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Universal structural patterns in sparse recurrent
neural networks
Xin-Jie Zhang1,2, Jack Murdoch Moore 1,2, Gang Yan 1,2,3✉ & Xiang Li 2,4✉

Sparse neural networks can achieve performance comparable to fully connected networks but

need less energy and memory, showing great promise for deploying artificial intelligence in

resource-limited devices. While significant progress has been made in recent years in

developing approaches to sparsify neural networks, artificial neural networks are notorious as

black boxes, and it remains an open question whether well-performing neural networks have

common structural features. Here, we analyze the evolution of recurrent neural networks

(RNNs) trained by different sparsification strategies and for different tasks, and explore the

topological regularities of these sparsified networks. We find that the optimized sparse

topologies share a universal pattern of signed motifs, RNNs evolve towards structurally

balanced configurations during sparsification, and structural balance can improve the per-

formance of sparse RNNs in a variety of tasks. Such structural balance patterns also emerge

in other state-of-the-art models, including neural ordinary differential equation networks and

continuous-time RNNs. Taken together, our findings not only reveal universal structural

features accompanying optimized network sparsification but also offer an avenue for optimal

architecture searching.
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Recent years have witnessed the success of artificial neural
networks in solving real-world problems1–3 and also the
rapid increase of structural complexity and the number of

parameters in various neural network models4–6. Neural net-
works with a larger number of trainable parameters are more
computationally and memory intensive, being difficult to deploy
in embedded devices with limited hardware resources7. To
address this limitation, there are increasing interests to sparsify
neural networks, i.e., to iteratively reduce the number of weighted
links (trainable parameters) by an order of magnitude, while
maintaining their performance7–12. As shown in explorations of
the Lottery Ticket Hypothesis, once initialized correctly, an
optimal sub-network with similar predictive performance to the
dense network can be found by iterative magnitude pruning13.
For example, neural networks with sparsity level 0.9 (i.e., only
10% links’ weights trainable) are able to achieve comparable
performance to their fully connected counterparts in computer
vision, speech recognition, and natural language processing8–10.
This phenomenon coincides with the fact that the biological
brains of high intelligence and energy efficiency have actually very
sparse neuronal networks. Indeed, the sparsity levels of Cae-
norhabditis elegans, Drosophila, and macaque brain connectome
are about 0.88, 0.94 and 0.70, respectively14,15.

Neural networks can be sparsified by either pruning8–10 or
rewiring11,12,16,17. The former starts from a fully connected net-
work and intentionally removes its links during the training
process. The latter starts from a sparse yet random network and
gradually reorganizes its structure. From the renormalization
group perspective, both can be viewed as inducing a flow in
parameter space18. While these approaches can obtain optimized
sparse networks, the resulting networks have different
topologies19. Previous studies showed that topological properties
of neural networks have a profound impact on their performance.
For example, randomly wired neural networks with small-world
attributes in connection patterns outperform random
counterparts20; the performance of a deep neural network cor-
relates highly with the clustering coefficient and the average path
length of its graph structure21; the connection pattern of neurons
on consecutive layers of sparse feed-forward neural networks
tends to evolve towards scale-free topologies by evolutionary
training11; trained multi-layer perceptrons are typically more
clusterable than initially random networks, especially with
dropout and weight pruning22; a fully connected network spar-
sified by iterative magnitude pruning can emerge with local
connectivity patterns similar to convolutional neural networks23.
While these results revealed the association between topological
properties and the performance of neural networks, most of them
focused on feed-forward neural networks, and there are currently
few studies on the relationship between topological patterns and
performance of sparse recurrent neural networks (RNNs). One
exception is a recent study showing that the correlation between
structural properties of RNNs and their performance could offer
important insights into architectural search strategies24. However,
a fundamental question remains open: Is there a universal
topological patterns in well-performing sparse RNNs?

To address this question, we explore the mesoscopic structure
of RNNs from the perspective of network science. Compared to
previous studies that only focused on network topology, here we
incorporate another dimension: the sign of weights, which has
been shown to impact the performance of sparse networks25. We
find that the topologies of sparse RNNs optimized by both
pruning and rewiring approaches show a common profile of
signed three-node motifs26,27. Our results also show that in the
process of sparsification neural networks evolve towards config-
urations favouring feed-forward loops that are balanced, i.e., have
an even number of negative weights, and this structural balance is

helpful for achieving better performance of RNNs. These phe-
nomena are consistent across many different tasks, and the
emergence of structural balance is quite general, accommodating
other state-of-the-art models such as neural ordinary differential
equation networks28 (Neural ODEs) and continuous-time
RNNs29,30 (CT-RNNs).

Results
Sparsifying RNNs. A typical RNN is shown in Fig. 1a, in which
there are cyclic paths between the neurons. The connections can
be excitatory or inhibitory, i.e., with positive or negative weights,
respectively. RNNs have been successfully applied in natural
language processing, time series prediction, cognitive neu-
roscience, and many other fields2,31,32.

A fully connected RNN can be sparsified by pruning, i.e.,
iteratively removing some connections or neurons (Fig. 1b), and a
randomly wired RNN can be optimized by rewiring, i.e., shuffling
the connections between neurons gradually (Fig. 1c). Here we
employ two pruning methods9,10, called Pruning I and II
hereafter (see “Methods” for details), and two rewiring methods,
i.e., deep rewiring (DeepR)12 and sparse evolutionary training
(SET)11, to sparsify the single hidden layer of our RNNs. The
comparison between the sparse and the fully connected RNNs
shows that, sparse RNNs, with only one tenth or twentieth of
links, are able to achieve comparable performance to fully
connected RNNs (Fig. 1d and Supplementary Table 1).

We analyze also the distribution of link weights during the
training with pruning methods. At the initial state all link
weights are drawn from a normal distribution with zero mean
(Fig. 1e, left). In the pruning phase, unimportant links are
iteratively removed in batches according to their weight
rankings, hence, at the end of pruning the link weights obey a
bimodal distribution, consistent with previous studies8. During
the following fine-tuning phase, we fix the sparsified structure
of the neural network and retrain it, finding that most links do
not change their signs (Fig. 1e, right), i.e., only a few links
change their weights from positive to negative or vice versa.
This phenomenon is observed in diverse tasks and datasets,
including MNIST, SMS spam classification (SMS),
Mackey–Glass chaotic time series prediction (MG), hand
gesture segmentation (HGS), and multi-task cognition (MTC)
(see Supplementary Figs. 1 and 2).

Universal pattern of signed motifs in trained sparse RNNs. For
a RNN with n neurons, the total number of potential links is n2.
When the network is sparsified to have m links, taking into
account the fact that each link can have a positive or negative
weight, the total number of possible network configurations

becomes n2

m

� �
� 2m. The sparsification methods described in the

previous section, either by pruning or rewiring, lead to a subset of
the large potential network configuration space. Hence, a fun-
damental yet unsolved problem is why such a subset of networks
perform better than the rest, i.e., do these optimally trained sparse
RNNs share any common structural patterns? Only very recent
studies attempted to answer this question11,20–22,24,33–36. For
example, neural networks trained by weight pruning are highly
clusterable22, and artificial neural networks initialized with ran-
dom sparse topologies tend to evolve to heavy-tailed topologies
when adaptive sparse connectivity is allowed11.

Here we explore the regularities of well-performing sparse
RNNs from the perspective of motif profile and structural
balance. Motifs are subgraphs consisting of a few nodes, which
can reveal the basic building blocks of complex networks37–40. To
quantify the importance of a specific motif for a network, we
calculate the number of this motif in the original network, No,
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and compare it with the numbers of this motif in degree-
preserved randomized networks. The significance of this motif for
the original network is captured by z-score38

z ¼ No � hNri
σr

; ð1Þ

where 〈Nr〉 and σr are, respectively, the mean and the standard
deviation of the numbers of this motif in degree-preserved
randomized networks. If the z-score is positive and large, this
motif is over-represented in the original network; If the z-score is
negative and its absolute value is large, this motif is under-
represented in the original network; otherwise, the motif is not
significant for this network.

Because the weights of the links in RNNs can be positive or
negative, here we consider signed motifs. As shown in Fig. 2a, b,
there are eight feed-forward motifs consisting of three nodes i, j,
and k. If sign(wij ⋅wjk)= sign(wik), the motif is structurally
balanced; otherwise unbalanced. The hidden layer of RNN is
actually a directed weighted network (see Fig. 1a), and we
investigate the profile of signed motifs in the networks sparsified
by four strategies, i.e., Pruning I, Pruning II, DeepR, and SET, and
for five different tasks. We find that, surprisingly, the motif
profiles in all these diverse settings are consistent, even though we
do not intentionally encourage this topological characteristic
during sparsification. As shown in Fig. 2c–l, the balanced motifs
are all over-represented while the unbalanced motifs are all

under-represented in the well-performing sparse RNNs. Such a
structural balance pattern emerges with iterative sparsification
and is independent of sparsity level (sparsity s= 0.95 in Fig. 2c–g
and s= 0.90 in Fig. 2h–l). We will show below that the structural
pattern also exists in other state-of-the-art RNN models. To the
best of our knowledge, this is the first time that such a universal
pattern is discovered in sparse RNNs.

Emergence of overall structural balance in RNNs. In this sec-
tion we explore the evolution of structural balance during the
training process. To quantify the overall balance of a signed
directed network, the most natural method27,41 is to incorporate
both transitivity and sign consistency in the assessment of
structural balance for each type of triad, i.e., a set of three nodes
with at least one directed edge between each pair. Following a
method41 previously used to measure the balance of signed
directed networks, we consider four types of transitive triads, i.e.,
triads which either comprise a feed-forward loop, or can be
decomposed into two or more feed-forward loops (see Fig. 3a). A
triad is completely balanced (unbalanced) if and only if all of its
decomposed feed-forward loops are balanced (unbalanced); If a
triad decomposes to both balanced and unbalanced feed-forward
loops then it is partially balanced. We calculate the balance ratio
for the set of all transitive triads of each type, then the overall
balance ratio η is calculated by averaging the balance ratios of all
triad types across the network (see “Methods” for details).
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Fig. 1 Sparsifying recurrent neural network (RNN). a An example of the RNN, typically characterized by cyclic links between the hidden neurons.
b Sparsification by pruning, i.e., starting from a fully connected network and iteratively removing its links to obtain an optimized sparse network.
c Sparsification by rewiring, i.e., starting from a sparse yet random network and iteratively rewiring its links to obtain an optimized sparse network. d Test
accuracy vs. epochs for the MNIST task by different sparsification strategies. Black line represents the fully connected RNNs. Pruning I (blue line) and
Pruning II (green line) refer to two pruning strategies, and DeepR (orange line) and SET (purple line) refer to two rewiring strategies. e Link weight
distribution of the RNN hidden layer during the training process (the initial state, at the end of pruning, and the final state respectively). Orange (green)
dots denote the links with positive (negative) weights, and blue dots represent the links whose weights have changed from positive to negative or from
negative to positive from the end of pruning to the final state.
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We use this measure to examine the balance of RNNs during
the training process with different sparsification strategies. We
find that, for pruning strategies (both Pruning I and Pruning II),
the overall balance ratio η increases quickly in the topology
pruning phase, indicating that sparsification by pruning elim-
inates unbalanced links to promote the stability of the system,
causing RNNs tend to evolve towards more structurally balanced
configurations. In the subsequent phase of weight fine-tuning, the
balance ratio does not increase further (while the sparsity level
does not increase either). This phenomenon is consistent with our
observation of that the signs of links barely change in the weight
fine-tuning phase (see Fig. 1e). Similar results are found for
rewiring strategies (both DeepR and SET). Indeed, while the
initial topology is a random sparse network with an overall
balance ratio η around 0.5, the η increases gradually or converges
rapidly to a larger value, i.e., the network becomes more
structurally balanced. The phenomena are independent of
datasets and sparsity levels (s= 0.95 in Fig. 3b–f and s= 0.90 in
Supplementary Fig. 3). These results demonstrate that the
structural balance we found in sparse RNNs does not occur by
chance but emerges during the sparsifying processes.

Better performance for structurally balanced networks. Since
sparse neural networks tend to be structurally balanced, a ques-
tion is whether structural balance can improve the performance
of neural networks in real tasks. To investigate this question, here
we compare the performance of sparse RNNs with balanced or
random topologies. First, we generate balanced networks with
higher balance ratios through the degree-preserving rewiring

approach (see “Methods” for details). Then, we set the balanced
and the random networks respectively as the hidden layer of
RNN. Each link between the neurons in the hidden layer has a
sign (+1 or −1) and its weight is drawn from the uniform dis-
tribution U(0, 1). During the training process, both the structure
and the link weights of the hidden layer are fixed. Only the links
between the inputs and the hidden layer, as well as those between
the hidden layer and the outputs, are trainable. Such a setting
ensures fair comparisons, because the only difference between
these two models is that a model is structurally balanced and
another is not.

We compute the performance of RNN that has a random-
network hidden layer (i.e., whose balance ratio η ≈ 0.5) for four
tasks and set the performance as respective baselines. We then
increase the balance ratio η and obtain the change of RNN
performance. Figure 4 displays the relative performance vs. the
balance ratio, showing that structural balance is able to increase
the prediction accuracy (Fig. 4a–c) or decrease the prediction
error (Fig. 4d) with high probabilities. We have shown a
correspondence between structural balance and improved
performance, but are not implying that unbalanced motifs are
irrelevant to function: performance decreases with the removal of
unbalanced motifs (see Supplementary Fig. 4), and the estimated
relative effect wij ⋅wjk+wik of node i on node k (see “Methods”)
is substantially different from zero in either the balanced or
unbalanced case (see Supplementary Figs. 5–8). Furthermore,
throughout training the distribution of weights in unbalanced
motifs remains similar to the distribution in balanced motifs;
although before the first pruning step weaker links are slightly

Fig. 2 Motif profile in optimized sparse recurrent neural networks (RNNs). a, b The balanced and unbalanced feed-forward motifs consisting of three
nodes (i, j, and k). Positive and negative link weights are denoted by orange and green respectively. c–l Statistical significance, quantified by normalized z-
score, of feed-forward motifs in the hidden layers of RNNs after training by four different sparsification strategies i.e., Pruning I (blue diamond), Pruning II
(green triangle), DeepR (orange circle), and SET (purple inverted triangle), and for five different tasks (i.e., MNIST, SMS, MG, HGS, and MTC). The
numbers of neurons in the hidden layer for these five tasks are 150, 100, 128, 128, and 256, respectively. Two sparsity levels, s= 95% (c–g) and s= 90%
(h–l), are considered. The normalized z-scores are calculated over 20 independent runs, and the error bars represent standard deviation. Positive and
negative z-scores mean motifs are over-represented and under-represented respectively. Other hyperparameters used in these experiments are listed in
Supplementary Table 2.
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Fig. 3 Emergence of structural balance during the training process. a Transitive triads that either contain a feed-forward loop, or can be decomposed into
combinations of feed-forward loops. These four types of transitive triads are used to calculate the global structural balance ratio η of directed signed
networks. b–f Structural balance ratio η of recurrent neural network (RNN) hidden layer over epochs for four sparsification strategies, i.e., Pruning I (blue
diamond), Pruning II (green triangle), DeepR (orange circle), and SET (purple inverted triangle) and five different tasks (i.e., MNIST, SMS, MG, HGS, and
MTC). Each plot is the averaging over 10 independent runs, and the error bars represent standard deviation. The sparsity level of hidden neurons is
s= 95%. The hyperparameters used in these experiments are listed in Supplementary Table 2.
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more strongly represented in balanced motifs than in unbalanced
motifs, this tendency disappears as training continues (see
Supplementary Fig. 9).

Structural balance in other recurrent network models. To assess
whether structural balance patterns exist only in basic sparse
RNNs or are general for sparse recurrent models, here we explore
the sparse structure of CT-RNNs29 (see “Methods”) and Neural
ODEs28 (see “Methods”). Specifically, we train a CT-RNN of 64
hidden neurons for two datasets, i.e., hand gesture segmentation
and human activity recognition, by using the sparsification stra-
tegies of Pruning I and DeepR. After sparsification and training
the link density among the neurons in the hidden layer is 5%, i.e.,
the sparsity s= 95%. We find that the sparse CT-RNN can
achieve comparable or even better performance than its coun-
terpart that has a fully connected network (Fig. 5a). The increase
of the balance ratio during sparsification shows that the same
structural balance patterns emerge in the well-performing sparse
CT-RNNs for both tasks, regardless of which sparsification
strategy is used (Fig. 5b for pruning and Fig. 5c for rewiring).
Similarly, sparse Neural ODE can achieve comparable or even
better performance than the fully connected counterpart, and the
sparse networks are also structurally balanced.

Discussion
In this paper, we studied the structure of sparsified RNNs and
proposed a motif-based method, inspired by social balance the-
ory, to quantify the balance ratio of these signed networks. Our
analysis unveiled a universal structurally balanced pattern in well-

performing sparse RNNs, and showed that such structural bal-
ance does not occur by chance but emerges during training
processes, independent of sparsification strategies, sparsity levels
and specific tasks. Despite differences between sparsification
strategies, particularly when comparing neural networks trained
using the pruning method (which successively reduces the
number of edges) and the rewiring method (which maintains a
fixed number of edges), common structural features consistently
emerge and impact the performance of sparse RNNs. To the best
of our knowledge, this is the first time that a universal pattern has
been discovered in sparse RNN models, which has the potential
not only to improve network performance but also to offer
insights for optimal architecture searching.

Our work bridged two fields, network science and artificial
neural network, that have been independently developing pre-
viously, raising questions worthy of future pursuit. First, in this
paper we focused on recurrent network models. Exploring
structural patterns in other types or more complicated network
models would be an important future work. Second, we found the
structural balance phenomenon and the next aim is to uncover
the underlying mechanism from the perspective of statistical
physics26. Third, our findings suggest promising directions for
optimization.

Methods
Sparsification strategies
Pruning I9. This approach sparsifies the network by setting all
parameters that are lower than the threshold to zero during the
training of the model. The threshold is a monotonically
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are listed in Supplementary Table 2.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01364-0

6 COMMUNICATIONS PHYSICS |           (2023) 6:243 | https://doi.org/10.1038/s42005-023-01364-0 | www.nature.com/commsphys

www.nature.com/commsphys


increasing quantity ϵ determined by a set of hyperparameters

ϵ ¼
θ ´ ðιcurrent � ιstart þ 1Þ=f if ιstart<ιcurrent<ιramp

θ ´ ðιramp � ιstart þ 1Þ þ 3
2 θ

´ ðιcurrent � ιramp þ 1Þ=f if ιramp ≤ ιcurrent<ιend

8><
>:

; ð2Þ

where ι start is the number of iterations before pruning, ι current is
the number of current iterations, ιramp ¼ 1

4 ðtotal epochsÞ is the
number of iterations before increasing the rate of pruning, and
ιend ¼ 1

2 ðtotal epochsÞ is the number of iterations before stopping
pruning, and f is the number of iterations between updates of ϵ.
The value of θ can be calculated as

θ ¼ 2 ´ q ´ f
2 ´ ðιramp � ιstartÞ þ 3 ´ ðιend � ιrampÞ

; ð3Þ

where q is the threshold for absolute values of weights to achieve
the target sparsity s.

Pruning II10. This approach starts from a fully connected network
and reduces the number of non-zero parameters by gradually
increasing the sparsity s of the model. The gradual sparsity
function satisfies

sðtÞ ¼ sf þ ðsi � sf Þ 1� t
T

� �3

for t 2 0; 1; :::;T; ð4Þ

where t is the index of the iterations, si is the initial sparsity

(usually 0), sf is the target sparsity, and T is the number of
pruning steps. Pruning II increases the sparsity level of neural
networks faster than Pruning I, see Supplementary Fig. 10.

Deep rewiring (DeepR)12. DeepR simultaneously optimizes the
connection weights and the connectivity graphs of sparsely con-
nected neural networks. It combines gradient descent with ran-
dom walk in the parameter space and guarantees connectivity
under the given constraints. This is implemented by the following
weight update policy applied to active connections (connections i
with non-zero weights wi)

w0
i ¼ wi � ϵ

∂Lðf ðX; θÞ;YÞ
∂wi

� ϵαþ
ffiffiffiffiffiffiffiffi
2ϵT

p
νi; ð5Þ

where ϵ is learning rate; Lðf ðX; θÞ;YÞ is a loss function of input X,
target output Y and model parameters θ with derivative com-
puted by backpropagation; −ϵα is a regularization term; and the
noise

ffiffiffiffiffiffiffiffi
2ϵT

p
νi enables a random walk in parameter space, where

νi is a standard Gaussian random variable and T controls strength
of the noise. If w0

i ´wi < 0, deactivate connection i and set its
update weight to w0

i ¼ 0. Once a connection deactivated, a new
connection i0 will be randomly selected from the inactive con-
nections, activated and initialized to wi0 ¼ 0.
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Fig. 5 Structural balance of neural ordinary differential equation network (Neural ODE) and continuous-time recurrent neural network (CT-RNN).
a Accuracy results of sparse (blue and green) and fully connected (purple) networks for both CT-RNNs and Neural ODEs. The two tasks are hand gesture
segmentation (HGS) and human activity recognition (HAR). CT-RNN networks are sparsified by Pruning I (Pruning) and SET (Rewiring), and Neural ODE
networks are sparsified by Pruning I (Pruning) and DeepR (Rewiring). The sparsity level is s= 95%. b, c The evolution of structural balance ratio of CT-RNN
and Neural ODE networks during the training process. The sparsification strategies are Pruning (b) and Rewiring (c), respectively. Each dot in these curves
is the averaging of 20 independent runs, and the error bars represent standard deviation. The hyperparameters used in these experiments are listed in
Supplementary Table 3.
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Sparse evolutionary training (SET)11. SET is a heuristic algorithm
for training sparse neural networks with a fixed number of
parameters. It starts from a random sparse network, and at each
training epoch, a small fraction of connections whose weights are
closest to zero are removed, and an equal number of new con-
nections are added randomly and initialized to 0.

Recurrent network models
Neural ODE28. Recurrent neural networks with continuous
dynamics of hidden neurons can be characterized by ordinary
differential equations (ODEs)

dht
dt

¼ f ðht ; xt ; t; θÞ; ð6Þ

where ht is the RNN’s hidden state, and θ is model parameter.
Instead of specifying a discrete sequence of hidden layers,
the hidden unit dynamics can be obtained by numerically
solving Eq. (6) with given inputs xt. We use the fourth-order
Runge–Kutta method with a time step of 1/6 to solve the
differential equations for Neural ODE.

Continuous-time RNN29. Continuous-time recurrent neural net-
works (CT-RNNs) have become popular due to their extensive
ability to approximate dynamical time-variant systems. They
usually use the ODE system to model the effects of time series on
neurons

dht
dt

¼ � ht
τ
þ f ðht ; xt; t; θÞ; ð7Þ

where τ is a time constant. We use τ= 1 in hand gesture seg-
mentation task and τ= 0.5 in human activity recognition task. To
simulate the differential equations for CT-RNNs, we use the Euler
method, for which the time step is set to 1/6.

Measuring overall balance. To evaluate the balance of a signed
directed network, we adopt a measure that satisfies transitivity
and sign consistency. Similarly to the universal method27,41, we
first need to quantify the balance of transitive triads (as shown in
Fig. 3a), which are triads which contain only feed-forward loops
(also called transitive semicycles27,41). For each type i of transitive
triad, we calculate the fraction T(i) of decomposed feed-forward
loops which are balanced, and then average T(i) over all triad
types (i= 1, 2, 3, 4) to obtain the overall balance ratio η of the
network. In our analysis, we use FANMOD42, a tool for fast
detection of motifs in the network, to obtain the profile of triads
and assess their balance based on the NumPy and NetworkX
libraries in Python.

Tuning structural balance ratio. To generate RNNs with struc-
turally balanced configuration, we start from a directed random
network, and independently assign each edge a positive or
negative sign with equal probability. To increase the global
structural balance, we use the degree-preserving rewiring algo-
rithm with rewiring probabilities determined by the local struc-
tural balance ratio χ, that is, the proportion of the balanced feed-
forward motifs within the triples associated with candidate edges.
Specifically, the rewiring method is inspired by simulated
annealing to minimize the energy E(χ)= ∣1− χ∣: (1) selecting two
edges with uniform probability and calculating E(χ) corre-
sponding to the current state; (2) rewiring these two edges and
calculating the E(χ*) of the resulting state; (3) if E(χ*) < E(χ), then
accepting the new state, otherwise accepting the new candidate
state with the probability of e−βΔE, where ΔE= E(χ*)− E(χ) and
β is the inverse temperature; (4) repeating the above steps while
gradually increasing β, and stopping if temperature reaches the
predefined value.

Motif lesion experiments. To explore the impact of unbalanced
feed-forward motifs on network performance, we generate
directed networks of n+ 2m nodes consisting of a network core
of n nodes together with m tangent feed-forward motifs. The
network core comprises a random directed network the nodes of
which are connected in each direction with edge density p.
Tangent feed-forward motifs are so-called because they coincide
with the network core at only one point, and each comprise one
node randomly chosen from among the n nodes of the network
core, and two nodes that are only connected to other nodes in the
tangent feed-forward motif (as shown in Supplementary Fig. 4a).
We set these networks as the hidden layer of RNNs, which we
train on the MNIST and MG datasets with the network structure
fixed. After training, we damage unbalanced tangent feed-forward
motifs one by one, in a random order, by removing their edges,
and then evaluate the performance of the damaged RNNs without
further training.

Estimating the effect of a single feedforward loop. To estimate
the effect of a single feed-forward loop with edges i→ j, j→ k and
i→ k (see Fig. 2a, b), we assume the biases of nodes j, k are zero and
isolate them from other nodes. Fixing the state of node i at a
constant value hi, the state of node k will approach hk ¼ σ

wikh
i þ wjkσðwijh

iÞ
� �

, where σ is the activation function. Using a

Taylor expansion about hi= 0, the state hk can be approximated as

hk ¼ σ wjkσð0Þ
� �

þ wik þ wij � wjkσ
0ð0Þ

� �
σ 0 wjkσð0Þ
� �

hi. Assum-

ing that the activation function satisfies σ(0)= 0 and σ 0ð0Þ ¼ 1, as
is the case for our choice, σðxÞ ¼ tanhðxÞ, the relative effect of node
i on node k can be estimated as hk/hi=wij ⋅wjk+wik.

Data description
SMS spam classification. The SMS spam collection dataset con-
tains 5574 tagged English messages, which are pre-processed by
removing special characters, converting all texts to lowercase,
extracting words with spaces, and other standard text processing
procedures. The maximum length of each text is set to 25, only
words that appear more than 10 times will be considered, and
each word is embedded in a trainable vector of size 50. In the
SMS classification experiment, we split the data into training and
test sets by a ratio of 8:2.

Mackey–Glass chaotic time series prediction (MG). Mackey–Glass
time series is a benchmark task to test the forecasting perfor-
mance of neural networks. It satisfies the following delay differ-
ential equation

dxðtÞ
dt

¼ β � xðt � τÞ
1þ xðt � τÞn � γxðtÞ; ð8Þ

our experiments use τ= 23, n= 10, β= 0.2, γ= 0.1. For each data
series, we generate τ

γ ¼ 230 random values uniformly distributed
between 1.1 and 1.3, then solve Eq. (8) numerically with a stepsize
of 10, with the first 1000 points discarded to eliminate initial
transient. We generate a time series of length 50,000, of which
40,000 time points are used for training and the remaining 10,000
time points for testing. We predict the next 50 time steps based
on the given 500 time steps, and use the mean squared error of
the predicted values as a metric to measure the performance of
neural networks.

Multi-task cognition (MTC). The dataset of cognitive multi-tasks
is commonly used in neuroscience studies of animals and con-
tains 20 cognitive tasks related to working memory, decision
making, categorization and inhibitory control32. We evaluate the
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network performance by the average of the behavioral perfor-
mance across all tasks.

Hand gesture segmentation (HGS). The gesture phase segmenta-
tion task records seven videos of people gesturing, where each
sample contains 32 input features and a corresponding output
phase (i.e., rest position, preparation, stroke, hold and retraction).
We split the dataset into training (75%), validation (10%), and
test (15%) sets, and divide the sequences of these three sets into
overlapping sub-sequences of exactly 32 time steps. We evaluate
the network on the validation set every training epoch, and save
the weight configuration that achieves the optimal validation
metric throughout the training process. At the end of training, we
restore the previously saved optimal weights and evaluate the
network performance on the test set.

Human activity recognition (HAR). This task concerns the
recognition of human activities, such as walking, sitting, and lying.
For each sample, the input variables are pre-processed with seven
features, and the output variable represents one of the seven activity
categories. The data has been split into training set and test set, we
select 10% of the training set as the validation set and align the
sequences of these three sets into overlapping sub-sequences of
exactly 32 time steps. We calculate the validation and test metrics
after each training epoch and take the classification accuracy on the
test set when the network achieves the best validation metric during
the whole training process as the network performance.

Data availability
The datasets utilized in this paper are publicly available and can be accessed through the
following links: MNIST (http://yann.lecun.com/exdb/mnist/); SMS spam classification
(https://archive.ics.uci.edu/ml/datasets/sms+spam+collection); Multi-task cognition
(https://github.com/gyyang/multitask); Hand gesture segmentation (https://archive.ics.
uci.edu/dataset/302/gesture+phase+segmentation); Human activity recognition (https://
archive.ics.uci.edu/ml/machine-learning-databases/00196/ConfLongDemo_JSI.txt).

Code availability
The code to reproduce all experiments is available online at https://github.com/
XinjieZhang/sparse-RNNs
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