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Time-domain photonic image processor based on
speckle projection and reservoir computing
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High-speed image processing is essential for many real-time applications. On-chip photonic

neural network processors have the potential to speed up image processing, but their scal-

ability is limited in terms of the number of input/output channels because high-density

integration is challenging. Here, we propose a photonic time-domain image processing

approach, where real-world visual information is compressively acquired through a single

input channel. Thus, large-scale processing is enabled even when using a small photonic

processor with limited input/output channels. The drawback of the time-domain serial

operation can be mitigated using ultrahigh-speed data acquisition based on gigahertz-rate

speckle projection. We combine it with a photonic reservoir computer and demonstrate that

this approach is capable of dynamic image recognition at gigahertz rates. Furthermore, we

demonstrate that this approach can also be used for high-speed learning-based imaging. The

proposed approach can be extended to diverse applications, including target tracking, flow

cytometry, and imaging of sub-nanosecond phenomena.
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Rapid advances in information technologies, particularly in
fields such as machine learning, have generated an esca-
lating demand for innovative computing hardware and

concepts1–12. Among them, photonic computing has attracted
considerable attention owing to recent developments in photonic
integration and optical communication technologies6,13–19.
Recent studies have revealed the potential for overcoming major
bottlenecks in electronic computing, suggesting that ultrahigh-
speed computing with low energy consumption can be
achieved16,20,21. Photonic computing substrates have been pre-
dominantly used to process optical analog signals and play an
essential role in the interface between the physical world and the
digital domain18,22. Such photonic approaches hold promise for
accelerating signal preprocessing from sensing units, thereby
alleviating the computational burden typically borne by electronic
postprocessing units.

However, when photonic processing units handle signals
acquired by sensing devices, the overall processing speed is
essentially limited by the data acquisition speed of the sensing
devices and the transfer to the processing units. This limitation
becomes particularly severe when image sensors with numerous
pixels are employed. In such systems, the spatial information
acquired by an image sensor is converted into the electrical
domain in a digital format, and large amounts of memory are
required for data storage. The electrical domain conversion and
memory accesses required for large amounts of data are

significant bottlenecks that hinder the speed of image processing
(Fig. 1a).

Photonic neural network processors have great potential for
accelerating image processing14,16,22–27. Some of these processors
enable direct image acquisition without the use of image sensors
and subsequent optical processing14,22,23. In particular, on-chip
photonic neural networks offer the promise of ultralow latency
processing23 but usually suffer from physical size constraints
arising from the difficulty of high-density photonic integration.
The maximum number of input/output nodes (channels)
implemented in a photonic chip is limited, and such a size con-
straint makes scalable operation difficult.

Here, we introduce a scalable photonic image processing
approach that circumvents the physical size constraints by
exploiting the temporal degrees of freedom of photons. In our
approach, visual information from physical objects can be com-
pressively acquired with only a single input channel and can be
optically processed in the time domain. Consequently, the time-
domain approach does not require many input/output channels
and facilitates large-scale photonic processing.

A pivotal technique underpinning time-domain processing is
the photonic domain transformation from the spatial-domain
information of a physical object into a time-domain signal using
an optical random pattern projection. Similar techniques have
been previously employed for ghost imaging or single-pixel
imaging28,29. Single-pixel-based techniques typically require

Fig. 1 Conceptual schematic of photonic machine vision system. a Conventional approach based on image sensors. The entire processing rate is limited
by the low frame rate of the digital image sensors used for acquiring the visual information of a target object. b Proposed photonic approach based on
single-channel image acquisition and photonic RC processor. c Conceptual schematic of the proposed system. d Setup for the high-speed random speckle
pattern projector. RNG (deterministic) random number generator, ISO optical isolator, PM phase modulator, MMF multimode fiber. e Photonic RC
processor based on a stadium-shaped microcavity coupled to input/output waveguide channels. The microcavity can form as a virtual random optical
network via an internal chaotic multiple scattering from a ray-optic point of view. In this study, the signal was input from the waveguide channel (No. 10) to
the reservoir, and subsequently, RC output signals were extracted from five output channels (Nos. 2–6) for further postprocessing.
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multiple measurements using different mask patterns and suffer
from low switching rates of the mask patterns, typically ranging
from tens of Hz to tens of MHz30–33. Consequently, the acqui-
sition of such image information is time-consuming. To address
this limitation, we use a high-speed random mask pattern pro-
jector based on dynamic speckle generation34 and show that it
allows random mask patterns to be switched at a rate of tens of
GHz, which is at least three orders of magnitude higher than that
of conventional approaches.

In this study, the image-encoded optical signals are directly
sent to a photonic reservoir computer (Fig. 1b). A feature of
reservoir computing (RC) is that it can achieve excellent inference
performance in time-series processing with a simple training
method35–42. We use a microcavity-based RC for processing the
time-domain signals and experimentally demonstrate that this
approach is capable of high optical compression of the image
information and dynamic image recognition. This approach
works even when using the RC with only a limited number of
input/output channels and enables high-speed image recognition
and anomaly detection at gigahertz rates. By using a wavelength-
multiplexing technique that provides parallel processing, we can
further accelerate data acquisition and processing.

Beyond image recognition, our approach also serves as a
compressive temporal encoder for single-shot high-speed ima-
ging. This encoder enables continuous acquisition of a dynamic
scene at GHz rates, combined with various techniques developed
for high-speed optical fiber communication, including optical
multiplexing techniques. The number of frames of captured
images is not limited, in contrast to other high-speed imaging
techniques based on pulse lasers and/or streak cameras43–46. A
related imaging technique is optical time-stretching imaging47,48,
which is based on the optical encoding of images in individual
laser pulses and has been used for the imaging of fast-moving
objects. State-of-the-art time-stretching imaging, when combined
with structured light and compressive sensing techniques, has
achieved frame rates ranging from megahertz to gigahertz
levels49,50 and efficient data compression51. A feature of our
image encoding technique is that it does not rely on an ultrashort
laser pulse source but a commercial continuous-wave laser, unlike
time-stretching imaging. Thus, our technique enables continuous
imaging with a flexible time resolution and can achieve a higher
frame rate using wavelength-division multiplexing. In this study,
we experimentally demonstrate the imaging of a transient phe-
nomenon at a microsecond scale.

Results
Basic operation principle. The proposed system architecture
includes a random pattern projector to temporally encode the
spatial information of the target objects and a photonic RC
processor to process image-encoded time-domain signals
(Fig. 1c). The random pattern projector generates random mask
patterns, which are projected onto the target object. The light
reflected from the target is focused by a focusing lens and directly
sent to the photonic RC processor, where an image of the target is
denoted by v(x, y), and (x, y) represents the coordinates on the
image plane. For a random mask pattern Mask(x, y, t) on the
image plane at time t, the input light u(t) to the RC processor can
be characterized by the spatial integral ∫Mask(x, y, t)v(x, y)dxdy,
that is, the spatial information of the target image is encoded as a
time-domain signal. The reservoir plays a role in mapping the
input u(t) into a high-dimensional feature space7; thus, the fea-
tures of u(t) can be separately distributed in the high-dimensional
space, resulting in better recognition by simple postprocessing.

Let xr(t) and ϕðxrðtÞÞ 2 RM be the reservoir’s internal state
vector and observables in response to u(t). The observables

ϕ(xr(t)) are sampled at sampling time interval τs during
acquisition time TN. Similarly to previous studies42, the output
vector yðnÞ 2 RMy ðn 2 f1; 2; � � � gÞ is given by the observables
ϕ(xr(tnj)), readout weights W j 2 RMy ´M , and bias b 2 RMy as

yðnÞ ¼ ∑N�1
j¼0 W jϕðxrðtnjÞÞ þ b for regression tasks, where tnj=

nTN+ jτs, (j∈ {0, 1,⋯ ,N− 1}) and N= TN/τs, and y(n)=
f(∑jWjϕ(xr(tnj))+ b) for classification tasks, where f is a softmax
function. In this scheme, the output vector y(n) can be obtained
in time interval TN. The weight matrix Wj can be trained using a
training dataset such that a loss function, which is characterized
by the difference between the output vector y(n) and the target
vector ytag(n), is minimized. RC can quickly determine the global
minimum of the loss function, resulting in low training costs.
Postprocessing can be performed with application-specific
circuits or field-programmable gate arrays for low-latency
operation. In this study, we focused on evaluating the ability of
an RC processor in terms of fast data acquisition and
preprocessing as a proof of concept.

High-speed random pattern projector. The random pattern
projector is based on a high-speed speckle generator, which is
composed mainly of a laser source, deterministic random number
generator, phase modulator, and multimode fiber (MMF)
(Fig. 1d). When coherent light is input into the MMF, it couples
into multiple propagation modes with different phase velocities,
and their interference produces a speckle pattern at the end face
of the MMF52. These speckles are highly sensitive to changes in
the phase of the incident light. Therefore, by dynamically mod-
ulating the phase of the incoming light, we can alter the speckle
patterns, which serve as the mask patterns for projection.

In previous studies, spatial light modulators (SLMs) such as
digital micromirror devices (DMDs) have been utilized to
generate optical mask patterns at rates of up to 22 kHz28. A
recent promising study demonstrated modulation rates up to
2.4 MHz using mechanically rotating mask patterns30. In
contrast, our proposed projector can attain modulation rates
exceeding tens of gigahertz using a wideband phase modulator.
(We used a 16-GHz phase modulator in this study.)

Photonic reservoir computing processor. A major advantage of
using a photonic RC processor is that the high-dimensional
mapping operation, resulting in better inference, can be optically
performed at low latency and high speed. We designed and
fabricated a silicon photonic chip based on a stadium-shaped
microcavity structure coupled to 14 single-mode waveguides
(Fig. 1e). The microcavity acts as a reservoir, whereas the single-
mode waveguides are used as the input/output channels to and
from the reservoir. A feature of the microcavity is its efficient
capability for optical confinement in a small footprint and the
formation of various wave patterns depending on the shape of the
microcavity53. The stadium-shaped cavity is known to be a ray-
chaotic cavity and is inspired by the Bunimovich stadium54. The
wave mixing due to the chaotic nature of the cavity forms a wave
field inside the cavity corresponding to a spatially continuous
optical random network within 50 μm× 200 μm (Fig. 1e). The
length of the memory for storing past information was roughly
estimated as 0.25 ns, partially with the aid of the time-delay
caused by the length difference in the optical fibers coupled to the
output ports from the stadium cavity (see Supplementary Note 1.)
Nonlinearity is introduced in the intensity detection. Numerical
results reveal that the stadium-shaped cavity-based RC has a
higher computational performance for tasks requiring non-
linearity than nonchaotic cavity-based RC55, although the cavity
parameters used in the study are different from the present study.
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Other studies have also revealed the potential of ray-chaotic
cavities, such as the stadium-shaped cavity, as reservoirs
numerically56 or with a microwave experiment57. To our
knowledge, this study reports the first experimental demonstra-
tion of photonic microcavity-based RC for image processing. For
a description of the fundamental capabilities of temporal signal
processing, see Supplementary Note 1 and Supplementary
Figs. 1–3, where it is shown that the photonic RC processor can
outperform photonic RC systems or a photonic neural network
circuit on benchmark datasets.

Image recognition. We evaluated the image recognition perfor-
mance of the proposed system. In the experiment, we chose 28 × 28-
pixel MNIST handwritten digit images58 from “0” to “3” as the
target images and displayed them on a DMD (Fig. 2a). Random
speckle patterns were generated and projected onto the target at a
rate of 25 Gigasamples per seconds (GS/s). The reflected light was
introduced into the photonic RC processor via an optical fiber. The
RC outputs were measured using fast-response photodetectors.
Figure 2b, c shows the change over time in the light intensity
reflected from the images of the targets (i.e., an input to the RC) and
the corresponding RC outputs from channels 2–6 (Fig. 1e),
respectively. The waveforms of the reflected light strongly depended
on the images of the targets, and a variety of spatiotemporal
responses in the reservoir outputs were produced.

For the evaluation, we used 1000 samples of images of digits
from “0” to “3” and acquired the RC outputs over acquisition
time TN for each image. The prediction outputs y were trained on

900 image samples and tested on 100 image samples. To
characterize how much information of the target image is
compressively input to the RC processor during the acquisition
time TN, we defined the compressive sensing ratio C of the image-
encoded signal input to the RC processor as N/(28 × 28)59, where
N= TN/τs denotes the number of data points of the image-
encoded time-domain signal.

Figure 3a shows the classification accuracy for various
acquisition times and compressive sensing ratios. The classifica-
tion accuracy exceeded 90% for TN ≥ 0.4 ns, which corresponds to
the compressive sensing ratio C ≥ 1.28%, revealing the potential of
the proposed approach for ultrafast image recognition at sub-
nanoseconds with a substantial compression efficiency. As an
example, the confusion matrix for TN= 0.56 ns (C= 1.78%) is
shown in Fig. 3b. Most predicted labels were distributed along the
diagonal line and matched the true labels. For comparison, we
also performed numerical simulations. To mimic the random
projection of a digit image (28 × 28= 784 pixels in size), an
N × 784 Gaussian random mask matrix was used. As a classifier,
we used a neural network with a single fully connected hidden
layer and tanh activation functions. We confirmed that the
classification performance of the proposed system was compar-
able to that of the neural network (Fig. 3a).

To gain insights into the effect of the photonic RC processor,
we investigated the classification performance of the system
without the RC processor, where the time-domain signal before
RC processing was directly used as an input to a linear classifier.
The classification performance was found to be substantially

Fig. 2 Conversion of images into time-domain signals and reservoir outputs. a Handwritten digit images displayed on the digital micromirror device, “0,”
“1,” “2,” and “3” from the top. b Image-encoded time-domain signals corresponding to each digit image. c Outputs from channels (2–6) of the reservoir
computing (RC) processor responding to the time-domain signal, which are represented by blue, orange-, green-, red-, and purple-colored curves,
respectively.
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worse than that of the system proposed in this study (Fig. 3c).
The photonic RC processor has a finite memory time (Supple-
mentary Fig. 4). The memory time can partly contribute to
storing and mixing the image-encoded time-domain information
during the acquisition time TN of sub-nanoseconds. The memory
and high-dimensional mapping operation of the RC can result in
better classification.

We also evaluated the classification performance on larger and
more difficult image datasets. Image classification was success-
fully performed even for such datasets with high compressive
efficiency at nanosecond acquisition times. See Supplementary
Note 2 and Supplementary Figs. 5 and 6 for details.

Recognizing microsecond phenomena. To demonstrate the
capability of recognizing dynamic scenes, we measured the
switching behavior of the DMD, which switched between dis-
playing digit “1” and digit “2” images. In the experiment, the laser
light was repeatedly phase-modulated using the same pseudor-
andom signal, and the dynamic speckle patterns were repeatedly
projected onto the DMD. The reflected light was directed to our
RC processor, and the reservoir outputs were acquired at TN=
0.56 ns to obtain the classification results. According to our
correlation analysis, the digit “1” image transitioned to the digit
“2” image around 4600 ns (Fig. 4a). Figure 4b shows the time
dependence of the classification probability for the switching
behavior. The result reveals that the digit “1” image was switched

to that of digit “2” around 4600 ns, and digit “2” can be steadily
recognized after the transition (see Supplementary Movie 1). The
detection of the switching behavior was consistent with the results
of our correlation analysis. Although the time scale of the DMD
display switching was on the order of a few microseconds, our
system has the potential to recognize and detect faster
phenomena.

Image-free anomaly detection. Next, we evaluated the feasibility
of anomaly detection (Fig. 5a). Anomaly detection is the task of
identifying an abnormality or rare event from sampled infor-
mation and must operate in real-time as much as possible.
Detecting anomalies using images generally requires heavy
computation, which prevents real-time operation. This problem
becomes more serious when the implementation of an edge
device with limited computational resources is considered. Our
photonic approach can reduce redundant and unnecessary
information in the image data through a compressive transfor-
mation into time series data; thus, the required computation for
detection can be offloaded from the electronic postprocessing
units. This approach also provides the advantage that image data
can be treated in the same manner as time series data from other
sensors. The lightweight computation and low training cost of our
approach enable not only on-device prediction but also on-device
learning in edge devices.

Fig. 3 Classification results for a 4-class handwritten digit image dataset. a Classification accuracy vs. acquisition time (compressive sensing ratio) for
test image samples. The filled blue circles and orange crosses represent the accuracies obtained with and without the reservoir computing (RC) processor,
respectively. The green crosses represent the accuracy of the numerical neural network with the same number of neurons with tanh activation functions.
When using the RC processor, the accuracy exceeded 90% for TN≥ 0.4 ns, which corresponds to compressive ratio C≥ 1.28%. The performance is better
than the performance without the RC processor and is comparable to that of the numerical neural network. Confusion matrix for the test image samples in
the proposed system b with and c without the RC processor for TN= 0.56 ns.
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To demonstrate this, we used a benchmark dataset of concrete
cracks for structural health monitoring and inspections60,61. The
dataset contains 227 × 227-pixel concrete images with and
without cracks. Each image was taken approximately 1 m away
from the surface with a camera directly facing the target61. The
images were displayed on the DMD. The system was trained with
1500 normal image samples (without cracks) such that the output
y corresponded to a constant value α= 1. To identify abnorm-
alities (images with cracks in this case), an anomaly score was
defined as the representation error (y− α)2. This score is
distributed around zero for normal images (without cracks),
whereas it has a large outlier when a crack is detected (Fig. 5b).
The receiver operating characteristic (ROC) curve, which plots
true positive rates against the false positive rates, is shown in
Fig. 5c. The area under the curve (AUC) was 0.974, which
suggests a good measure of separability, considering AUC= 1 in
an ideal model.

High-speed image encoder for image reconstruction. Here, we
demonstrate that the proposed system can be used not only as a
high-speed recognizer but also as a high-speed imager (Fig. 6a). A
key advantage of our proposed system is that the reservoir out-
puts include the image information; thus, an image can be
reconstructed from the reservoir outputs using appropriate
reconstruction algorithms, e.g., well-developed algorithms for
ghost imaging and single-pixel imaging28. However, such algo-
rithms require complete information on the sequences of the
projected random mask patterns, which is not applicable in our
case because it is difficult to measure the fast spatiotemporal

behavior of random patterns over 10 GHz rates with an image
sensor, which typically operates at tens of hertz. Therefore, we
used a trained neural network model to reconstruct the image of a
target from the measured reservoir outputs (Fig. 6a). Note that
real-time processing is not required for this reconstruction. As a
simple proof-of-concept experiment, we used two original data-
sets containing four-class handwritten digit images and four-class
images from the Fashion-MNIST dataset62. Each image was
binarized and displayed on the DMD, and reservoir outputs were
recorded for TN= 20 ns. To reconstruct the image, we used a
convolutional neural network model trained to output the cor-
responding target image. We used 900 images for training and
100 images for testing. Figure 6b shows the results of image
reconstruction for some of the test samples. The root mean
squared error (RMSE) values for the 100 test images were 0.219
and 0.223 for the MNIST handwritten digit and Fashion-MNIST
datasets, respectively. Decreasing TN led to an increase in the
RMSE. However, this trade-off can be resolved by incorporating
wavelength-division multiplexing (WDM). A similar perfor-
mance was obtained for TN ≥ 0.8 ns in the WDM scheme. See
Supplementary Note 3 and Supplementary Figs. 7 and 8 for
details.

The proposed encoder facilitates the observation of a rare event
or transient phenomenon. The proposed approach does not
require broadband pulse lasers for the encoding of the target
images. Continuous recording over a long period with a
controllable time resolution TN is feasible. To evaluate the
feasibility of continuous recording as a primitive experiment, we
reconstructed images of the microsecond switching behavior
when the DMD switched from displaying digit “1” image to
displaying digit “2” image. In this experiment, the dynamic
speckle patterns were repeatedly projected onto the DMD, and
the reservoir outputs were acquired using TN= 20 ns. Under
these conditions, the image at each timestep can be reconstructed
with a time resolution of TN (see Supplementary Movie 1). As
shown in Fig. 6c, the switching from digit “1” to “2” can be
observed. However, because the network was trained only with
four classes of digit images in this study, the reconstructed
transient images (shown in the middle of Fig. 6c) might not be
captured correctly; the images can be attributed only to the
projections of the digit images used in training. For more precise
image reconstruction, it is advisable to train the reconstruction
model using a more extensive dataset comprising independent
basis images, such as Hadamard basis patterns63.

Discussion
We proposed and experimentally demonstrated a high-speed
photonic time-domain image processing approach. This photonic
approach is totally different from previous time-domain proces-
sing approaches, which involve electronic preprocessing of input
image data16,64. In our approach, real-world visual information is
highly compressed and optically acquired through a single input
channel. This feature empowers optical high-speed time-domain
processing at gigahertz rates even when using a small optical
processor with a limited number of input/output channels. This
approach is scalable, versatile, has a low training computational
cost, and is suitable for deployment in edge-computing devices.
Moreover, this approach leverages the advantages elucidated in
previous studies on ghost imaging or single-pixel imaging, such as
robustness to noise and the capability to process images under
extremely low-light conditions.

The processing rate can be further increased through refine-
ments and improvements. A potential approach is to use parallel
processing based on multiplexing techniques such as space-
division multiplexing and/or WDM. A space-division

Fig. 4 Demonstration of dynamic image recognition. In this
demonstration, we initiated a switch on the digital micromirror device from
displaying digit “1” to digit “2.” This switching event transpired in just a few
microseconds. a Short-time correlation values for digits “1” and “2” as a
function of time, which are represented by the blue and orange curves,
respectively. The correlation analysis reveals that the waveform of the
measured time-domain signal changed from that of digit “1” to that of digit
“2.” The transient behavior of the switching was observed from 4600 ns.
b The recognition probability as a function of time.
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multiplexing technique could be implemented using multiple
fiber receivers in the proposed system. For WDM, a multi-
wavelength laser (e.g., an optical comb) would enable the gen-
eration of independent speckle patterns in parallel. The approach
can lead to a significant reduction in the acquisition time of a
target image without decreasing classification accuracy (See
Supplementary Fig. 7).

Despite the advantages of the proposed approach, there is
room for further improvement. One improvement is to make the
proposed fiber system more robust because speckle patterns are
sensitive to environmental changes, such as vibrations and tem-
perature fluctuations. The recognition accuracy degraded under a
temperature fluctuation of ±0. 3 °C (Supplementary Note 4).
However, the system stability can be improved in terms of both
hardware and software by isolating the MMF from environmental
temperature fluctuations and/or by training the optimal weight

parameters of the neural network with data samples acquired at
different temperatures (see Supplementary Fig. 9).

The second is to improve the photonic RC processor, which
has only a short memory and linear operation. The memory time
can be improved with larger-sized cavities designed for a higher
quality factor, e.g., photonic crystal cavities56. In our setup, a
nonlinear component, e.g., a semiconductor optical amplifier with
strong gain saturation, can be easily introduced to add a non-
linear conversion in the image-encoded signal before the reservoir
processing. The proposed time-domain image acquisition
approach is applicable to various time-domain processors,
including recurrent neural networks, delay-based reservoir
computers65, and extreme learning machines66.

The third is to develop a postprocessor to realize a fast end-to-
end photonic processor. One approach to accomplish this is to
deploy a photonic postprocessing technique developed as an

Fig. 5 Detection of cracks in concrete images. a Schematic of anomaly detection scheme in images. The inset shows examples of normal images (without
cracks) and anomalous images (with cracks). In this experiment, binarized images from a concrete crack dataset were displayed on the digital micromirror
device. The acquisition time was set as TN= 0.4 ns. The system was trained using 1500 normal image samples (without cracks) such that the output y
corresponds to a nonzero constant value (α= 1). The squared representation error ∣y− α∣2 was used as an anomaly score. b The probability densities of
anomaly scores from 500 normal images without cracks and 500 anomalous (crack) images, which are represented by the filled blue and orange boxes,
respectively. The two probability densities are well discriminated. The inset shows examples of measured anomaly scores for some sample images. For the
display, we set three samples, represented by the green dotted lines, as crack images. c Receiver operating characteristic (ROC) curve to illustrate the
detection capability of crack images as its discrimination threshold is varied. The true positive rate denotes the rate of correctly detecting cracks, whereas
the false positive rate denotes the rate of wrongly detecting the absence of cracks. The area under the curve (AUC) was 0.974.
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analog readout in RC. This technique is based on a balanced
Mach–Zehnder modulator and an integrator67 so that the
multiply-accumulation operation can be performed in the time
domain. An additional advantage of analog computation in the
time domain is that it can be performed even at ultra-low ener-
gies; in principle, a weak signal at a single-photon level can be
processed11.

We also demonstrated that the proposed approach can be used
for high-speed imaging. The proposed approach is simple, ver-
satile, and can continuously record a target scene for a long time.
A wide range of time-scale phenomena can be captured by
varying the modulation rate and controlling the acquisition time.
Another feature of this approach is its compatibility with optical
multiplexing techniques, such as WDM. This can compensate for
a drawback of the time-domain approach, i.e., the trade-off
between the resolution of the acquired images and acquisition
time. By incorporating the WDM, image acquisition can be
achieved in a shorter time scale by suppressing the degradation of
the image resolution (Supplementary Fig. 8), which can open a
novel pathway for the imaging of ultrafast dynamic phenomena.

Methods
Experimental setup. In our random speckle pattern projector, a
narrow-linewidth tunable laser (Alnair Labs, TLG-220, line-
width < 100 kHz, 30 mW) was used as a coherent light source.
The laser wavelength was set as 1550 nm. To dynamically gen-
erate speckle patterns, the laser light was phase-modulated using
a lithium niobate phase modulator (EO Space, PM-5S5-20-PFA-
PFA-UV-UL, 16 GHz bandwidth) with a uniformly distributed
pseudorandom sequence generated using an arbitrary waveform
generator (Tektronix, AWG70002A, 25 GS/s). The modulated

light was directed through a polarization-maintaining single-
mode fiber to the MMF, which is a commercially available step-
index MMF with a core diameter of 200 μm, numerical aperture
(NA) of 0.39, and length of 20 m. The light reflected from the
DMD was collected using a focusing lens coupled to an MMF
with a core diameter of 50 μm. Using the MMF facilitates
straightforward coupling with the reflected light and introduces
an additional mixing effect for the time-domain signal. The fiber
was connected to an Erbium-doped fiber amplifier (Thorlabs,
EDFA100P) and directed to the photonic RC processor. The
output signals were amplified with EDFAs and measured using
photodetectors (New Port, 1554-B). We set the number of the
output signals as M= 5 for 4-class recognition tasks and an
anomaly detection task. To evaluate performance, the signals
were digitized using a digital oscilloscope (Tektronix,
DPO72504DX, 25 GHz bandwidth) with τs= 0.04 ns and post-
processed using a computer.

Photonic RC processor. The RC processor was fabricated on a
silicon chip. A 220 nm thick silicon layer was etched to form a
stadium-shaped microcavity coupled with 14 single-mode wave-
guides. The single-mode waveguides were used as the input and
output channels. The stadium was shaped with two semicircles of
radius 25 μm and two parallel segments of length 150 μm. The
width of the single-mode waveguide was 500 nm. A spot-size
converter was used to couple the single-mode waveguide and an
optical fiber. The variation in the fiber lengths coupled to the
output ports of the photonic chip creates an additional time-delay
memory for the input information. It partly contributes to the
memory capacity of the whole RC system (Supplementary
Note 1).

Fig. 6 High-speed temporal image-encoding and reconstruction. a Schematic of the high-speed image encoder. The recorded time-domain signals were
used as the inputs to the neural network model for image reconstruction. PD: photodetector. b Examples of reconstructed images for test samples. In the
experiment, we used the MNIST handwritten digit and Fashion-MNIST image datasets and trained the neural network model using 900 image samples for
each dataset. c Reconstructed images during the DMD display switching from digit image “1” to “2” (see Supplementary Movie 1). In b, c, the time-domain
signals were recorded with the acquisition time TN= 20 ns.
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Compensation for optical losses. The optical losses in the receiver
and processing section were mainly caused by the coupling losses of
the receiver fiber, the coupling loss between the receiver fiber and a
single-mode waveguide in a photonic chip, and the scattering loss in
the microcavity, which were estimated as 8.8 dB, 17 dB, and more
than 15 dB, respectively. The large losses were optically compensated
using EDFAs with a noise figure of less than 5 dB. The signals were
amplified with a gain from 25 dB to 30 dB so that the power was less
than the saturation power of the photodetectors. The signal-to-noise
ratio was estimated to range from 12.5 dB to 14 dB. In the range, the
recognition performance was not significantly changed. The
coupling loss can be mitigated by employing a mode converter to
minimize mode mismatch, while the scattering loss can be reduced
by designing a high-Q cavity, such as a photonic crystal cavity56.

Postprocessing for image recognition. The reservoir outputs were
detected at a sampling time interval of τs during acquisition time TN.
For the M reservoir outputs with a record length of N=TN/τs, MN
features were used as inputs of the (linear) softmax classifier. The
classifier was trained using Python (scikit-learn package) on a
computer (OS: Mac, Chip: Apple M1 Max, Cores: 8, Memory: 64
GB). The computation time was a few seconds and a few ten seconds
for the four-class and ten-class image recognition tasks, respectively.

Image reconstruction. In the image reconstruction task, we used
the reservoir outputs from channels 2–6 (M= 5), which were
sampled at intervals of τs= 40 ps. During preprocessing, the
reservoir outputs were normalized using their respective means and
standard deviations. The number of sampled data points for each
reservoir output wasN= TN/τs; thus,MN sampled data points were
used as the input to the neural network model for image recon-
struction. (TN ranged from 0.2 ns to 20 ns.) In the network model
used to obtain the results shown in Fig. 6b, a fully connected net-
work of sizeMN × 200 was used in the first layer. The outputs were
sent to the first one-dimensional (1D) CNN layer with 10 kernels of
size 3 and the ReLU activation function, followed by batch nor-
malization and max pooling of size 2 × 2. The second 1D CNN
layer used a single kernel of size 3 and the ReLU function, followed
by batch normalization and max pooling of size 2 × 2. Then, in the
fourth and fifth layers, fully connected networks of 50 × 784 and
784 × 784 were used to output the 28 × 28-pixel image. The net-
work model was trained with K= 900 image samples to minimize
the mean squared error, which can be expressed as follows:

E ¼ ð1=KÞ∑K
k ∑i;jðIkði; jÞ � IðtargetÞk ði; jÞÞ2, where Ik(i, j) and

IðtargetÞk ði; jÞ denote the pixel values of the reconstructed image and
target image in the ith row and jth column for the kth sample,
respectively. Subsequently, the model was tested with a separate set
of 100 image samples.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request. The three public image datasets used in this study are
available at the following locations: (1) MNIST: http://yann.lecun.com/exdb/mnist/; (2)
Fashion-MNIST: https://github.com/zalandoresearch/fashion-mnist; (3) Concrete Crack:
https://data.mendeley.com/datasets/5y9wdsg2zt/1.

Code availability
The codes that support the findings of this study are available from the corresponding
author upon reasonable request.
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