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Genetic-tunneling driven energy optimizer for spin
systems
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Finding the ground state of complex many-body systems, such as magnetic materials con-

taining topological textures, like skyrmions, is a fundamental and long-standing problem. We

present here a genetic-tunneling-driven variance-controlled optimization method, that effi-

ciently identifies the ground state of two-dimensional skyrmionic systems. The approach

combines a local energy-minimizer backend and a metaheuristic global search frontend. The

method is shown to perform significantly better than simulated annealing. Specifically, we

demonstrate that for the Pd/Fe/Ir(111) system, our method correctly and efficiently identifies

the experimentally observed spin spiral geometry, skyrmion lattice and ferromagnetic ground

states as a function of the external magnetic field. To our knowledge, no other optimization

method has until now succeeded in doing this. We envision that our findings will pave the

way for evolutionary computing in mapping out phase diagrams for spin systems in general.
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Optimization algorithms are central in many areas of
physics, for instance whenever one is dealing with com-
plex systems such as the many-body problem. A common

challenge is to find the global minimum in the potential energy
surface (PES) describing the system. The PES is often extremely
complicated with numerous local minima, making it very hard to
identify the global minimum. Interestingly, these types of systems
can often be described using the language of spin models.
Therefore, spin models have widely used in areas not directly
connected to magnetism, e.g., percolation theory, protein folding,
and stock market trading models1.

In this work, we specifically focus on the important class of two-
dimensional (2D) spin systems with complexmagnetic interactions—
interactions that give rise to frustration or convoluted magnetic
textures, such as for instance, skyrmions or other magnetic topolo-
gical structures2–4. For such systems, a number of optimization
algorithms have been developed, e.g., gradient-descent-based meth-
ods, Monte Carlo approaches, and methods based on spin
dynamics5–7. A recurring problem, however, is the tendency to get
trapped into one of the many local energy minima in the PES
(the freezing problem) rather than converging toward the global
minimum within a reasonable amount of time.

To attempt to improve on this situation, a viable route is to
explore meta-heuristic optimization methods aimed at efficiently
exploring the search space in order to find near-optimal solutions. In
particular, Markov chain Monte Carlo (MCMC) based heat-bath
methods—a group of non-gradient sampling algorithms—have
proven themselves to be both effective and robust regarding
searching for low-energy states at finite temperature8,9. Unfortu-
nately, in their current implementations10,11, there is still a great deal
of prior knowledge needed—e.g., appropriate initial guesses and
manual convergence analysis—in order to achieve acceptable results.

In order to remedy these shortcomings, several hybrid
approaches based on the idea of combining metaheuristic algo-
rithms and typical optimization approaches, e.g., hybrid Monte
Carlo12, neural annealing optimization13 or neural evolutionary
methods have been proposed14,15. However, these approaches
have mainly been designed for the Ising model and may not be
ideal when handling realistic magnetic materials with long-range
interactions.

Here, inspired by the idea of stochastic tunneling16 hybrid meta-
heuristic approaches17,18, and evolutionary approaches14,15,19–21 a
metaheuristic energy minimization approach is proposed and tested
for magnetic systems with topological magnetic textures, with the
goal of efficiently identifying the global minimum (a zero kelvin
property). Specifically, it combines an evolutionary algorithm with a
local optimizer. The evolutionary algorithm provides a way to select
which new regions of the PES to explore, and the local optimizer
finds the nearest local minima in the selected regions. We have
selected to name our method genetic tunneling optimizer (GTO) to
highlight its ability to tunnel energetically inaccessible regions16 of the
PES using not only mutations but also cross-over operators i.e., a
genetic approach. We analyze the performance of our proposed
algorithm, which is designed to have a high ability to escape from
local traps during energy minimization. In particular, we investigate
the efficiency of our algorithm by performing simulations of a 2D
monolayer with model exchange parameters that give rise to Bloch-
type skyrmions as well as the experimentally well-studied Pd/Fe/
Ir(111) system, which exhibits a Néel-type skyrmionic phase. Our
results show that the proposed approach is indeed highly efficient in
finding the global minimum in each of these test systems.

Results
Spin system parameterization. Searching for the ground state of
a spin system at zero kelvin can be reformulated as finding the

global minimum of the PES defined by a many-body Hamiltonian
describing the magnetic interactions between the constituents of
the system. In the present work, we use a Heisenberg-type clas-
sical atomistic spin Hamiltonian of the form

H ¼�∑
i≠j
J ijSi � Sj �∑

i≠j
Dij � Si ´ Sj

� �
�∑

i
Bext � Si �∑

i
KU Si � ez
� �2

;
ð1Þ

where Si is the spin moment at site i. Jij, Dij, KU, ez, and Bext are
Heisenberg exchange interactions, Dzyaloshinskii-Moriya inter-
actions, uniaxial anisotropy, the easy axis vector, and the applied
field, respectively. Typically, these four Hamiltonian terms are
sufficient for a good description of the system one wishes to
analyze (see, e.g., ref. 6). Note that for some magnetic systems,
additional terms may be relevant to include, e.g., the biquadratic
exchange coupling or the four-ring-interaction6.

In this work, we test our algorithm by studying two different
systems—a model system and a system with realistic materials-
specific magnetic interaction parameters. In the model system, we
use only nearest-neighbor interactions, and the parameters are
chosen to generate Bloch-type skyrmions. The second system is
the Pd/Fe/Ir(111) system. Here, we included all interactions
within the 30 nearest neighbor shells. All parameters were
calculated by means of ab-initio DFT22,23, and can be found in
Supplementary Note 7.

In the present work, we have considered spin configurations of
100 × 100 atomic spins, but this number can naturally change,
depending on the studied system. All interaction data for both
systems can be found in the GitHub repository (See data
availability section).

Outline of the genetic tunneling procedure. Finding the global
minimum in a complex PES of a spin system such as the one
described above is commonly a non-deterministic polynomial-
time hard (NP-hard) problem13. These problems are very chal-
lenging, which has prompted the development of various heur-
istic methods, for example simulated annealing (SA). To solve
this global energy optimization problem, we propose a genetic
tunneling algorithm. The complete details are described in the
Method section, here, we outline the most salient features. The
procedure is illustrated schematically in Fig. 1, where, in parti-
cular, a flow chart of the method can be found in panel (d). Our
approach builds on genetic algorithms that serve as an optimi-
zation scheme by mimicking the flow of genetic material through
generations with an evolutionary tendency for finding better
solutions. In our method, segments of spin configurations are
conceptually represented as genes, each assigned a quality tag in
terms of the underlying energy. In this way, following the logic of
genetic algorithm-based optimisation, our method aims at finding
the global minimum. Importantly, the overall aim of the genetic
algorithm is to allow us to reach the global minimum with
minimal numerical effort, while we avoid becoming trapped in
metastable configurations (i.e., local minima).

The workflow used here can be summarized into two parts:
finding spin configurations corresponding to local minima in the
PES and using these spin configurations to perform genetic
tunneling over the PES.

The very first step in the procedure is of course to provide basic
information about the system to the algorithm—input which
consists of physical information such as crystal lattice, system
size, atomic positions, and magnetic interactions. An initial set of
preliminary spin configurations is then created. These spin
configurations serve as a first coarse guess and are typically far
from any energy minimum. For each of these preliminary
configurations, a local optimization module is invoked, relaxing
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Fig. 1 Conceptual illustration of the genetic tunneling optimizer. a Conceptual illustration of the variance-threshold controlled localized optimization
process to find low-energy spin configurations. The contour map in the middle shows an example of a potential energy surface (PES). The darker zones in
the contour map represent lower energy areas. The arrows connect the local optimization process and the configuration point in the PES. At the top of the
figure, five colored blocks, i.e., Early, Rough, Medium, Fine, and Precise, denote different converge levels of the local search algorithm. The Early level means
the lowest convergence and the Precise level represents the highest convergence. b Conceptual illustration of how the genetic operators are applied to the
spin system. The whole process involves three subprocesses, i.e., spin-configuration segmentation, crossover, and perturbation-based mutation (for
details, see the Method section). In the spin configuration segmentation part, different from conventional binary-based genetic representation, the
configuration-space spin textures are viewed as information carriers conceptually similar to chromosomes in biological systems. The spin textures are
divided into several segments that can be used in the same way as gene segments. Examples of the square-crossover and mutation operators are shown at
the top of Fig. (b) (for details about these genetic tunneling operators, see the Method section). c Conceptual illustration of how the genetic tunneling
operators tunnel through the energy barriers and enable a heuristic search for spin configurations with lower energy, with the ultimate aim of finding the
global minimum. The curve represents the PES, and the colored stars represent optimized spin configurations corresponding to local minima of the PES at
temperature T. The height of the shadow-colored region equals kBT. d Flowchart of the entire procedure. The dark yellow boxes at the top represent input
data that need to be prepared before execution, and the light yellow boxes represent generated spin configurations. The light yellow box with a dashed
boundary represents an optional choice. The gray rounded rectangles represent operations. The white diamond-shaped boxes represent conditional
statements. Notation in the flow chart: HðC0

r Þ and HðC0
i Þ represent the energy of a generated spin configuration corresponding to a local minimum in the

PES and the energy of any spin configuration that has already been selected as part of the initial parent generation, respectively. ΔE is a threshold energy
difference set so that spin configurations that are too similar to the already selected ones are discarded—see Eq. (8) for more details. C0 is the initial sets of
selected spin configurations, constituting the first parent generation. Finally, CLOPT and COPT are the sets of local and final optimized spin configurations,
respectively. MCMC and SLLG optimizer represent Markov chain Monte Carlo and spin-dynamics-based local optimizers, respectively.
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all magnetic orientations so as to reach, for each of them, the
closest local minimum. A selection also takes place so that the
spin configurations that become members of the first parent
generation are not too similar to each other. The end result of this
step is a diverse set of initial-generation spin configurations
representing local minima in the PES. Then follows the
metaheuristic search. Here, the set of initial-generation spin
configurations representing local minima is segmented into
pieces. The pieces are then combined together in new ways and
also subjected to some mutation by adding random noise, see
Fig. 1b. This allows us to reach new, unexplored parts of the PES.
The process is then repeated until convergence, i.e., new local
minima are identified, segments of the corresponding spin
configurations are combined, and yet new parts of the PES are
reached, with the aim of identifying spin configurations with still
lower energies than the ones in the previous generations.
Additional details on the various parts making up the genetic
tunneling method can be found in the Method section.

Algorithm performance comparisons and optimization. Each
different part of the method proposed here can be implemented
in various ways. In order to optimize the performance of our
method we have therefore systematically combined a number of
possible implementations of each part and compared the resulting
performance. Specifically, we combine three typical genetic
selection operators, i.e., Rank, Tournament, and Roulette Wheel,
with two different local optimizer backends – the MCMC-based
optimizer and an optimizer based on the stochastic Landau-
Lifshitz-Gilbert (SLLG) equation. Finally, for the purpose of
analyzing the impact of starting from a pre-optimized initial spin
configuration, an initial spin configuration generated with SA was
tested as an initial guess, in addition to simply using a randomly
generated initial spin configuration.

We have set the temperature to a very low value, 0.1 mK, in
order to obtain highly converged energies and spin configurations
of the local minima. This enables a more fair comparison of the
performance of the various implementations, since random noise
in the optimization process is reduced. For an explanation of the
role of temperature in the algorithms and how we use the term
ground state in relation to that, see the Method section. The
simulations are performed for a spin Hamiltonian describing the
2D Pd/Fe/Ir(111) system.

The results are presented in Fig. 2. To facilitate comparison, a
classical MCMC-based SA optimization with a fine temperature
mesh and 2.5 × 106 steps is used as baseline. These baseline results
are denoted SA in Fig. 2a, and the SA predicted spin
configuration is shown in Fig. 2c. For more details on the SA
setup we have used, see the Method section. A clear trend in
Fig. 2a is that all tested combinations indeed manage to find spin
configurations with gradually lower energy with each iteration.
However, there is a significant difference in performance between
the MCMC-based implementations and the spin-dynamics-based
ones. Specifically, we find that with a finite number of local
optimization steps and global searching epochs, all spin-
dynamics-based optimizers may not achieve convergence. In
general, the implementations with an MCMC-based backend
perform significantly better, yielding consistently lower energies
for the same number of iterations. In fact, all tested genetic
tunneling operators combined with the MCMC backend
invariably reach convergence and find solutions with lower
energy compared to the other tested methods, including the
baseline reference energy obtained by SA. We also measured and
compared the computing time for all implementations, and found
that the ones with the MCMC backend were faster on average, see
Fig. 2b.

Figure 2d–k shows the spin configurations after 60 iterations
for each tested implementation. All implementations with the
MCMC backend (Fig. 2d–g) find a hexagonal skyrmion lattice
with a unit cell size in good agreement with previous studies24,25.
In contrast, none of the implementations based on the spin-
dynamics backend (Fig. 2h–k) manage to identify a stable
hexagonal skyrmion lattice within 60 iterations. The better
efficiency of the Monte Carlo-based simulations are natural since,
in the form employed here, they are designed and used to find
minimum configuration of atomic moments, while the spin-
dynamics equations are designed to follow the real-time
equations of motion of a physical object, in this case an atomic
spin. Hence, the latter attempts to follow the time evolution of an
object, in many cases not even attempting to find a ground state,
while the former are tailored to quickly find the lowest
energy state.

All in all, we find that the Rank selection genetic operator
algorithm in combination with the MCMC backend appears to be
the best choice. Furthermore, we find that starting from a
completely random spin configuration is a good choice, since no
significant gain could be identified in the tests where we instead
started from an initial configuration found using SA. Thus, in the
remainder of this work, we use the algorithm corresponding to
option (d) in Fig. 2, i.e., MCMC with Rank selection and random
initial input, and refer to it as GTO-MCMC-Rank.

Effect of system size and applied field on performance. In Fig. 3,
we summarize how our method performs as a function of system
size and applied magnetic field, and compare with the corre-
sponding performance of SA. In all these simulations the tem-
perature was set to a low value of −0.1 mK and the tests were
done for the Fe/Pd/Ir(111) system. Fig. 3a shows total energy (left
y-scale) and execution time (right y-scale) as a function of system
size. Here, the magnetic field was set to 2.7 T, and all simulations
were performed on a single node with 32 CPU cores.

We find that GTO-MCMC-Rank consistently identifies lower
energy states compared to SA for all tested system sizes. GTO-
MCMC-Rank converges faster than SA for system sizes up to about
160 × 160 but scales less well than SA for larger system sizes. We also
evaluated the performance of the GTO-MCMC-Rank as a function
of applied field, see Fig. 3b. The left y-scale shows the total energy of
the system, and the right y-scale the total topological charge (or
skyrmion number). Just as before, we see that GTO-MCMC-Rank
consistently identifies lower energy states compared to SA.

The most remarkable result here is however how GTO-
MCMC-Rank very successfully can be used to distinctly identify
the three different phases of the system and their regions of
stability with respect to the magnetic field. This is because the
method predicts the topological charge with excellent precision.
Below 1.5 T the spin-spiral state is the ground state and above
3.3 T the ground state is ferromagnetic, both with zero topological
charge. From about 1.6 T to around 3 T, a hexagonal skyrmion
lattice phase is predicted, with a constant topological charge of 36
(corresponding to a 6 × 6 skyrmion lattice) for the investigated
system size (the process of predicting under 0.7 T, 2.7 T, and 3.7 T
can be found in supplementary Movie 1, supplementary Movie 2,
and supplementary Movie 3, respectively.). In contrast, the SA
simulations predict nonzero topological charge over the entire
investigated magnetic field interval. Thus, SA neither identifies
the three different phases, nor the intermediate regions. More-
over, the topological charge computed with SA oscillates visibly in
the region where there should be a stable hexagonal skyrmion
lattice. In the regions where the topological charge should be zero,
SA predicts a topological charge only slightly different compared
to the skyrmion-lattice region.
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The GTO-MCMC-Rank simulations developed here predict
that the zone where the skyrmion lattice is the ground state is
somewhat wider than what was found in ref. 22. The blue and gray
areas indicate transition zones in the GTO-MCMC-Rank
simulations, in which the topological charge changes as the
system changes its ground state. Energy differences between
configurations with various topological charges in the second
transition zone can be found in Supplementary Note 2, 6. Finally,
in Fig. 3c, d, we show how the GTO-MCMC-Rank execution time
scales with the number of CPU cores used. As already mentioned,
our method lends itself well to concurrent computing, which
becomes increasingly important the larger the addressed system
is. In both figures, the left y-scale is execution time and the right
y-scale is the computed total energy of the system. We show user
execution time (the dark green circles) as well as core execution
time, i.e., the user execution time multiplied with the used
number of cores (dark blue circles). In Fig. 3c, the size of the
tested system is 100 × 100, whereas in Fig. 3d it is four times
larger—200 × 200. As regards the computed total energy per atom
(the light green circles), it is found to be effectively constant, as

expected. From the core execution time data, we see that the
method scales very well with the number of cores. For the
100 × 100 system in Fig. 3c, the core execution time is smallest for
64 cores, but user execution time can still be gained up to 256
cores. For the 200 × 200 system, the corresponding numbers are
256 and 512.

Computed ground state as a function of applied magnetic field
with constant temperature. In this section, we present results
from investigations on how the genetic tunneling algorithm
performs at a temperature of 8 K for different applied fields.
Results for two simulated systems are shown in Fig. 4. The left
column (Fig. 4a–c), shows simulations on an artificial frustrated
spin system that exhibits a spin spiral state (a), a Bloch-type
skyrmion state (c), and ferromagnetic state (e) at low, medium,
and high applied field, respectively. The simulated system in the
right column in Fig. 4b, d, f is a Pd/Fe/Ir(111) monolayer, which
also has three states at different fields, but instead of Bloch sky-
rmions, it contains Néel-type skyrmions.

Fig. 2 Performance analysis of the genetic tunneling optimizer with different local optimizers. a Performance benchmark of the genetic tunneling
optimizer at 0.1 mK. The simulation system is Pd/Fe/Ir(111), with an external magnetic field of 2.7 T directed out of the plane. Here Markov chain Monte
Carlo (MCMC) and SLLG represent Markov chain Monte Carlo and spin-dynamics-based local optimizers, respectively. In this work, the SLLG local
optimizer solves the stochastic Landau-Lifshitz-Gilbert (SLLG) equation with an artificial damping value of 0.4. Rank, Roulette Wheel, and Tournament
represent genetic selection methods (for details, see the Method section). The abbreviation SA stands for simulated annealing, the results of which are
used as reference energy and only used in the first generation in this work (See Supplementary Note 4). For better comparison, the results from SLLG with
Rank, Roulette Wheel, and Tournament selection methods are shown from generation 12 of the algorithm. b The time consumption in units of node-hours
for each optimizer. All of the simulations are performed on an Intel Xeon Gold 6130 CPU node with 32 cores without concurrent processes.
c–k Visualization of the final spin configurations from each optimizer. Here, blue color means that the spin points downwards away from the reader,
whereas red color means that the spin points upward, toward the reader. The white color indicates that the spin direction is parallel to the plane.
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As shown in Fig. 4a–c, both the GTO-MCMC-Rank and SA
can find the ground state of the artificial system with different
applied fields, but as regards the energy itself, the genetic
tunneling algorithm is more successful in finding spin config-
urations with lower energy. This result is also reflected in the real-
space spin configuration visualization, especially in Fig. 4b.
Evidently, while magnetic moments in both systems follow the
Boltzmann distribution at 8 K, the hexagonal skyrmion lattice
found with the genetic tunneling algorithm is more stable.

From Fig. 4d–f, we find that also for a more complex, real
system, the GTO-MCMC-Rank still performs better than SA.
When the applied field is 1 T, the ground state predicted by the
GTO is a twisty spin spiral state which is in remarkably good
agreement with the experimental data in ref. 25. However, SA
gives a hybrid phase that contains both spin spirals and bubbles.
At 2.7 T, GTO-MCMC-Rank finds a more reasonable hexagonal
skyrmion lattice compared to SA. Finally, at 4.4 T, the GTO-
MCMC-Rank correctly finds the ferromagnetic state (with some
fluctuations due to finite temperature) whereas in the SA solution
there are several complex structures (bubbles or skyrmions). To
summarize, the final system energy that we obtain from the GTO
is lower than what we obtain using SA in both systems addressed.

Thus, we conclude that our algorithm works well for a range of
magnetic fields in the presence of thermal fluctuations.

Computed ground state as a function of temperature with
constant applied magnetic field. Next, we analyzed the perfor-
mance of our algorithm as a function of temperature. In all these
simulations, the applied magnetic field was set to 2.7 T (i.e., in the
middle of the interval where the skyrmion lattice is the ground
state) and the tests were done for the Fe/Pd/Ir(111) system. The
results are shown in Fig. 5. In this case, we find that the ground
state energies predicted by GTO-MCMC-Rank (yellow symbols)
and SA (green symbols) are broadly similar. However, as the
temperature increases, the difference increases, with GTO-MCMC-
Rank consistently finding slightly lower energy states, see Fig. 5a.
We also computed the topological charge of the predicted ground
states. In the GTO-MCMC-Rank simulations, the topological
charge decreases with temperature, which is consistent with
experimental results25,26 and also what one would expect. In
contrast, SA does not reproduce this trend. Additional data in the
form of spin configurations are shown in Fig. 5b–i, where the top
row is the GTO-MCMC-Rank spin configuration results, and the

Fig. 3 Performance analysis of the genetic tunneling algorithm at low temperature on the Fe/Pd/Ir (111) system with different system sizes and
applied fields. a Predicted ground-state energy and simulation execution time as a function of system size. Due to limited space in the figures, we use the
label GTO to refer to GTO-MCMC-Rank computations. SA stands for simulated annealing. Here MCMC and GTO represent Markov chain Monte Carlo-
based local optimizers and the genetic tunneling optimizer, respectively. b Total energy and topological charge as a function of applied magnetic field. The
size of the simulated system is 100 × 100, and the temperature is set to 0.1 mK. SS, SkL, and FM represent the spin spiral, skyrmion lattice, and
ferromagnetic states, respectively. (Discussion on system size, see Supplementary Note 5) The cyan- and purple-colored blocks indicate transition zones
between the states. c First-generation simulation user execution time (green symbols) and core execution time (blue symbols), and predicted ground-state
energy (yellow symbols) as a function of the number of CPU cores for a 100 × 100 spin system. The lines are guides for the eye. d Same as in (c), but for a
200 × 200 spin system. Each point in (c) and (d) represents five simulations. The time error bars in (c) and (d) show the highest, lowest, and average first-
generation execution time. The energy error bars in (c) and (d) indicate the highest, lowest, and average predicted ground state energies.
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bottom row is the corresponding SA results. In the GTO-MCMC-
Rank images, remnants of the ground-state hexagonal skyrmion
crystal pattern can be seen up to 32 K, whereas such patterns are
absent in the SA results above 8 K. It is reasonable to expect that the
zero kelvin hexagonal skyrmion lattice breaks up gradually with
increasing temperature, and therefore, we believe that these images
further strengthen the conclusion that GTO-MCMC-Rank has
superior performance compared to SA.

Discussion
To the best of our knowledge, this is the first study establishing
a genetic-tunneling optimization protocol for complex spin
systems with long-range interactions. The algorithm presented
in this work has general applicability to spin systems, and is
here shown to successfully find the ground state for monolayer
spin systems at finite temperatures and at a variety of applied
magnetic fields. The approach contains two essential parts: (1) a

Fig. 4 Comparison of ground state searching between simulated annealing and genetic tunneling optimizer. Searches for the ground state in an artificial
Bloch-type skyrmion system and a Néel-type skyrmion system Pd/Fe/Ir(111), using a simulation temperature of 8 K. Due to limited space in the figures, we
use the label GTO (genetic tunneling optimizer) to refer to GTO-MCMC-Rank computations where MCMC represents Markov chain Monte Carlo based
local optimizers. SA stands for simulated annealing. a–c These show the simulation results for the artificial Bloch-type skyrmion system with 40 T, 150 T,
and 400 T applied fields, respectively. d–f These show the simulation results for the Pd/Fe/Ir(111) system with 1.0 T, 2.7 T, and 4.4 T applied field,
respectively. The ground states in (a–d), (b–e), and (c–f) are a spin spiral, a skyrmion lattice, and the ferromagnetic state, respectively. In each panel, the
red line represents the energy of the best individual of each generation, the yellow band represents the energy distribution of elite individuals34,35 (See
Supplementary Note 3) in each generation, and the green line represents the energy of the spin configuration predicted using SA. To show the optimization
process in detail, we set the convergence limit to an extremely low value. Based on this, all optimizations will run up to the preset maximum iteration
threshold of 50 in this section. The real-space spin configurations found by GTO-MCMC-Rank and SA are visualized in the middle of each panel. Here, blue
color means that the spin points downwards away from the reader, whereas red color means that the spin points upward toward the reader. The white
color indicates that the spin direction is parallel to the plane.
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variance-threshold controlled local optimizer, which includes an
MCMC optimizer and a spin-dynamic optimizer, and (2) a spin-
configuration space genetic tunneling metaheuristic search
module. The algorithm is designed to be able to escape from a
local minimum through the use of genetic tunneling operators
and find the global minimum for a given system without any
initial guess. The efficiency of our genetic tunneling protocol is
investigated on both a simple artificial system with magnetic
frustration and a Pd/Fe/Ir(111) monolayer that includes complex
Heisenberg and Dzyaloshinskii-Moriya interactions, as calculated
from Density functional theory (DFT). The results indicate that
the GTO-MCMC-Rank has better performance than SA when it
comes to finding stable spin configurations as a function of
external parameters like temperature and applied magnetic field.
Most noteworthy, we here considered the spiral structure, the
skyrmion lattice, and the ferromagnetic state. Our method suc-
cessfully finds all three ground states as a function of magnetic
field, and also correctly identifies the transition regions in
between. To our knowledge, no other theoretical method has yet
demonstrated such an ability. It can also be concluded that the
performance of the algorithm is limited neither by the system
size, geometry, nature of the magnetic interactions, temperature,
nor the applied field strength.

In practice, for optimal performance of the protocol, the various
hyperparameters will of course need to be fine-tuned depending on
the system under consideration. For example, a non-optimal var-
iance threshold may increase the risk of premature convergence.

In conclusion, we have explored a genetic tunneling protocol,
which is designed to predict the magnetic ground state of a
classical spin Hamiltonian at finite temperature. We demonstrate
that our method is robust for 2D systems, both for simpler model
systems and for the more complex Pd/Fe/Ir(111) system. We
envision that our findings will pave the way for evolutionary
computing in finding the ground state of magnetic systems, e.g.,
for magnets with non-trivial topology and spin glass systems.
Since complex systems in a very general sense can be cast into the
language of spin Hamiltonians, it also appears possible that the
here suggested protocols will find applications in other areas of
solid-state science, or even in fields outside the natural sciences.

Methods
A metaheuristic algorithm can interactively guide and modify the
operations of subordinate heuristics, to efficiently produce pre-
ferable solutions within a high-dimensional search space27,28.
Representative metaheuristic algorithms include SA, Particle
Swarm Optimization29, and Genetic Algorithms (GA)30. It has
been shown that a hybrid algorithm that combines the methods
mentioned above with a local optimizer, e.g., gradient descent,
can be an efficient way to solve the global optimization problem
within a complex configuration space31.

In this study, we introduce a genetic tunneling strategy in the
form of a hybrid algorithm—connecting the local minimization
approach shown in Fig. 1a to a metaheuristic genetic-tunneling
module—with the aim of finding the global energy minimum of

Fig. 5 Ground-state search for the Pd/Fe/Ir (111) system as a function of temperature. a The ground state energy (left y-axis) and topological charge
(right y-axis). The applied magnetic field is set to 2.7 T. Due to limited space in the figures, we use the label GTO to refer to GTO-MCMC-Rank
computations. Here MCMC and GTO represent Markov chain Monte Carlo-based local optimizers and the genetic tunneling optimizer, respectively. SA
stands for simulated annealing. b–e Real-space plots of ground-state spin configurations identified using GTO-MCMC-Rank for four different temperatures.
f–i Real-space plots of ground-state spin configurations identified using SA for four different temperatures. The green dashed lines point out patterns with
hexagonal ordering of skyrmions. The color scheme in the plots (b–e) is the same as in Fig. 2c–k, where blue color means that the spin points downwards
away from the reader, whereas red color means that the spin points upward, toward the reader. The white color indicates that the spin direction is parallel
to the plane.
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the spin system. For an overview of the procedure, see the flow
chart in Fig. 1d. In the following sections, we describe the main
implemented algorithms and how they interact.

Selection and genetic-tunneling operators. Below, we describe
the evolutionary parts of our hybrid algorithm. Each generation
consists of Np spin configurations, i.e., for the kth generation we
have

Ck ¼ Ck
i

��i ¼ 1; 2; � � � ;Np

n o
; ð2Þ

where Ck is the set of all spin configurations in generation k, and
Ck
i is one spin configuration. Starting from the kth generation of

Np spin configurations, each corresponding to a local minimum
in the PES, generation k+ 1 is produced in the following way.
The first step is to select spin configurations in generation k that
will be used as parents for a new spin configuration in generation
k+ 1. We have implemented three different selection operators—
Roulette Wheel, Rank, and Tournament. With the Roulette
Wheel selection operator, the probability of choosing a candidate
spin configuration Ck

i to become a member of the breeding pool is
equal to

PðCk
i Þ ¼

Hi

∑
Np

i¼1 Hi

; ð3Þ

where Hi is the Hamiltonian (i.e., the energy) of spin config-
uration Ck

i . (Note that both the numerator and the denominator
on the right-hand side in Eq. (3) are negative.) The Rank and
Tournament selection operators are described as algorithms in
Supplementary Note 1, where a graphic indicator demo of the
Roulette Wheel can also be found. In the present implementation,
Np is set to 64, and we select a total of four spin configurations out
of these to breed one new spin configuration.

The next step is to create the new spin configuration from the
selected parents. To perform this step, we invoke three tunneling
operators—square crossover, linear crossover, and mutation. The
pseudocode for the squared-crossover and linear-crossover opera-
tors can be found in Supplementary Note 1. In the square-crossover
scheme, we first generate two random split ratios and use them to
split each parent spin configuration along the x- and y-directions
into four rectangles, see Fig. 1b. Then, we combine these generated
parts using a randomized procedure to create a new spin
configuration with the same dimensions as the spin configurations
in the parent generation. Finally, the mutation operator is added.
This operator consists of adding a Gaussian random noise to all
spins in the new configuration, using the Rodrigues rotation
formula32. Thus, the square-crossover scheme consists of two
operators—the square-crossover operator and the mutation
operator. The linear-crossover scheme is very similar to the
square-crossover scheme, with the difference that we instead split
each parent spin configuration along only one direction. These
steps are then repeated until we have Np new spin configurations.
As a side note, we mention that the square-crossover and linear-
crossover tunneling operators we introduce here are especially well-
suited for systems with clearly contained spin textures, such as
skyrmions and spin spirals.

Before the new generation of spin configurations can be used as
parents, a local energy optimizer is invoked to guarantee that all
spin configurations in the new generation correspond to local
minima in the PES. The local energy optimizers we have used for
this step are described next.

Variance-controlled local energy optimizer at finite tempera-
ture. A local optimization of a spin configuration involves finding
a local minimum starting from a given initial guess. We have

implemented two different types of local optimizers: an MCMC-
based optimizer and one based on SLLG. These two methods
have proven robust and efficient in describing complex spin
systems6,33. We describe both in some detail below.

The MCMC optimizer is of Metropolis type and performs
energy minimization under finite temperature by using the
transition probability Pt between two spin configurations in the
Markov chain:

Pt ¼
exp � ΔE

kBT

� �
; if ΔE > 0

1; otherwise

(
ð4Þ

where ΔE, kB, and T are the energy difference between spin
configurations, the Boltzmann constant, and the temperature of
the system. For a given initial spin configuration, the method will
iteratively minimize the energy of the system.

The second approach we use to optimize spin configurations is
the spin-dynamics-based optimizer, which uses the SLLG equation
to simulate the time evolution of atomic magnetic moments. This
method is able to reach a spin configuration near a local energy
minimum from a given initial state since—when Gilbert damping33

is included in the simulations—energy is allowed to dissipate from
the system. The atomistic SLLG equation reads

dmi

dt
¼� γLmi ´ Bi þ Bf

i

� �
� γL

α

mi
mi ´ mi ´ Bi þ Bf

i

� �� �
;

ð5Þ

where Bi the effective magnetic field at site i and Bf
i is the stochastic

magnetic field corresponding to the thermal fluctuations present in
a heat bath with temperature T. In this equation, the first term
represents the precessional motion of the atomic magnetic
moments, while the second term describes the damping motion.
In the expression above, γL is the renormalized gyromagnetic ratio,
which is calculated from

γL ¼
γ

1þ α2ð Þ ; ð6Þ

where γ is the gyromagnetic ratio and α is the isotropic Gilbert
damping constant. The performance of the SLLG local optimizer is
highly related to the value of damping and time step. In the present
work, we use both the Metropolis MCMC and the SLLG local
optimization schemes as implemented in the Uppsala Atomistic
Spin Dynamics (UppASD) package10.

In order to automatically stop the minimization process when
a desirable convergence level has been reached, we use a variance
threshold Var ðHÞ. For the spin Hamiltonian used here, this
threshold is defined as

Var ðHÞ ¼ 1
n
∑
n

i¼1
Hi � Hh i� �2

; ð7Þ

where Hh i stands for the expectation value of the spin
Hamiltonian, and the sum is over the n last iteration steps. In
the present work, we typically set n between 10 and 100.

We end this subsection with a note on nomenclature: as is
evident from the above, in our simulation method the
temperature must always be set to a finite value, it cannot be
zero. Therefore, in this work, the term ground state should be
taken to mean the lowest lying minimum at the set simulation
temperature, see Fig. 1c.

Initialization and termination
Initialization. The algorithm starts from an initial parent gen-
eration C0 of spin configurations (generation zero). We have
implemented two ways of producing these initial configurations.
The first method starts by simply producing random spin
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configurations using random numbers together with the crystal
information and magnetic interactions defining the studied spin
system. The generated spin configurations are subsequently
relaxed to the closest lying local minimum using one of the local
energy optimizers described above. We select Np spin config-
urations by using the criterion that any two configurations must
not be too close in energy, i.e.,

H C0
r

� ��H C0
i

� ��
>ΔE: ð8Þ

Here, ΔE is a threshold energy difference that guarantees that
configurations C0

r and C0
i are not too similar. In this work, we use

values ranging from 10−4 to 10−6 mRy/atom for ΔE. In practice,
this implies that the number of random spin configurations
generated will typically be much larger than Np, in order to be
able to select Np spin configurations fulfilling the selection cri-
terion above. The Np selected spin configurations constitute C0.
The second method is based on SA. Here, we use a relatively
coarse temperature mesh so that the SA-based initialization does
not become too time consuming. Just as in the first method, a
large number of spin configurations are generated, a local mini-
mizer is invoked to find the corresponding local minima, and Np

spin configurations are selected using the criterion in Eq. (8).
Specifically, in the present work, the SA simulations were per-
formed using a temperature mesh of only four points (the
simulated temperature, and then 20 K, 50 K, and 200 K added to
the simulated temperature). At each temperature, we performed
2000 Metropolis steps. It is worth noting that here, the SA pro-
cedure is only used to generate the initial generation in the GTO
optimization process. It is simply an alternative way to produce
the first parent generation. From the second generation, no
temperature annealing is performed.

Termination. There are two stop criteria set for the search process
in this work—a maximum number of allowed iterations (i.e.,
number of produced generations) and a convergence criterion. In
this work we have set the maximum number of iterations to
around 60. However, our optimization algorithm often finds a
converged solution (according to the convergence criterion
explained below) within a significantly smaller number of itera-
tions. Our convergence criterion is designed in the following way.
For each generation, the variance over the set of spin config-
urations is computed. Thus, for each generation, we compute

Var ðHÞ ¼ 1
Np

∑
Np

i¼1
Hi � Hh i� �2

; ð9Þ

where Hh i stands for the expectation value of the spin Hamil-
tonians over all spin configurations in the set. As the optimization
proceeds, the spin configurations within each generation will
become more and more similar to each other as they approach
the ground state. Therefore, when the variance in Eq. (9)
decreases below a predefined threshold, the procedure is deemed
to have converged and is stopped. At this point, the final spin
configuration or configurations COPT representing the best
solution can be extracted (see the flowchart in Fig. 1d).

Computation of the topological charge. The topological charge
Q of a 2D system in the xy-plane is computed using

Q ¼ 1
4π

Z
A
n!� ∂ n!

∂x
´
∂ n!
∂y

 !
dxdy: ð10Þ

Here, n!ðx; yÞ is the unit vector of the local magnetization. The
integral is taken over the area A in the xy-plane.

Data availability
All data needed for reproducing the results can be found in the GitHub repository
https://github.com/MXJK851/GTO-2D, and Supplementary Movies 1, 2, and 3 are
available within the paper.

Code availability
All code of GTO-2D is available at https://github.com/MXJK851/GTO-2Dunder the
GPL-3.0 license.
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