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Grain-boundary topological superconductor
Morten Amundsen1 & Vladimir Juričić 1,2✉

Majorana zero modes (MZMs) are of central importance for modern condensed matter

physics and quantum information due to their non-Abelian nature, which thereby offers the

possibility of realizing topological quantum bits. We here show that a grain boundary (GB)

defect can host a topological superconductor (SC), with a pair of cohabitating MZMs at its

end when immersed in a parent two-dimensional gapped topological SC with the Fermi

surface enclosing a nonzero momentum. The essence of our proposal lies in the magnetic-

field driven hybridization of the localized MZMs at the elementary blocks of the GB defect,

the single lattice dislocations, due to the MZM spin being locked to the Burgers vector.

Indeed, as we show through numerical and analytical calculations, the GB topological SC with

two localized MZMs emerges in a finite range of both the angle and magnitude of the

external magnetic field. Our work demonstrates the possibility of defect-based platforms for

quantum information technology and opens up a route for their systematic search in future.
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Topological superconductors (SCs) occupy a rather special
place in the landscape of topological states of quantum
matter since they can feature Majorana zero modes

(MZMs)1–6 which exhibit non-Abelian statistics, and are pro-
mising platforms for quantum computing7,8. A simplest platform
for realizing these exotic quasiparticles is given by the Kitaev
model on a one-dimensional (1D) chain of spinless fermions,
where they appear at its ends when p wave pairing prevails2. In
turn, this yielded a surge of theoretical proposals in which
Majorana modes emerge through hybridization of the states
localized at building blocks (sites) in different 1D chain-like
architectures, constituted by magnetic atoms9,10 and quantum
dots11,12, with the signatures of the MZMs reported in
experiments13–18. However, these platforms are highly sensitive
to the microscopic details of the system and require fine tuning.

In this work, we identify an alternative to these proposals, the
grain boundary (GB) defects, which are at low angles built of an
array of edge dislocations, forming due to the accumulated stress
at the interfaces between the crystalline grains19–21. Such exten-
ded defects may accommodate self-organized semimetals in
parent static topological insulators22, experimentally observed in
1T’-MoTe223, and were also recently proposed in dynamic
topological crystals24. The elementary building blocks of the GBs,
the single dislocations, as it is by now well established, can host
topologically and symmetry protected modes25–33, and are
experimentally observed in bulk topological crystals34,35. A
mechanism for their emergence, operative in both insulators and
SCs, is the dislocation-magnetic-flux correspondence: a lattice
dislocation, characterized by a Burgers vector b, sources an
effective magnetic flux, Φ ¼ K � b ðmod 2πÞ, which topologically
frustrates the bulk quasiparticles emerging at a momentum K in
the Brillouin zone (BZ)25–28. In a two-dimensional (2D) topo-
logical SC, dislocation MZMs therefore may appear when the
Fermi surface encloses a non-Γ point in the BZ, as a consequence
of a nontrivial flux sourced by a dislocation28. This class of
topological SCs is in the following referred as translationally-
active, analogous to their insulating counterparts27,36. A GB
defect in a translationally-active SC therefore naturally provides a
1D lattice structure with its elementary constituents hosting the
MZMs, which, in turn, hybridize and can possibly yield a topo-
logical SC. We emphasize that the effective flux carried by edge
dislocations Φ= π, thus resembling a half-quantum vortex. The
behavior of a grain boundary is therefore distinguished from that
of an array of conventional vortices, with the confined flux being
an integer multiple of 2π.

We here show that the extended 1D GB defect (Fig. 1), as a
separate subsystem, can host a topological SC with a pair of
MZMs at its end, when immersed in a parent 2D translationally-
active topological SC, as shown in Figs. 2 and 3. Such GB topo-
logical SC, as we demonstrate, then emerges in a finite range of
both the angle and the magnitude of the applied exchange
magnetic field, as displayed in Fig. 4, and corroborated by an
effective model, see Eq. (2). The GB MZMs are localized at the
top of the defect, and, most importantly, are spatially separated
from the edge modes arising from the topologically nontrivial
host, see Fig. 2. As we explicitly show, these GB modes are also
protected by an antiunitary particle-hole-like symmetry of the
effective GB Hamiltonian. Finally, we argue that thin films of Fe-
based SCs, doped topological crystalline insulators, such as In-
doped SnTe, and designer materials represent promising plat-
forms for the realization of the proposed emergent GB SC.

Results and discussion
Lattice model with the GB defect. We study a topological p−wave
SC on a square lattice with lattice constant a. Furthermore, this

lattice features a GB defect formed by two regions with the two
identical lattices, rotated by an angle 2α and slightly shifted by a
distance l relative to one another. The geometry of the defect is
shown in Fig. 1a. At low angles α≲ 15∘, this defect consists of an
array of edge dislocations forming a 1D superlattice with a two-atom
unit cell. The lattice constant is d and l is the distance between the
atoms in the unit cell, as illustrated in Fig. 1b. The opening angle α is
related to the dislocation Burgers vector b, as sin α ¼ jbj=d. See also
Supplementary Note 1 and Supplementary Fig. 1.

The Bogoliubov-de Gennes Hamiltonian of the parent SC is

H ¼ ∑kΨ
y
kHðkÞΨðkÞ, with Ψk ¼ ðck;"; ck;#; cy�k;"; c

y
�k;#Þ

>
, where

ck,↑ (cyk;#) is the annihilation (creation) operator for the
quasiparticle with spin up (down) and momentum k, and

H ¼ 2tð2� cos kxa� cos kyaÞ � μ
h i

σ0τ3

þ Δp � sin kxa σ0τ2 þ sin kya σ3τ1
� �

� h � στ3:
ð1Þ

Here, (σ0, σ) [(τ0, τ)], are the standard Pauli matrices acting in the
spin (Nambu) space, t is the overall energy scale (related to the
effective mass of the fermionic quasiparticles), μ > 0 is the
effective chemical potential, and Δp is the p−wave pairing
amplitude28. We also include an in-plane exchange magnetic
field, h. For h= 0, the parent SC is time-reversal symmetric,
characterized by a Z2 topological index, in the class DIII of the
tenfold periodic table37, featuring a Kramers pair of gapless

Fig. 1 The parent topological superconductor with the grain-boundary
defect. a Two misaligned crystalline lattices of a p−wave superconductor
form a grain boundary consisting of edge dislocations at their intersection.
bL and bR are the Burgers vectors of the two inequivalent edge dislocations,
belonging to the left and right sublattice, respectively. b Schematic
illustration of the effective 1D superlattice formed by the single dislocation
defects along the grain boundary, together with the parameters in the
effective Hamiltonian (2). The parameter d (l) indicates the distance
between neighboring lattice sites within the same (opposite) sublattice.
The competition between the inter-unit cell tba and the intra-unit cell tab
pairings drives the topology of the emergent superconductor along the
grain boundary, while ~Δ is the next-nearest neighbor intra-unit cell pairing.
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Majorana edge states in the topological phase. On the other hand,
a finite exchange field, h ≠ 0, can partially gap out the edges,
yielding the Majorana zero-energy corner modes in a polygonal
geometry, thereby changing the parent SC’s topology to second
order38. The details of the model are given in Supplementary
Note 1. Most importantly, for the values of the parameter 4 < μ/
t < 8 and h= 0, the parent SC is fully gapped in the bulk,
topologically nontrivial and encloses the Fermi momentum at
either the X point [(π, 0)] and the Y point [(0, π)], or the M point
[(π, π)] in the BZ28. Therefore, a single dislocation defect sources
a π flux, and binds a pair of the MZMs in this translationally-
active SC. These modes in turn make a Wannier basis for a self-
organized topological SC, which emerges along the GB defect
when the exchange field is applied, as we show in the following.

Numerical results. We now numerically diagonalize the Hamil-
tonian in Eq. (1), after implementing it on a real-space square
lattice with the GB defect, shown in Fig. 1, see Supplementary
Note 1 for further details. The numerical calculations were per-
formed using the Kwant code39. To obtain the band structure
along the GB superlattice, we Fourier transform the corre-
sponding eigenstates with respect to the superlattice periodicity
(d), and identify the peak in the Fourier spectrum at the repre-
sentative momentum. We consider a model in which the distance
between edge dislocations on the same sublattice, d= 12a, and
introduce a small slip of l= 5d/12 between the two sublattices,
which therefore alternate with spacing of 5a and 7a, and α= 4.8∘.
As such, the slip breaks the intra-unit-cell mirror symmetry,
increasing the richness of behaviors exhibited by the emergent GB
SC. Each sublattice has width of 30 lattice sites at its bottom edge,
and the GB consists of 138 edge dislocations.

Indeed, as shown numerically in Supplementary Note 2 and
Supplementary Fig. 2, in the absence of the exchange field,
equidistant edge dislocations will always feature a node in the
band structure at the M point. With the introduction of a slip, the

GB band structure oscillates between having a node at the Γ and
M points as a function of the chemical potential, being fully
gapped in between. The band structure then features two Kramers
pairs of the bands, which are consequence of the particle-hole and
time-reversal symmetries, and is topologically trivial.

To lift the spin degeneracy of the GB band structure, we now
apply an in-plane magnetic (exchange) field which is directed
along the GB direction. As expected, this yields four nondegene-
rate bands and opens up a gap at the M point of the GB BZ, as
displayed in Fig. 2, where the GB band structure is shown as the
magnitude of the exchange field increases, together with
corresponding local density of states, see also Supplementary
Fig. 3. We point out that the four bands never cross, but instead
feature anti-crossings with a rather small gap. In Fig. 2a and b,
with h/t= 0.1, there are two zero-energy modes [see also Fig. 3a]
at the top and bottom edges, which are a consequence of a
nontrivial topology of the parent SC. As the exchange field is
further increased, h/t= 0.2, Fig. 2c, d, the GB gap becomes larger,
and more importantly, it yields a nearly perfect flat band, as the
system approaches the band gap closing at the Γ point. This gap
closes for h/t= 0.25, as shown in Fig. 2e, f, and the GB Majorana
band structure is gapless. On the other hand, the parent bulk state
remains gapped and topological, as can be directly seen from the
well localized zero modes at the top and the bottom edges
connected through the gapless GB. The gap opens at the Γ point
for a stronger exchange field, h/t= 0.28, as displayed in Fig. 2g, d,
h. However, there are now four zero energy modes in the
spectrum, as shown in Fig. 3b. Two of these states are localized at
the two bottom corners, and represent the zero-energy edge states
of the parent SC. Most importantly, the two remaining zero
modes appearing at the top of the grain boundary are a direct
consequence of a topologically nontrivial superconducting state
emerging along the GB, as we also further argue below by
numerical means, and show analytically within an effective model
for the GB band structure.

Fig. 2 Nature of grain-boundary superconductor. The band structure [a, c, e and g] and the accompanying local density of states (LDOS) at zero energy
[b, d, f, and h] for increasing exchange field (h) directed along the grain boundary. Each column corresponds to a particular value of the exchange field, with
h= 0.1t (where t) in (a) and (b), h= 0.2t in (c) and (d), h= 0.25t in (e) and (f), and h= 0.28t in (g) and (h). Here, t is the hopping parameter. The two
zero-energy modes localized at the top and the bottom edge in (b) and (d) pertain to the parent topological superconductor (SC), see also Fig. 3a. We note
that in figs. (e) and (f), the grain boundary is gapless, and connects two edge zero modes of the parent gapped SC. In (h), there are four zero modes, as the
grain boundary SC becomes topological, see also Figs. 3b and 4a. The red and blue coloring in the band-structure plots act only as a visual aid, to more
clearly distinguish the bands. To make the localized states at the top and bottom of the grain boundary more visible, the middle part of the LDOS plots has
been removed. Here, we set the order parameter to Δp= 0.75t, the inter-sublattice distance between edge dislocations to d= 12a, and the slip between
sublattices to l= 5d/12 in the parent SC Hamiltonian (1). Additional plots showing the entire geometry are available in Supplementary Note 2, see
Supplementary Fig. 3.
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To corroborate the topological origin of the two GB zero
modes, we first notice that their emergence coincides exactly with
the GB gap closing, as highlighted in Fig. 4a, and shows the GB
gap as a function of the magnitude of the exchange field, directed
along the GB. In the blue region, there are two zero-energy edge
modes present, as long as the GB SC is fully gapped. On the other
hand, there are four modes in the red region, two of which are
separated from the ones at lower exchange field (blue region) by
the gap closing at the Γ point of the GB BZ.

Additional control over the GB topological SC can be achieved
by rotating the exchange field, as we show for h/t= 0.3. We find
that when the exchange field is orthogonal to the grain boundary
(θ= 0), the GB features a topologically trivial SC, as seen in
Fig. 4b. As the angle θ is increased anticlockwise towards a
parallel orientation (θ= π/2), we observe that the GB gap closes
at an angle of θc,1≃ 58.5∘= 1.02 radians, and the two endpoint
GB zero modes emerge upon the gap reopening. Further rotation
of the exchange field tunes the GB back to the topologically trivial
phase, at the critical angle θc,2≃ 117∘= 2.04 radians, where the
two GB modes concomitantly disappear. These features strongly
suggest that the GB SC undergoes a re-entrant topological phase
transition from the topologically trivial to the nontrivial regime
and back. This behavior is captured within the effective model for
the GB SC, as we demonstrate in the following.

Effective model. Nontrivial topology of the GB superconducting
state can be accounted for within a rather simple effective model
obtained by projecting the parent Hamiltonian on the subspace
formed by the Majorana modes at the dislocation defects forming
the GB superlattice, see Supplementary Notes 3 and 4. The GB
consists of edge dislocations with alternating Burgers vectors
between the left and the right lattice, see Fig. 1a, and

Supplementary Note 1. We can therefore treat the defect as a 1D
lattice with a two-atom basis, as illustrated in Fig. 1b. Crucially, in
contrast to an edge that features spin locked parallel to it, the
spins of the localized states at edge dislocations are, as shown in
Supplementary Note 3, locked to the Burgers vector, which for
the left (right) sublattice, is inclined by an angle of α (π−α).
Furthermore, the form of the single-dislocation modes, found in
Supplementary Note 3, implies that the overlap integrals of two
edge-dislocation modes located at positions ri and rj behave as
tij � e�rij=r0 cos βrij, with rij= ∣ri− rj∣. Here, the parameter r0 is
the inverse localization length, typically of the order of a few
lattice constants, and is a function of the pairing amplitude Δp,
whereas the oscillation period β is dominated by the Fermi
momentum. Therefore, in an effective model for a GB with a
sparse array of dislocations, it should be enough to keep the
hoppings only between the nearest neighbors.

From the GB geometry, shown in Fig. 1b, by projecting the
parent Hamiltonian in Eq. (1) on the Wannier basis of the single-
dislocation Majorana modes localized on the two sublattices, we

Fig. 4 Topological phases of the grain-boundary (GB) Majorana chain.
a Numerically calculated minimum gap of the GB band structure as a
function of the exchange field magnitude (for θ= π/2). b Numerically
calculated minimum gap of the GB band structure as a function of in-plane
orientation of the field with respect to the horizontal axis, θ (for fixed ∣h∣/
t= 0.3, with h the exchange field and t the hopping parameter). The
annotations (*) and θc,i indicate transitions between the two topologically
distinct regimes: (red) GB chain features two topological Majorana zero
modes, and (blue) no endpoint modes; no parent zero modes are taken into
account here. At the point (*) the effective spin splitting produced by the
exchange field becomes equal to tmin (the minimum gap in the absence of
spin splitting). A reentrance into the trivial regime is expected when the
spin splitting becomes equal to tmax, which is beyond the limit for which
bulk superconductivity survives. The topological invariant ν of the effective
model in Eq. (2) as a function of exchange field magnitude, for θ= π/2 fixed
[c], and for different orientations of the field [d], for h≃ 0.3t≃ 1.25tmin

fixed. Comparison between the results from the numerical analysis and the
effective model shows a correspondence between the appearance of GB
Majorana zero modes and a nonzero topological invariant, thereby
corroborating their topological nature. In the numerical calculation, the
order parameter is set to Δp= 0.75t, the chemical potential μ= 5.85t, and
the slip between sublattices l= 5d/12.

Fig. 3 Closest-to-zero energy states of the Majorana band structure.
a h/t= 0.1 and b h/t= 0.28, with h the exchange field and t the hopping
parameter, showing two and four zero-energy modes in the trivial and the
topological phase of the grain-boundary superconductor, respectively.
These two plots correspond to the zero-energy modes shown in Fig. 2d and
h, respectively. Two extra zero modes in (b) correspond to the grain-
boundary topological superconductor, see also Fig. 4.
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obtain an effective tight-binding Hamiltonian Heff ¼ ∑kψ
yHeffψ,

with ψk ¼ ðak;"; bk;"; a�k;#; b�k;#Þ>, see Supplementary Note 4 for
technical details,

Heff ¼
H0ðkÞ PðkÞ
PyðkÞ �H>

0 ð�kÞ

� �
; ð2Þ

where

H0ðkÞ ¼
2~Δ sin kd �iWðkÞ
iW�ðkÞ �2~Δ sin kd

 !
; ð3Þ

while the effective pairing term is induced purely by the exchange
field

PðkÞ ¼ ih
sinðα� θÞ ~VðkÞ

~V
�ðkÞ sinðαþ θÞ

 !
: ð4Þ

Here, WðkÞ ¼ eikl tab þ tbae
�ikd

� �
, with the effective nearest-

neighbor intra- and inter-unit-cell hoppings, respectively, tab
and tba, as shown in Fig. 1b, which are related to the chemical
potential, and the GB angle. On the other hand, the intra-
sublattice hopping ~Δ depends on the pairing amplitude and the
geometric details of the superlattice. Finally, ~VðkÞ, is an effective
spin–orbit coupling term induced by the exchange field, as shown
explicitly in Supplementary Note 4.

In the absence of the exchange field, the spectrum of the GB SC
reads as

EðkÞ ¼ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4~Δ

2
sin2kd þ jWðkÞj2

q
: ð5Þ

The diagonal part of the Hamiltonian appears due to the
hybridization of neighboring edge dislocations on the same
sublattice, giving rise to a characteristic sinusoidal dispersion.
Furthermore, the hopping term W(k) yields the interlattice
hybridization, which for equidistant, thereby mirror-symmetric GB
(l= d/2 and tab= tba) reduces to WðkÞ ¼ 2tab cosðkd=2Þ, yielding a
node at theM point (k= π/d) in the superlattice BZ. When the edge
dislocations feature a relative slip, as in Fig. 2b where l= 5d/12, the
mirror symmetry is broken, and the SC is gapped.

With the GB SC being gapped out due to the slip, we now turn
on the exchange field, which, as we show in the following, is
crucial for inducing nontrivial topology on the grain boundary.
The effective 1D Hamiltonian in Eq. (2) has particle-hole
symmetry, implying that it features two topological classes
distinguished by a Z2 topological invariant, which is determined
by the Pfaffian index2. For the exchange field oriented along the
GB line (θ= π/2), as we explicitly show in Supplementary Note 5,
the GB defect hosts a topologically nontrivial SC, with a pair of
localized MZMs, when

tmin<h cos α< tmax; ð6Þ
with tmin(max)=min(max){∣tab− tba∣, ∣tab+ tba∣}, corresponding to
the minimum (maximum) gap along the GB for h= 0. As such, the
effective hoppings tab, tba are highly sensitive to the microscopic
details of the system. Most importantly, the two MZMs are
protected by an emergent antiunitary symmetry U= (σ2⊗ σ0) K of
the effective 1D GB Hamiltonian in Eq. (2), with U2=− 1 and K
as complex conjugation, implying the orthogonality of the two
MZMs. See Supplementary Note 6 for details.

To demonstrate that the effective model (2) can indeed capture
topological features of the numerically observed emergent GB SC,
we use numerically obtained value of the critical magnetic field
for the topological transition hcrit from Fig. 4a, to infer values of
the critical angles θc,1 and θc,2 from the effective model. The value
of the critical field from Fig. 4a, as shown in Supplementary
Note 5, yields θc,1≃ 57∘= 1.00 and θc,2≃ 123∘= 2.14 radians, very

close to the numerically found values, see Fig. 4b. Finally, the
computed topological invariant of the GB SC for the exchange
field along the GB as its magnitude increases, Fig. 4(c), and as the
exchange field rotates, Fig. 4d, confirm the topological nature of
the GB SC and the concomitant MZMs.

We now further support the robustness of the cohabitating
Majorana modes at the top of the GB defect, by introducing
disorder in the system’s bulk, modeled by a random variation in
the chemical potential of up to 10%, making sure to explicitly
break all crystal symmetries (including any mirror symmetry). As
a result, we find that the two GB and two parent MZMs remain
unaffected, i.e., they are still zero energy states, and localized at
the end of the GB and the corners, respectively, thus confirming
their robustness against the nonmagnetic disorder. For the details,
consult Supplementary Note 7 and Supplementary Fig. 4.

Experimental feasibility. We now discuss candidate platforms for
the experimental realization of our proposal. The key condition is
that the parent topological SC should be translationally active, with
several possible candidates in this respect. First, the signatures of a
topological SC with Fermi surface away from the Γ−point have been
already observed in Fe-based compounds, for instance, in crystalline
domain walls in FeSe0.45Te0.5540. Furthermore, the GB defects can be
manipulated in some of the Fe-based superconducting materials41.
Second, quantum wells of doped topological crystalline insulators
(TCIs), e.g., SnTe, a paradigmatic TCI, features Fermi pockets close
to the L−points in the BZ42, with recently reported evidence of an
unconventional bulk superconductivity when In-doped43. In addi-
tion, the tunability of the GB defects in this material44, should
facilitate not only the realization of the GB SC chain, but can also be
used to manipulate the MZMs for braiding operations. Finally,
designer materials, assembled by scanning tunneling microscopy,
offer a realizable platform hosting a 2D translationally-active topo-
logical SC 45, which through the defect engineering should be
beneficial for the realization of the GB Majorana chain.

Irrespective of the concrete platform, as a first step, a pair of
dislocation modes should be manipulated to map out the hopping
parameters of the effective model in terms of the magnitude and
the angle of the exchange field, for a fixed set of parameters in the
parent SC. This mapping then can be used for the manipulation
of the GB superlattice in terms of the lattice constant and the slip,
so that the Majorana chain is in the topological regime, while the
parent SC remains gapped and topological.

Conclusions
We here show that a GB defect in a parent topological SC can host
symmetry and topologically protected MZMs, tunable by the in-
plane magnetic (exchange) field, which are localized at the defect’s
end. As such, the modes may be detectable by local probes, e.g.,
scanning tunneling microscopy. Furthermore, we expect that the
manipulation of the defect’s geometry provides the control neces-
sary for achieving information storage and braiding of the MZMs,
which may be important for the quantum technology applications.
In particular, the location of the zero modes may be controlled and
manipulated by the migration of the GB defects through the col-
lective glide motion of the elementary dislocations46, which is a
prospect that we will investigate in future. We also point out that
the control over the gap of the GB SC by rotating the exchange field
may be relevant for applications in spintronics.

Our work opens up a new, to the best of our knowledge,
direction in the search for defect-based platforms for quantum
information technology. As such, it will also spur research efforts
toward the proposals and possible realization of such platforms in
three spatial dimensions, where a planar GB defect should host
propagating edge Majorana modes. Finally, our findings are
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expected to help further understand the role of lattice defects and
establish new probing setups for topological SCs.

Methods
We consider the GB defect, with the geometry shown in Fig. 1 (see
also Supplementary Fig. 1), in a parent translatioanlly-active topolo-
gical SC described by the Hamiltonian in Eq. (1). We first numerically
implement this Hamiltonian on a real-space square lattice with the
GB defect and perform the numerical analysis using the Kwant code,
see also Supplementary Note 1 for additional details of the model.
After including the dislocation slip and the exchange field, using this
procedure, we numerically demonstrate the occurrence of the topo-
logical phase transition for the GB SC and the emergence of the
MZMs at the defect’s end by following the evolution of the emergent
GB band-structure and the LDOS when the magnitude of the mag-
netic field is tuned while the field is oriented along the defect (Fig. 2).
Additional results supporting this scenario are presented in Sup-
plmentary Note 2, Supplementary Figs. 2 and 3. To further corro-
borate the topological nature of this transition and the emergence of
the MZMs, we identify the closest-to-zero energy modes at the two
side of the transition and show that two additional modes appear in
the GB SC (Fig. 3). Finally, we compute the critical strength of the
exchange field corresponding to the topological phase transition of
the GB SC when the field is aligned with the GB defect, see Fig. 4a.
We also find the critical angle of the topological phase transition for a
fixed magnitude of the exchange field, shown in Fig. 4b.

These numerical results are supported by an effective model
obtained by projecting the parent Hamiltonian in Eq. (1) on the
subspace formed by the Majorana modes at the dislocation
defects, representing the Wannier basis for the GB superlattice,
yielding the effective Hamiltonian given by Eq. (2). The Wannier
states are obtained as the zero-modes of the parent Hamiltonian
with a single dislocation defect, as shown in Supplementary
Note 3, while the derivation of the effective GB SC model is
presented in Supplementary Note 4.

Topological and symmetry analysis of the the effective model
in Eq. (2) is performed as follows.

(i) We compute Z2 topological invariant of the GB SC for the
exchange field along the GB as its magnitude increases,
using the standard Pfaffian formulation, as discussed in
Supplementary Note 5, with the results shown in Fig. 4c.
Additionally, we follow the evolution of the topological
invariant as the exchange field rotates, Fig. 4d, keeping its
strength fixed, which further corroborates the topological
nature of the GB SC.

(ii) To show the additional symmetry protection of the GB SC
phase, we rewrite the effective Hamiltonian (2) in the form
that allows for identification of the protecting antiunitary
particle-hole symmetry, and the symmetry operator is given
in Supplementary Note 6, Eq. (S53). The stability of the GB
SC with respect to weak chemical-potential disorder is
furthermore numerically demonstrated in Supplementary
Note 7, with the results shown in Supplementary Fig. 4.

Additional technical details are discussed in the Supplementary
Information.

Data availability
The data that support the plots within this paper and other findings of this study are
available from the corresponding author upon reasonable request.

Code availability
The software code used in producing the results of the main text and the supplementary
materials is available at https://doi.org/10.5281/zenodo.8210977.
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