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Synchronization in networked systems with large
parameter heterogeneity
Amirhossein Nazerian 1, Shirin Panahi1 & Francesco Sorrentino 1✉

Systems that synchronize in nature are intrinsically different from one another, with possibly

large differences from system to system. While a vast part of the literature has investigated

the emergence of network synchronization for the case of small parametric mismatches, we

consider the general case that parameter mismatches may be large. We present a unified

stability analysis that predicts why the range of stability of the synchronous solution either

increases or decreases with parameter heterogeneity for a given network. We introduce a

parametric approach, based on the definition of a curvature contribution function, which

allows us to estimate the effect of mismatches on the stability of the synchronous solution in

terms of contributions of pairs of eigenvalues of the Laplacian. For cases in which synchro-

nization occurs in a bounded interval of a parameter, we study the effects of parameter

heterogeneity on both transitions (asynchronous to synchronous and synchronous to

asynchronous.).
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Synchronization in networks of coupled dynamical oscillators
continues to be the subject of intensive investigation1–7. The
emergence of synchronization in homogeneous networks

consisting of coupled identical oscillators has been analyzed using
the general framework of the master stability function (MSF)8,9 and
the connection graph stability method10. One of the ongoing
challenges is to study the emergence of collective behavior in het-
erogeneous networks11–16, with a large part of the literature on
heterogeneous networks focusing on phase oscillators17–20. Typical
instances of synchronization in the real world include situations in
which the individual parameters of the systems are heterogeneous
and are not fine-tuned21,22. Hence, it is important to study how
synchronization may emerge in ensembles of heterogeneous sys-
tems with large parameter variability.

Synchronization among non-phase oscillators with parameter
mismatches has been studied in a number of papers; however, most
of these papers focus on the case of small mismatches. In particular,
(i) refs. 23–25 generalized the master stability approach of Pecora and
Carroll8 to the case of slightly non-identical oscillators. Assuming
stability and small parametric mismatches, these papers have found
that deviations from the synchronous state grow linearly with the
mismatches; (ii) Acharyya and Amriktar26,27 extended the approach
of (i) by performing a higher-order expansion. The main difference
between (i) and (ii) is that (ii) found that the stability is affected by
parameter mismatches. Finally, a recent paper (iii)28 has focused on
the case of Chua oscillators and shown that, both in simulation and
in experiments, the stability of the synchronous solution is enhanced
by mismatches, which contrasts with previous observations.
Reference28 has suggested that this synchronization enhancement in
the presence of mismatches is a general phenomenon that is due to
the “mixing” of the modes that describe the time evolution of the
perturbations when mismatches are absent. However, it is not clear
why such mixing should always result in an improvement for
synchronizability.

In this paper, we provide a unified approach that can be imple-
mented to study the synchronization of a broad class of dynamical
networks, for which the stability of the synchronous solution can be
written in the form of a linear time-invariant system29. This class
includes networks of saddle focus oscillators30,31 and networks of
piecewise linear oscillators/maps. Similar to the classical master
stability function approach of ref. 8, our approach decouples the
effects of the dynamics from those of the network topology. How-
ever, compared to the master stability function approach, we per-
form a higher order expansion in the heterogeneous parameters and
consider the effects of pairs of eigenvalues of the Laplacian (instead
of individual eigenvalues) on the stability of the synchronous solu-
tion. Our approach allows us to explain why parameter heterogeneity
sometimes hinders and sometimes favors network synchronization,
which was not considered in28.

Results
Parametric mismatches in the local dynamics. We consider a
general equation for the time evolution of N coupled dynamical
systems, with parametric mismatches in the individual dynamics
of each node,

_xiðtÞ ¼ FðxiðtÞ; riÞ � σ∑
j
LijHðxjðtÞÞ; ð1Þ

i= 1,…,N, xi 2 Rm is the dynamical state of the node i, F :
Rm 7!Rm and H : Rm 7!Rm are the local dynamics of each node
and the coupling functions between the nodes, and σ is a positive
scalar measuring the strength of the coupling. The symmetric
Laplacian matrix L= [Lij] is constructed as L=G−A, where
A= [Aij] is the adjacency matrix that describes the network
topology, and G is a diagonal matrix where the diagonal entries
are the sums of the rows of A. Each parameter is set equal to

ri ¼ �r þ ϵδi, where �r ¼ N�1 ∑N
i¼1 ri is a nominal average value

and ϵδi is a parametric mismatch, with ∑jδj= 0, and ∑jδ
2
j ¼ 1;

the scalar ϵ is the tunable magnitude of the mismatches.
Our work applies to different classes of the master stability

function32, i.e., to Class II, for which stability of the synchronous
solution is achieved in an infinite range of the coupling gain σ and
to Class III, for which stability of the synchronous solution is
achieved in a finite range of the coupling gain σ. For Class II, as
we increase σ from zero, there is only one transition from
asynchrony to synchrony (A→ S). For Class III, as we increase σ
from zero, first there is a transition from asynchrony to
synchrony (A→ S) followed by another transition from syn-
chrony to asynchrony (S→A.) We develop a theory that allows
us to study the effects of parameter mismatches on each
individual transition and applies to either the case of A→ S
transitions or S→A transitions.

We assume possibly large mismatches and small perturbations
about the average solution. The particular assumption of small
perturbations is discussed in detail in Supplementary Note 1. By
defining �xðtÞ ¼ 1

N ∑ixiðtÞ and �r ¼ 1
N ∑iri, we can write an

equation for the average solution and the time evolution of small
perturbations wiðtÞ ¼ xiðtÞ � �xðtÞ,

_�x ¼ 1
N
∑
j

Fð�x; rjÞ þ DFð�x; rjÞwj

� �
ð2aÞ

_wi ¼DFð�x; riÞwi � σ∑
j
LijDHð�xÞwj þ Fð�x; riÞ

� 1
N
∑
j
DFð�x; rjÞwj �

1
N
∑
j
Fð�x; rjÞ

ð2bÞ

where D is the differential operator. We emphasize that
the derivations we present only apply to the case that the
perturbations in the states of the systems are small. At the same
time, we do not introduce an assumption of small mismatches.

In the following, for each transition, either A→ S or S→A, we
investigate how parameter mismatches affect the network
“synchronizability”33, i.e., the range of the parameter σ over
which the synchronous solution is stable. When we say that
mismatches improve (hinder) synchronization, we mean that for
that particular transition this range is extended (narrowed.) In
particular we study separately, each one of the transitions that
may arise, either (A→ S) or (S→A) and see how the critical σ
that characterizes those transitions is affected by parameter
heterogeneity. We remark that this analysis needs to be repeated
for each individual transition and in fact, in what follows we
report the example of a particular system that has two transitions,
A→ S and S→A, and for which parameter heterogeneity
increases the synchronizability in the case of the A→ S transition
and reduces it in the case of the S→A transition.

We proceed under the assumption that the particular choice of
the local dynamics F(⋅) and of the coupling function H(⋅) results
in a weak dependence of the Jacobians on the average solution,
see ref. 29. This assumption has been previously validated for
saddle-focus oscillators (e.g., the Rössler system) in ref. 29 and is
validated here for the Chua circuit and Bernoulli maps, see
Supplementary Note 2 for a discussion on the validity of this
assumption. We can then write DFð�xðtÞ; riÞ � DFðriÞ, where
DF(ri)= F+ ϵδiB, where F ¼ DFð�rÞ and B 2 Rm´m are constant
matrices. Analogously, we can also write DHð�xðtÞÞ � H, where
H 2 Rm´m is a constant matrix. We comment further on this
assumption. While the assumption only applies to certain choices
of the functions F and H, we will show successful application of
the theory to a variety of continuous time and discrete systems,
such as Rössler systems, Chua circuits, Bernoulli maps, and opto-
electronic maps, as we show in the rest of this paper. More
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importantly, we will be able to address the case of large parameter
mismatches and to analyze whether parameter mismatches either
enhance or hinder synchronization.

We now define W ¼ ½w>
1 w

>
2 ¼w>

N �
>
, and rewrite the homo-

geneous part of Eq. (2b) in compact form,

_WðtÞ ¼ MWðtÞ; ð3Þ
where M=M0+ ϵM1, M0= IN⊗ F− σ(L⊗H) with IN indicat-
ing the identity matrix of size N, and M1= Δ⊗ B,
Δ= diag(δ1,…, δN).

It is important to emphasize that while Eq. (2b) has both a
homogeneous part and a non-homogeneous part, we are mostly
concerned with the homogeneous part of the equation. The
homogeneous part of Eq. (2b) describes stability; in case the
homogeneous part is stable, the non-homogeneous part quantifies
the deviation from the synchronous state. The rest of this paper is
devoted to analyzing how parametric mismatches affect the
homogeneous part of the equation. This is in contrast with
refs. 23–25 that focused on the non-homogeneous part of the
equation and did not study how parametric mismatches affect the
synchronizability but only the level of synchronization achieved
in the network in case the synchronous solution is stable.

In order to capture the dynamics of the transverse perturbation
about the average solution, we introduce the N ×m-dimensional
matrix ~V , with m= (N− 1), that has for columns all the
eigenvectors of the matrix L except for the eigenvector

[1, 1,…, 1], ~V
> ~V ¼ Im. We have that ~V

>
L~V is equal to the m

dimensional matrix ~Γ, with entries on the main diagonal,− γ
m≤− γm−1≤⋯ ≤− γ1 < 0. By multiplying Eq. (3) on the left by

ð~V> � IÞ and on the right by ð~V � IÞ we obtain ~M ¼ ~M0 þ ϵ ~M1,
~M; ~M0; ~M1 2 Rnm ´ nm, where

~M0 ¼ ð~V> � ~VÞM0ðV � IÞ ¼ Im � F � σ~Γ� H; ð4aÞ

~M1 ¼ ð~V> � IÞM1ð~V � IÞ ¼ ~Δ� B; ð4bÞ
and we have used the property that V⊤Δ2V= V⊤DV= 0. The
transformed matrix ~Δ ¼ V>Δ1V 2 Rm ´m is symmetric and has
a zero trace.

Next, we analyze stability of the transverse perturbations about
the average solution by studying the sign of the eigenvalues of ~M
as a function of the magnitude of the mismatches, ϵ. We use
matrix perturbation theory to estimate the variation of the
eigenvalues of ~M as a function of ϵ. This will result in a
parametric approach, similar to that of the master stability
function8, to analyze the effect of mismatches on the synchroniz-
ability of networks of oscillators with mismatches.

We call Λ the matrix that has the eigenvalues of ~M on its
diagonal, and by using second-order matrix perturbation
theory34, we approximate Λ(ϵ)=Λ0+ ϵΛ1+ ϵ2Λ2, where Λ0 is
a diagonal matrix with the eigenvalues of ~M0 on the main
diagonal, and Λ1 and Λ2 are diagonal matrices to be calculated as
a function of ~M0 and ~M1.

Given the block diagonal structure of ~M0, its left (W0) and
right (V0) eigenvectors are written in the form W0 ¼ �m

i¼1W
i
0

and V0 ¼ �m
i¼1V

i
0 where Wi

0
�
Vi

0 ¼ I, and the superscript *
indicates the conjugate transpose. We define:

Λ ¼ �m
i¼1Λi; Λi ¼ diagðλ1i ; ¼ ; λmi Þ 2 Cm´m

Λy ¼ �m
i¼1Λy;i; Λy;i ¼ diagðλ1y;i; ¼ ; λmy;iÞ 2 Cm ´m

where Λ† refers to any of the Λ0, Λ1, or Λ2 matrices. The left (wj
0;i)

and the right (vj0;i) eigenvectors corresponding to the eigenvalue

λj0;i are the column j of Wi
0 and Vi

0, respectively. We obtain,

Λ1 ¼ diagðW�
0
~M1V0Þ ¼ diag W�

0ð~Δ� BÞV0

� � ð5aÞ

Λ2 ¼ �diag QðQ � ΠÞð Þ ð5bÞ
where ∘ indicates the Hadamard product, Q ¼ W�

0ð~Δ� BÞV0.
The matrix Q has block structure Q= [[Qik]] where each block
½Qik� ¼ ~Δik½Rik� and the block ½Rik� ¼ Wi

0
�BVk

0 2 Cn ´ n. The
matrix Π has block structure in the blocks ½Πik� 2 Cn´ n, with
entries

½Πik�pq ¼
0 p ¼ q & i ¼ k

1
λp0;i�λq0;k

otherwise

(
ð6Þ

Equation (5b) is rewritten as in Eq. (7).

Λ2 ¼ diag

�
~Δ11½R11� 	 	 	 ~Δ1n½R1n�

..

. . .
. ..

.

~Δn1½Rn1� 	 	 	 ~Δnn½Rnn�

2664
3775

~Δ11½R11� � ½Π11� 	 	 	 ~Δ1n½R1n� � ½Π1n�
..
. . .

. ..
.

~Δn1½Rn1� � ½Πn1� 	 	 	 ~Δnn½Rnn� � ½Πnn�

2664
3775

0BB@
1CCA
ð7Þ

The real part of the blocks on the main diagonal of Λ2 are

�Λ2;i ¼ diag ∑
m

k¼1

~Δ
2
ik½Uik�

� �
; ð8Þ

where the bar notation indicates the real part, and

½Uik� ¼ �real Wi
0
�
BVk

0

� � ðWk
0
�
BVi

0Þ � ½Πki�
� �� �

: ð9Þ
The entries ~Δik reflect information about the mismatches (and the
eigenvectors of the Laplacian); the blocks [Uik] reflect information
about the matrices F, H, the eigencouplings ζi= σγi and ζk= σγk,
and the matrix B that determines which of the parameters inside
the local dynamics is the mismatched parameter.

From Eq. (8), we are interested in the sign of the entries on the
main diagonal of the block [Uik], i.e., ½Uik�ss. We note that each
block [Uik] can be parametrized in the blocks F− σγiH, F− σγkH
and B; and with knowledge of F, H, and B, it can be parametrized
in the pair (ζi, ζk). This approach can be applied to study
variations of all the eigenvalues of the matrix ~M0. However, in
what follows, we focus on the eigenvalue(s) of ~M0 with the largest
real part (either a single eigenvalue or a pair of complex conjugate
eigenvalues), which we call critical. We first consider a transition
A→ S and label i= 1 the block to which the critical eigenvalue(s)
belongs. We call the real part of the critical eigenvalue(s) c0, i.e.,

c0 ¼ maxj �λ
j
0;1, and s ¼ argmaxj

�λ
j
0;1. Then Eq. (8) needs to

be evaluated for i= 1 and for a fixed value of ζ1= a, where a is
the lower MSF bound for the synchronization in the case of the
identical oscillators. We approximate,

cðϵÞ ¼ c0 þ ϵc1 þ ϵ2c2: ð10Þ
where c(ϵ) is the real part of the critical eigenvalue of eM and the
expansion coefficients c1 and c2 are characterized by F, H, B, and
the eigencouplings σγi. Both c1 and c2 are relevant to describe how
c varies with ϵ, however in what follows we focus on the sign of c2,
which determines the curvature of c(ϵ). If c2 > 0 (c2 < 0), we expect
c(ϵ) to increase (decrease) with ϵ, which results in a decrease
(increase) of the synchronizability with parameter heterogeneity.
If we find that ½Uik�ss<0 (½Uik�ss>0) for all ζk ≥ a, then it follows
that c2 < 0 (c2 > 0.) We remark that our main result is that we can
characterize the improvement (hindrance) of the synchroniz-
ability in terms of a parametric function that maps the ½Uik�ss to
the variable ζk= σγk, which we call the Curvature Contribution
Function. A general conclusion is that the larger (the smaller) the
Curvature Contribution Function, the more one can expect

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01355-1 ARTICLE

COMMUNICATIONS PHYSICS | (2023)6:253 | https://doi.org/10.1038/s42005-023-01355-1 | www.nature.com/commsphys 3

www.nature.com/commsphys
www.nature.com/commsphys


synchronizability to improve (worsen) as parameter heterogeneity
increases.

We now consider the case that the functions F and H provide
stability of the synchronous solution for σ in a bounded interval
σmin ≤ σ ≤ σmax, resulting in two transitions: an A→ S transition
for σ ≥ σmin and an S→A transition for σ ≥ σmax. Then, the same
approach outlined above can be used to determine the effects of
mismatches on σmax in correspondence of the S→A transition.
In this case, we set i= n and ζn= b, where b is the upper MSF
bound for synchronization in the case of identical oscillators.

Then s ¼ argmaxj
�λ
j
0;n. Equation (10) still holds with c1 ¼ λs1;n

and c2 ¼ λs2;n. If for all a ≤ ζk≤ b, ½Unk�ss is positive (negative),
then c2 > 0 (c2 < 0), indicating that mismatches enhance (reduce)
the synchronizability independent of the topology and of the
particular values of the mismatches.

As an example, we choose the individual oscillators to be Chua
systems,

FðxÞ ¼
βðy � x � gðxÞÞ
x � αy þ z

κy

264
375; β ¼ 10

κ ¼ �17:85

α ¼ 1

8><>:
gðxÞ ¼ bx þ b�a

2 ðjx � 1j � jx þ 1jÞ; a ¼ �1:44

b ¼ �0:72

�
ð11Þ

where x= [xyz]⊤ and we set the coupling function H(x)= x. We
study the effect of mismatches in the parameter κ with the
nominal value shown in Eq. (11). Hence, the constant matrices
F, B and H that define this mismatched problem are:

F ¼
βð�1� bÞ β 0

1 �α 1

0 κ 0

264
375;

H ¼
1 0 0

0 0 0

0 0 0

264
375; B ¼

0 0 0

0 0 0

0 1 0

264
375:

ð12Þ

We study the sign of c2 from Eq. (10). Since in the case of
identical oscillators, the MSF predicts that there is only one
transition A→ S for ζ1≥ 6.00, we set i= 1. In Fig. 1 we plot
½U1k�ss as we vary the eigencoupling ζk≥ 6.00, from which we see
that for all choices of ζk, ½U1k�ss<0; therefore, c2 < 0 and the
synchronizability increases with the magnitude of ϵ independent
of the particular choices of the mismatches (δi) and of the
network topology (Laplacian L.).

The result from Fig. 1 is confirmed in Fig. 2 where we plot
the synchronization error (Fig. 2(a)) for a network of N= 3
coupled Chua’s oscillators (Fig. 2(b)) with randomly generated
mismatches equal to δ1=−0.6534, δ2= 0.7507 and

δ3=− 0.0973. The synchronization error is defined as

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N ∑

N
i¼1 xiðtÞ � �xðtÞ� �2q
 �

; where �x ¼ 1=N∑N
i¼1 xi is the

average of the x components of all oscillators, and < ⋅ > denotes
the average over the time period t. Whenever nodes are
approximately synchronized, E attains a small value close to zero
(the dark blue region.) The solid black curve delimits the region
of stability predicted from the eigenvalues of ~M from Eq. (4).
The dashed red curve is the approximation of the solid black
curve obtained from second-order matrix perturbation theory.
We note that the solid black contour from Fig. 2 well predicts
the transition to synchronization. Moreover, the solid black curve
and its approximation given by the dashed red curve (the latter
for small ∣ϵ∣) correctly replicate the curvature of the critical σ
versus the magnitude of the mismatches.

Parametric mismatches in the frequencies of the individual
oscillators. In this section, we consider a problem studied in
ref. 28 in which mismatches affect the frequencies of the indivi-
dual oscillators and show how our general theory presented above
in the “Parametric Mismatches in the Local Dynamics” subsec-
tion in the Results Section can be specialized to this particular
problem. We consider an equation for the time evolution of N
coupled dynamical systems, with frequency mismatches,

_xi ¼ ð1þ ϵδiÞ FðxiÞ � σ∑
j
LijHðxjÞ

� 
; ð13Þ

i= 1,…,N, xi 2 Rm is the dynamical state of the node i, F :
Rm 7!Rm and H : Rm 7!Rm are the local dynamics of each node
and the coupling functions between the nodes, and σ is a positive
scalar measuring the strength of the coupling. Similar to the pre-
vious section, the symmetric Laplacian matrix L= [Lij] encodes the
network connectivity. The term 1+ ϵδi is the particular frequency
of node i, with 1 being the nominal frequency and ϵδi representing
the possibly large frequency mismatch. As before, ϵ represents the
tunable magnitude of the mismatches, and∑iδi= 0, and∑iδ

2
i ¼ 1.

In Supplementary Note 3, we take arbitrary δi’s and show how the
equations can be rewritten in the form of Eq. (13).

The average solution �xðtÞ and the perturbations about the
average solution wi(t) are defined as �xðtÞ ¼ 1=N∑ixiðtÞ and

Fig. 1 Curvature Contribution Function for Chua oscillators with
parameter heterogeneity. The plot shows the real part of the first, and the
second entry on the main diagonal of [U1k] versus ζk. See Eq. (12) for our
choice of the matrices F, H, and B. Since ½U1k�ss<0 ∀ ζk≥ 6.00, then c2 < 0 in
Eq. (10).

(b)

3

2 1

(a)

Fig. 2 Heterogeneity favors synchronization in networks of Chua
oscillators. a This shows the synchronization error E in the (σ, ϵ)-plane for
coupled Chua oscillators with mismatches in the parameter κ, see Eq. (11).
The parameter σ measures the coupling strength and the parameter ϵ
measures the parameter heterogeneity. The solid black curve encloses the
region of stability predicted from the eigenvalues of ~M from Eq. (4). The
dashed red curve is the approximation of the solid black curve derived from
matrix perturbation theory. b This shows the topology of the network, with
mismatches randomly set equal to δ= [−0.6534, 0.7507,−0.0973]⊤.
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wiðtÞ ¼ xiðtÞ � �xðtÞ, i= 1,…,N. Next, we rewrite Eq. (13) in �xðtÞ
and wi(t) by expanding to the first order about the average
solution,

_�x ¼ Fð�xÞ þ ϵ

N
∑
j
δjDFð�xÞwj � σdjDHð�xÞwj

h i
ð14aÞ

_wi ¼ ð1þ ϵδiÞDFð�xÞwi �
1
N
∑
j
ϵδjDFð�xÞwj

� σ∑
j

Lij þ ϵδiLij þ
1
N
ϵdj

� �
DHð�xÞwj þ ϵδiFð�xÞ

ð14bÞ

where DF;DH 2 Rm ´m are the time-varying Jacobian matrices
of F and H, and dj=∑iδiLij. Local stability about the average
solution is described the first order expansion (14) under the
assumption that the deviations wi are small. By defining
W ¼ ½w>

1 ; ¼ ;w>
N �

> 2 RNm, we rewrite Eq. (14),

_�x ¼ Fð�xÞ þ 1
N

ϵδ> � DFð�xÞ � σϵd> � DHð�xÞ� �
W ð15aÞ

_W ¼ ðIN þ ϵΔ1 þ ϵΔ2Þ � DFð�xÞ� �
W

� σ ðLþ ϵΔ1Lþ ϵDÞ � DHð�xÞ� �
W þ ϵ δ� Fð�xÞð Þ ð15bÞ

where δ ¼ ½δ1; ¼ ; δN �> and d ¼ ½d1; ¼ ; dN �>, and the matrices
Δ1= diag(δ1,…, δN),

Δ2 ¼
�1
N

δ1 δ2 	 	 	 δN
δ1 δ2 	 	 	 δN

..

. ..
. . .

. ..
.

δ1 δ2 	 	 	 δN

266664
377775;D ¼ �1

N

d1 d2 	 	 	 dN
d1 d2 	 	 	 dN

..

. ..
. . .

. ..
.

d1 d2 	 	 	 dN

266664
377775:
ð16Þ

As already noted before, Eq. (15b) is non-homogeneous, with
the homogeneous part determining stability about the average
solution and the non-homogeneous part determining the
deviations of the individual trajectories from this solution, see
also23–27. We proceed similarly to what already done in the
“Parametric Mismatches in the Local Dynamics” subsection in
the Results and write the homogeneous part of Eq. (15b) in the
form _W ¼ MW , where M=M0+ ϵM1 and

M0 ¼ IN � F � σL� H ð17aÞ

M1 ¼ ðΔ1 þ Δ2Þ � F � σðΔ1Lþ DÞ � H ð17bÞ
We multiply Eq. (17) on the left by ð~V> � IÞ and on the right

by ð~V � IÞ and obtain ~M ¼ ~M0 þ ϵ ~M1, where

~M0 ¼ ð~V> � ~VÞM0ð~V � IÞ ¼ In � F � σ~Γ� H; ð18aÞ

~M1 ¼ð~V> � IÞM1ð~V � IÞ
¼ ~Δ� F � σ~Δ~Γ� H ¼ ð~Δ� IÞ ~M0;

ð18bÞ

and we have used the property that V⊤Δ2V=V⊤DV= 0, with
~M; ~M0; ~M1 2 Rnm ´ nm. The rest of the analysis is done similarly
to the “Parametric Mismatches in the Local Dynamics” subsec-
tion in the Results. Next, we provide our final result analogous to
Eq. (9) for the case of mismatches in the frequencies. Similar to
Eq. (8), the real part of the blocks on the main diagonal of Λ2 are
obtained,

�Λ2;i ¼ diag ∑
n

k¼1

~Δ
2
ik½Uik�

� �
; ð19Þ

where each block

½Uik� ¼ �real Wi
0
�
Vk

0Λ
k
0

� � ðWk
0
�
Vi

0Λ
i
0Þ � ½Πki�

� �� �
: ð20Þ

Here, Wi
0, Vi

0 and Λi
0 denote the left and right eigenvector

matrices and a diagonal matrix with the eigenvalues of the ith
block of ~M0, respectively. The block [Πki] is defined the same as
in Eq. (6). The entries ~Δik reflect information about the
mismatches (and the eigenvectors of the Laplacian), while the
blocks [Uik] reflect information about the functions F, H, and the
eigencouplings ζi= σγi and ζk= σγk.

From Eq. (19), we are interested in the sign of the entries on
the main diagonal of the block [Uik], i.e., ½Uik�ss. We note that
each block [Uik] can be parametrized in the blocks F− σγiH and
F− σγkH; and with knowledge of F and H, it can be parametrized
in the pair (ζi, ζk). Next, we focus on the eigenvalue(s) of ~M0 with
the largest real part (either a single eigenvalue or a pair of
complex conjugate eigenvalues), which we call critical. We label
i= 1 the block to which the critical eigenvalue(s) belongs and
expand the real part of the critical eigenvalue(s) to second order
in ϵ, see Eq. (10). For not too large ϵ, c (ϵ) determines the crossing
value of σmin from asynchrony to synchrony. In particular, we
focus on characterizing the curvature coefficient c2.

With the choice of F and H and having set ζ1= a, we sweep
over ζk and evaluate ½U1k�ss. If for all ζk ≥ a, ½U1k�ss is positive
(negative) then c2 > 0 (c2 < 0), so the presence of mismatches
reduces (increases) the synchronizability for any topology and
any value of the mismatches.

Next, we consider two examples, one for which the range of
stability increases with ϵ and one for which it decreases. The first
example is that of Chua systems coupled in the “x“ variable,
considered in28,

FðxÞ ¼
ηðy � x � gðxÞÞ

x � y þ z

�y=k

264
375; η ¼ 10

k ¼ 0:056

�

gðxÞ ¼ bx þ 1
2 ðb� aÞðjx � 1j � jx þ 1jÞ; a ¼ �1:44

b ¼ �0:72:

�
ð21Þ

The matrices in Eq. (17) are,

F ¼
ηð�1� bÞ η 0

1 �1 1

0 �1=k 0

264
375; H ¼

1 0 0

0 0 0

0 0 0

264
375 ð22Þ

with the same parameters as in Eq. (21). With no parameter
mismatches, the MSF8,35 predicts the stability of the synchronous
solution for ζ1= σγ1≥ a= 6. We thus fix ζ1= a= 6 and study the
contribution of ζk≥ ζ1 on [U1k]. Figure 3 shows ½U1k�ss as a
function of ζk≥ ζ1= 6. For any real positive ζk, F− ζkH has one
real and two complex and conjugate eigenvalues. We order these
eigenvalues such that the first and the second eigenvalues are
complex and conjugate and the third one is real. The complex
eigenvalues are critical as these have real part larger than the real
eigenvalue, so s= 1, 2. We characterize the second order
coefficient of the expansion c2 relative to these critical
eigenvalues. Figure 3 shows that for all ζk≥ ζ1= 6, ½U1k�ss is
negative. Thus, based on Eq. (19) we conclude that c2 < 0. From
Fig. 3 we see that c2 < 0 holds for any network topology, and so
the enhancement of synchronization with the mismatches is a
network-independent effect. Based on the results from Fig. 3, we
expect to see that increasing mismatches will improve the
synchronizability for the case of Chua oscillators presented above.
This is confirmed in Fig. 4a where we plot the synchronization
error E as the coupling strength σ and the magnitude of the
mismatches ϵ are varied for coupled Chua circuits with the
undirected network shown in Fig. 4b. Whenever nodes are
approximately synchronized, E attains a small value close to zero
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(the blue region.) The black contour delimits the region of
stability predicted from the eigenvalues of ~M. We see that the
linear approximation well describes the emergence of synchro-
nization in the nonlinear system, Eq. (13), even for relatively large
mismatches, ∣ϵ∣ ≃ 0.2. The linear approximation correctly predicts
that the stability range increases for increasing ∣ϵ∣, as previously
reported in ref. 28. The white curve in Fig. 4a is obtained by
plotting c(ϵ) from Eq. (10), which provides a good approximation
of the black curve, even for relatively large values of ∣ϵ∣.

The second example is that of Bernoulli maps with
heterogeneous frequencies, described by discrete-time dynamics,

xkþ1
i ¼ ð1þ ϵδiÞ

h
f ðxki Þ � σ∑

j
Lijhðxkj Þ

i� 
mod 1; ð23Þ

i= 1,…,N, where f(xk)= 2xk, and h(xk)= xk. Figure 5a is a plot of
the synchronization error versus ϵ and σ for a system of coupled
maps with the undirected network in Fig. 5b. From Fig. 5a, we see
that as ∣ϵ∣ grows the range of σ that supports synchronization (blue
area) shrinks. For this case, F= 2 and H= 1. In Supplementary
Note 4, we apply the same analysis presented before to approximate
the eigenvalues of the matrix ~M and obtain a more subtle result that
most of the time c2 > 0, but not always. The region inside the black
contour is where all the absolute values of the matrix ~M are
between −1 and 1, which corresponds to the stability of the
synchronous solution. The white contour is the approximation of

the black curve based on the matrix perturbation theory. We see
that the lower (upper) bound for σ increases (decreases) with ∣ϵ∣,
causing an overall reduction of the synchronizability with
mismatches, which we find to be independent of the particular
choice of the network topology (panel b).

We note that our analysis presented here for Chua oscillators
and Bernoulli maps can be similarly applied to different classes of
oscillators and couplings. The case of Rössler systems coupled in
the x or y variables29 is studied in Supplementary Note 5. The
cases where DF=DH, including opto-electronic maps is pre-
sented in the next section.

Discrete time opto-electronic systems. We now consider a case
for which the dynamics is in the general form of Eq. (13) and the
functions F and H are taken in the particular form of discrete
time opto-electronic systems36–38,

xkþ1
i ¼ ð1þ ϵδiÞ βFðxki Þ � σ∑

j
LijFðxkj Þ þ α

� �� 
mod 2π; ð24Þ

where FðxÞ ¼ ð1� cosðxÞÞ=2, β is the self-feedback strength, and
the offset α is introduced to suppress the trivial solution xi= 0.
The case of opto-electronic systems is of particular interest
because our approach can be applied without introducing the
assumption that the Jacobians are weakly dependent on the
synchronous solution.

We assume possibly large mismatches and small perturbations
about the average solution, �x. Then, by following steps similar to
the previous sections, we obtain the following equation that
describes the time evolution of small transverse perturbations
about the average solution,

~Y
kþ1 ¼ DFð�xkÞ ðIN�1 þ ~ΔÞðβIN�1 � σ~ΓÞ� �

~Y
k
: ð25Þ

where ~Y
k 2 RN�1, and the matrices ~Γ and ~Δ are exactly the same

as they were defined in the previous sections. We define
~M ¼ ðIN�1 þ ~ΔÞðβIN�1 � σ~ΓÞ. By diagonalizing ~M, Eq. (25) can
be rewritten,

Zkþ1 ¼ ΦDFð�xkÞZk ð26Þ
where Φ is a diagonal matrix that has the eigenvalues of ~M on its
main diagonal. Equation (26) can be decoupled into N
independent equations,

zkþ1
i ¼ ϕiDFð�xkÞzki ; i ¼ 1; ¼ ;N: ð27Þ

(b)

35

21

46

(a)

Fig. 4 Analytical approximation of the region of stable synchronization
for Chua oscillators with heterogeneous frequencies. a Synchronization
error E for a network of coupled Chua circuits, Eqs. (13) and (21), as a
function of the coupling strength σ and the magnitude of the mismatches ϵ.
The black contour encloses the region of stability predicted from the
eigenvalues of ~M from Eq. (18). The white contour is an approximation of
the black contour based on matrix perturbation theory, Eq. (10). b Topology
of the network, with mismatches randomly set equal to δ= [−0.067,
−0.518, −0.358, 0.712, 0.294, −0.062]⊤.

(a) (b)

4

5

7
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3

6

2
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Fig. 5 Heterogeneity hinders synchronization in networks of Bernoulli
maps. a Synchronization error for a network of coupled Bernoulli maps, Eq.
(23), as a function of the coupling strength σ and the magnitude of the
mismatches ϵ. The region inside the black contours (eigenvalues) is where
all the absolute values of the eigenvalues of ~M, Eq. (18), are between −1
and 1. The white contour is an approximation of the black contour based on
matrix perturbation theory. b Topology of the network. Here, the
mismatches δ= [0.1568, −0.0869, −0.6469, −0.4689, 0.0152, 0.1642,
0.3971, 0.1033, 0.3661]⊤ were chosen randomly.

Fig. 3 Curvature Contribution Function for Chua oscillators
with heterogeneous frequencies. We plot the Curvature Contribution
Function, ½U1k�ss , vs ζk, s= 1, 2. In particular, the plot shows the real part of
the first, and the second entry on the main diagonal of [U1k], respectively.
See Eq. (22) for the matrices F and H. For the case of coupled identical
oscillators, synchronization is achieved for ζk≥ 6.00.
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By defining the free parameter s, we can then study the stability of
the parametric equation

zkþ1 ¼ sDFð�xkÞzk; ð28Þ
as a function of the variable s= ϕi. For practical purposes,
following24,25,39, the average solution �xk can be approximated by
the dynamics of a single uncoupled map. We have calculated the
Maximum Lyapunov Exponent (MLE) Ψ(s) of Eq. (28) as a
function of the real variable s for the optoelectric map37, from
which we have found that for β= 2π and α= 0.525, Ψ(s) < 0 is
negative in the range [s−=−3.47, s+= 3.47].

In Fig. 6 we plot the MLE Ψ(s) of Eq. (28) as a function of the
real variable s for the optoelectric map37. We see that Ψ(s) < 0 is
negative in the range [s−, s+], and stability is achieved for ϕ− > s−

and ϕ+ < s+, where ϕ� ¼ miniϕi and ϕþ ¼ maxiϕi. Mismatches
affect both ϕ− and ϕ+, and we say that they enhance
synchronization when they either increase ϕ− or decrease ϕ+.

Next, we investigate how mismatches affect the eigenvalues of
~M. Once again, we use matrix perturbation theory to study
variations of the eigenvalues of ~M as the magnitude of the
mismatches ϵ is varied. We write ~M ¼ ~M0 þ ϵ ~M1, where

~M0 ¼ IN � σΓ; ~M1 ¼ ~Δ ~M0; ð29Þ

and Γ is the diagonal matrix with diagonal entries equal to the
eigenvalues of the Laplacian L. The matrix ~Δ ¼ V�1ΔV where V
is a matrix whose columns are the eigenvectors of L. We have that
the eigenvalues Λϵ of the matrix ~M can be approximated to
second order, Λϵ=Λ0+ ϵΛ1+ ϵ2Λ2, where the matrix Λ0 is a
diagonal matrix that has the eigenvalues of A0 on its main
diagonal (since ~M0 is also diagonal, Λ0 ¼ ~M0 and the matrices for
the right and the left eigenvectors of ~M0 are the identity) and,

Λ1 ¼ diagð ~M1Þ ¼ diag ~ΔΛ0

� � ð30aÞ

Λ2 ¼ �diag QðQ � ΠÞð Þ: ð30bÞ
Here, Q ¼ ½Qij� ¼ ½~ΔijΛ0;j� and

Πij ¼
0 i ¼ j
1

Λ0;i�Λ0;j
otherwise:

(
ð31Þ

Each Λ2,i is equal to,

Λ2;i ¼ ∑
N

j¼1
�~ΔijΛ0;jð~ΔjiΛ0;i � ΠjiÞ ¼ � ∑

N

j¼1
~Δ
2
ij
~Πji: ð32Þ

where

~Π ¼ ~M0Π ~M0 ¼
ð1�σγiÞð1�σγjÞ

σγj�σγi
i≠j

0 i ¼ j

(
: ð33Þ

We see that the sign of Λ2,i from Eq. (32) is fully defined for a
given pair of eigencouplings ζi= σγi and ζj= σγj. As discussed
earlier, the network of coupled optoelectric maps with mis-
matches can synchronize if the eigenvalues of ~M are in the range
[−3.47, 3.47]. Hence, the condition for synchronization is that,

�3:47≤Λ0;i þ ϵΛ1;i þ ϵ2Λ2;i ≤ 3:47 ð34Þ
which is equivalent to

�3:47≤ ð1� ζ iÞ þ ϵ~Δiið1� ζ iÞ þ ϵ2 ∑
N

j¼1
�~Δ

2
ij
~Πji ≤ 3:47 ð35Þ

Figure 7 presents an example of application of our method. Panel
(a) shows the synchronization error as a function of both σ and ϵ
for the N= 5 network of coupled optoelectric maps shown in (b).
For ϵ= 0 we see that as σ increases, there are two transitions: one
around σ= 0.94, for which the identical systems switch from

Fig. 6 Discrete time opto-electronic systems. Maximum Lyapunov
Exponent for stable synchronization. The Maximum Lyapunov Exponent
associated with Eq. (28) as the parameter s is varied. lims!0ΨðsÞ ¼ �1.
The zero-crossing points are s+= 3.47, and s−=− 3.47. Here, the self-
feedback strength β= 2π and the offset α= 0.525.

(b)
4

(a)

3

1 2

5

(e)

(f)

(c)

(d)

Fig. 7 The case of coupled “opto-electronic maps”. a Synchronization error for a network of N= 5 coupled optoelectric maps as a function of the
magnitude of the mismatches ϵ and of the coupling strength σ. Here, the mismatches δ= [−0.5323, −0.5265, 0.1526, 0.5058, 0.4003]⊤ were randomly
chosen. When the maps are identical (ϵ= 0), synchronization is achieved for σ−= 0.94 ≤ σ ≤ 1.945= σ+. We see that for σ slightly lower than σ− (σ
slightly greater than σ+), the network of mismatched oscillators synchronizes (does not synchronize). b Topology of the network. c This shows Λ+, the
maximum eigenvalue of ~M as a function of ϵ for σ= 0.936. When ϵ= 0, the network is not synchronized since Λ+ is greater than the critical bound
s+= 3.47 shown as a black line. As ϵ is either increased or decreased, Λ+ eventually shifts below s+= 3.47 and the network synchronizes. d It shows Λ−,
the minimum eigenvalue of ~M remaining inside the critical bounds as ϵ varies for σ= 0.936. e It shows Λ+ remaining inside the critical bounds as ϵ varies
for σ= 1.95. f It shows Λ− as a function of ϵ for σ= 1.95. When ϵ= 0, Λ− is slightly less than the critical bound s−. As ϵ is varied, Λ− shifts farther away
from s−; hence synchronization is not achieved.
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asynchrony to synchrony, and another one around σ= 1.94 where
the transition is from synchrony to asynchrony. Panels (c–f) of
Fig. 7 show the application of our theory to predict whether or not
mismatches enhance the network synchronizability. In this case, we
see that both σ− and σ+ decrease with ∣ϵ∣. In particular, panel (c)
shows how Λ+, the largest eigenvalue of ~M, varies with ϵ for
σ= 0.936, which is slightly less than σ−= 0.94. We see that for
either large enough ϵ or small enough ϵ, Λ+ decreases below 3.47,
which causes synchronization. Instead, panel (f) shows how Λ−,
the smallest eigenvalue of ~M, varies with ϵ for σ= 1.95, which is
slightly more than σ+= 1.945. In this case, we see that as ∣ϵ∣
increases, Λ− decreases further away from −3.47, which is the
threshold for synchronization. Hence, we conclude that the
presence of mismatches in the frequencies of the coupled opto-
electronic maps enhances synchronization in the transition from
asynchrony to synchrony (critical lower bound of σ) and hinders
synchronization in the transition from synchrony to asynchrony
(critical upper bound of σ.).

Conclusions
This paper studies the emergence of synchronization in networks
of coupled oscillators with possibly large parameter mismatches.
We propose a parametric approach to analyze how the magni-
tude of the mismatches affects the synchronizability, i.e., the
range of the coupling strength σ for which the synchronous
solution is stable. We identify a critical eigenvalue c that is
responsible for stability of the synchronous solution and expand c
to second order in the scalar ϵ which measures the magnitude of
the mismatches; we focus on the second order coefficient of the
expansion, i.e., the curvature coefficient c2: if this coefficient is
positive (negative), we expect the synchronizability to decrease
(increase) with the size of the mismatches. We derive an
expression for how each pair of eigencouplings (ζi, ζj) (the
eigenvalues of the Laplacian matrix) contributes to the curvature
coefficient c2.

Similar to the parametric approach of the master stability
function8, it becomes possible, given knowledge of the functions F
and H, to pre-compute the effects of any pair of eigencouplings
(ζi, ζj), seen as parameters, which is described by the Curvature
Contribution Function. With this knowledge, one can then find
for any network realization (any set of eigenvalues) the total
curvature attained. For example, given knowledge of F and H, our
numerical approach consists of numerically computing the Cur-
vature Contribution Function shown in Fig. 1 and then from this,
computing the overall effect on the curvature through Eq. (8). In
cases in which the Curvature Contribution Function is always
positive (always negative), we can conclude that the curvature is
positive (negative) independent of the network topology. Our
main result is exactly that we provide an explanation for when
parameter heterogeneity either increases or decreases the
synchronizability.

Is the enhancement of synchronizability with parameter mis-
matches a general phenomenon as reported in ref. 28? We con-
clude that the answer is no, as our theory indicates that this is
dependent on a number of factors and we find several examples
of systems that become less synchronizable as we increase ∣ϵ∣. Our
work applies to both continuous-time and discrete-time net-
works. The examples involving Chua oscillators showed that the
presence of parametric mismatches improves synchronizability
while the example of Bernoulli maps showed the opposite. In the
case of opto-electronic maps, it was shown that parameter het-
erogeneity had different effects on the synchronizability about
different transitions: in the transition from asynchrony to syn-
chrony (synchrony to asynchrony), the synchronizability was
improved (hindered) by parameter heteorogeneity.

Our work differs substantially from refs. 23–25 since these
papers are in the framework of small parameter mismatches↔
small state deviations. It also differs from ref. 28 as we provide
conditions, based on matrix perturbation theory, that allow us to
explain why parameter mismatches sometimes favor synchroni-
zation and sometimes hinder it. We depart from the “mode
mixing” hypothesis28 and the implication that this should always
result in an improvement in synchronizability. Such mode mixing
(due to the presence of two non-commuting matrices40–42) had
already been observed in refs. 26,27 but no conclusions were
drawn on its usefulness towards synchronization. Furthermore,
our approach allows us to investigate the general case in which
synchronization is possible in a bounded range of a given para-
meter and to consider the effects of parameter heterogeneity on
both the lower and upper end of the range, which was not con-
sidered before.
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