequency-correlation matrix, such as Fig. 1c), the
Schmidt number KΩ of the five frequency-binned pairs is found
to be of 4.17.

Turning now to the time-bin Schmidt number for the singly-
filtered BFC, to proceed in a manner analogous to what we used
for the frequency-binned Schmidt mode decomposition would
require knowledge of the binned joint-temporal intensity (JTI).
We can estimate that time-binned JTI from our Franson-
interference recurrence data, as we now explain. By sampling
Ѱ(τ), the temporal-domain wave function from Eq. (2), at
τ= nΔT, we get

ΨðnΔTÞ
�� ��2 ¼ expð�2nΔωΔTÞ

∑N
n¼0 expð�2nΔωΔTÞ ð6Þ

for the JTI. It can be shown (see Supplementary Note 4) that the
visibility of the nth Franson-interference recurrence, based on
Eq. (2), is

Vn ¼ exp �nΔωΔTð Þ ð7Þ
from which we find that the singly-filtered BFC’s JTI is
proportional to Vn

2. Assuming – motivated by perturbation
theory28 and as we did for the frequency-binned Schmidt mode
decomposition – that the binned JTA equals the square-root of
the binned JTI,

Ψ nΔTð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΨðnΔTÞ
�� ��2q

ð8Þ
it follows that the time-bin Schmidt mode eigenvalues, {λn}, are
given by

λn ¼
e�πn=F

∑M
m¼0e

�πm=F
¼; for 0 ≤ n ≤ M ð9Þ

where F ¼ 4Ω
24ω ¼ 29:1 is the cavity finesse and M+ 1= 16 is the

number of measured Franson-interference time bins. The time-
binned singly-filtered BFC state’s Schmidt number is then
computed to be

KT ¼ sinh2½πðM þ 1Þ=2F� sinhðπ=FÞ
sinh2ðπ=2FÞ sinh½πðM þ 1Þ=F� ¼ 12:94

from theory based on Eq. (2) and

KT ¼ ∑M
n¼0 Vn

� �2
∑M

n¼0 V
2
n

� 13:11

from our experiment. In Supplementary Note 4, we verify that the
JTI is proportional to Vn

2 which also prevails when Eq. (2) is
replaced with the exact theory. The exact theory predicts
KT= 13.19.

Data availability
The datasets generated during and/or analyzed during the current study are available
from the corresponding authors on reasonable request.
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