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In-gap band formation in a periodically driven
charge density wave insulator
Alexander Osterkorn 1,2✉, Constantin Meyer1 & Salvatore R. Manmana 1✉

Modern time-resolved spectroscopy experiments on quantum materials raise the question,

how strong electron-electron interactions, in combination with periodic driving, form

unconventional transient states. Here we show using numerically exact methods that in a

driven strongly interacting charge-density-wave insulator a band-like resonance in the gap

region is formed. We associate this feature to the so-called Villain mode in quantum-

magnetic materials, which originates in moving domain walls induced by the interaction. We

do not obtain the in-gap band when driving a non-interacting charge density wave model. In

contrast, it appears in the interacting system also in equilibrium at intermediate temperatures

and in the short-time evolution of the system after a quantum quench to the lowest-order

high-frequency effective Floquet Hamiltonian. Our findings connect the phenomenology of a

periodically driven strongly correlated system and its quench dynamics to the finite-

temperature dynamical response of quantum-magnetic materials and will be insightful for

future investigations of strongly correlated materials in pump-probe setups.
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A central driving force of modern condensed matter phy-
sics is the realization of novel phases of matter out-of
equilibrium like transient superconductivity1–5 or exci-

tonic insulators in transition metal dichalcogenides
(TMDCs)6–12. These are typically created from a highly complex
interplay of band structure, (electronic) interactions, and excita-
tions by a light-field. Nowadays, experimental techniques allow to
actively “engineer” properties of many-body quantum systems in
such out-of-equilibrium systems in a highly controlled way13–15.
This opens up the possibility to create behavior that is not even
possible in equilibrium setups. An important pathway is to induce
excitations whose interplay with the electronic interactions can
lead to intriguing transient behavior. Such excitations can be
realized in experiments, e.g., by ultrashort laser pulses in so-called
pump-probe setups16–19, or by continuous periodic driving of the
systems, e.g., by shaking ultracold atom systems on optical
lattices20–26. A much studied theoretical idealization is (infinite)
periodic driving, which can be addressed by Floquet theory. In
this framework and within certain limits, the properties of the
system can be described by a time-independent effective
Hamiltonian27,28. Control over the parameters of the driving
translates to control over the effective Hamiltonian and this, in
turn, allows to manipulate order parameters29, induce topological
order30 etc.

It is possible to derive time-independent approximate effective
Hamiltonians in the low-31 and high-frequency27,32 regimes, and
development of methods in this vein is ongoing33. In addition,
the periodic driving generically leads to energy absorption evol-
ving the system towards an infinite-temperature state34,35. This
restricts the relevance of such effective Hamiltonians to regimes
in which the energy absorption is suppressed—like the high-
frequency regime. Additional transient dynamics can be induced
by the switching-on procedure28,36–39. One major topic of
interest is the role of interactions in strongly driven systems. It
has been shown that in Hubbard systems at resonance the
interaction can be renormalized, and double occupancies can be
enabled27,32,40; one can even tune the parameters of the driving so
that the fermions behave like free particles41. In experiments on
topological insulators, the formation of Floquet side-bands has
been reported42,43 in time-resolved angle-resolved photoemission
(ARPES) spectra. For strongly correlated systems, however, their
experimental observation and theoretical understanding are still
open questions44–46, and it is interesting to search for additional
interaction-induced effects in nonequilibrium spectra.

In our work, we investigate periodically driven strongly inter-
acting fermions after a sudden switching-on of the drive and
without assuming the high-frequency approximation. We shed
light on the effect of interactions on the transient dynamics, and
we find the formation of a cosine-like band inside the gap-region
of the spectral function, even though in the ground state single
particle excitations have no support in this region. This is remi-
niscent of the creation or excitation of quasiparticles47 and their
dispersion in the transient state before thermalization. To this
end, we calculate non-equilibrium spectral functions with
unbiased matrix product state (MPS)48,49 approaches, and sys-
tematically investigate correlation effects by comparing to non-
interacting and mean-field scenarios. This is in contrast to other
approaches, which e.g. rely on the Floquet-Magnus expansion27,41

in terms of the inverse driving frequency. We focus on a simple
paradigmatic model for strongly correlated physics, namely a
chain of spinless fermions with nearest-neighbor interactions. At
half filling and zero temperature the model is known to undergo a
Berezhinskii-Kosterlitz-Thouless (BKT) type transition50 from a
Luttinger liquid (LL)51 to an interacting charge density wave
(CDW) insulator52 when increasing the interaction strength.
Driving the system with frequencies much larger than the gap

("Magnus case”), a renormalization of the gap size for this system
is predicted29.

As periodic driving heats up the system, we compare our
nonequilibrium results to spectral functions at finite tempera-
tures. There, it is known from the structure factors of quantum
magnets that at finite temperatures features in the gap region can
be realized (e.g., the so-called “Villain mode”53–56, scattering of
magnons57, or bound states58). Here, we will discuss the behavior
of the periodically driven fermionic system in light of these
findings.

Results
Model. We consider a periodically driven chain of interacting
spinless fermions described by the Hamiltonian

ĤðtÞ ¼ � th ∑
L�1

l¼1
eiAðtÞcyl clþ1 þH:c:
� �

þ V ∑
L�1

l¼1
nl �

1
2

� �
nlþ1 �

1
2

� �

þ ∑
L

l¼1
μlnl;
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where V is the strength of the density-density interaction and μl is
an additional, l-dependent on-site potential (e.g., a pinning field
at the edge), which in the numerical calculations allows us to
select one of the symmetry-broken CDW states, see the Methods
section. AðtÞ ¼ θðtÞA0 sin Ωtð Þ is a time-dependent vector poten-
tial, which is switched on at time t= 0. This approach is known as
Peierls substitution59 and models a classical light field, which
couples to the electrons in the system (here: spinless fermions). At
equilibrium, this model can be mapped to a spin-1/2 XXZ
quantum magnet via Jordan-Wigner transform. We will mostly
consider open boundary conditions (OBC) and for comparison
periodic boundary conditions (PBC). For A(t)≡ 0, Bethe ansatz
(BA)60 gives the BKT transition at V/th= 2. In the following, we
will drive a system starting in the temperature T= 0 CDW
ground state at V/th= 5, for which the energy gap according to
BA60 is Δ/th ≈ 1.576.

We define the non-equilibrium generalization of the spectral
function via the Fourier transform of the retarded Green’s
function

A ret
k ðt;ωÞ ¼ �Im

1ffiffiffiffiffi
2π

p
Z 1

�1
dτ eðiω�ηÞτG ret

kk ðt; τÞ;

G ret
αβ ðt0; τÞ :¼ �iθ τð Þ cαðt0 þ τÞ; cyβðt0Þ

n oD E ð2Þ

with a damping factor η ≈ 0.1 as further explained in the Methods
section. As discussed there, t is the waiting time after turning on
the periodic drive (note that waiting time t= 0 is not the same as
equilibrium, since these are the results immediately after turning
on the driving, and the time evolution over τ is performed with
the driven, time-dependent Hamiltonian). This quantity relates to
measurements in time-dependent angle-resolved photoemission
spectroscopy (trARPES), although a more detailed modelling is
required for a direct comparison to experiments17,61,62, as well as
for its interpretation in the deep nonequilibrium regime63.
Integration of Aret

k ðt;ωÞ over the crystal momenta k directly
yields the time-dependent density of states (tDOS). These
quantities allow us to study qualitative changes of the spectral
function with time, such as the formation of additional branches,
or a change of the band structure due to the excitation.

We complement our study by considering the time evolution of
the CDW order parameter

OCDWðtÞ :¼ 2
L

∑
i even

niþ1ðtÞ � niðtÞ
� �

; ð3Þ
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further details are explained in the Methods section. We also keep
track of the time evolution of the energy, E(t)=〈H(t)〉, which
serves as a measure for the heating of the system.

Driving a strongly correlated charge-density-wave insulator.
For frequencies Ω well above the band gap (“Magnus case”) the
properties of the periodically driven model are expected to
be well-described by an effective Hamiltonian according to the

Floquet-Magnus/high-frequency expansion29,32. It is given by the
original Hamiltonian but with a renormalized hopping
parameter64 t effh ¼ J0ðA0Þth � 0:7652th for A0= 1. This corre-
sponds to a model with V=t effh ’ 1:3V=th. In the following, we
consider these aspects by studying the system at V/th= 5, which
is deep in the CDW insulating phase.

Figures 1 and 2 show results for the equilibrium and for the
non-equilibrium spectral functions at waiting times t ¼ 0; 10t�1

h ;
and 20t�1

h . The driving frequency of Ω/th= 10 > Δ/th ≈ 1.576 is
larger than the spectral gap but not substantially larger than the
interaction strength so that we are not deeply in the Magnus
regime. Figure 1e shows the equilibrium spectral function for the
effective Hamiltonian with the renormalized hopping matrix
element. Let us consider the equilibrium results first: In Fig. 1a we
can identify the equilibrium continuum of excitations65 as well as
the spectral gap located around ω= 0. Despite finite size effects
its minimal size around k= π/2 is in agreement with the BA
prediction. The spectral function of the effective Hamiltonian in
Fig. 1e looks similar to Fig. 1a but the width of the continuum is
smaller and the gap is larger. Turning to the non-equilibrium
results, we see that the spectral function at waiting time t= 0 in
Fig. 1b looks quite similar to the equilibrium result for the
effective Hamiltonian in Fig. 1e, but it possesses additional
features. In particular, an in-gap band comes into appearance and
the continuum changes slightly its size and form. Around
frequencies ω/th= ± 10 weak signals appear, which seem to echo
the in-gap feature. These are reminiscent of Floquet sidebands,
which are observed in time-resolved ARPES experiments42. It is
noteworthy, however, that one seems to obtain these “echoes”
only for the in-gap signal, but not for the main spectral features.
This needs further investigations, which go beyond the scope of
the present paper. At later waiting times t ¼ 10t�1

h in Fig. 1c and
t ¼ 20t�1

h in Fig. 1d, the shape of the continuum does not further
change, but the in-gap signal becomes more pronounced. This is
further confirmed by Fig. 2, which shows a momentum cut
through the central region of the spectral function at k ≈ π/2 for
waiting times t= 0, 10t�1

h and 20t�1
h . In order to better focus on

the relative distribution of spectral weight we normalized all
spectral functions to their maximum value at that k-slice. In all
cases, we identify two main lobes and smaller peaks. Let us follow
the behavior of the main lobes and of the largest peaks at
ω= ± 10 and ω= 0: At waiting time t= 0, the lobes show a small
difference between the nonequilibrium result and the result of the

Fig. 1 (Non-)Equilibrium spectral functions of the periodically driven charge-density wave (CDW) state. The system is prepared initially in the ground
state at interaction strength V/th= 5 and is driven with a periodic drive of frequency Ω/th= 10. a Equilibrium spectral function A retk ðωÞ of the system.
b–d Non-equilibrium spectral functions A ret

k ðt;ωÞ upon driving at the instances indicated. Times are measured in units of the inverse hopping amplitude
t�1
h . e Equilibrium spectral function A retk ðωÞ of the system with renormalized hopping parameter teffh , for comparison. The spectral features in e are also
present in the spectral function of the driven system (b–d). In addition, there is clearly additional spectral weight appearing out-of-equilibrium, whose main
feature is well approximated by fðkÞ � �2:5 cosðkaÞ (black line in d)). All data is obtained with time evolution based on matrix product states for a chain
with L= 64 lattice sites and open boundary conditions. The color scheme encodes the values of A ret

k ðt;ωÞ, where blue represents negative and red positive
values.

Fig. 2 Cross section plots through the data in Fig. 1 at electronic crystal
momentum k � π

2. The spectral functions in the panels are obtained at
times (a) t= 0, (b) t= 10 and (c) t= 20, respectively. Dotted grey lines:
Rescaled equilibrium spectral function ~A

ret
k ðωÞ of the initial charge-density

wave state without driving and for a hopping amplitude th= 1. Dashed black
lines: analogous data for a renormalized hopping amplitude
teffh � 0:7652th. Solid lines: Rescaled non-equilibrium spectral functions
~A
ret
k ðt;ωÞ (red color = positive, blue color = negative). All data shown is

rescaled such that the maximum value of the data at this k-slice is equal
to one for better visual comparison of the spectral weight distribution,
~A
ret
k ðt;ωÞ ¼ Aretk ðt;ωÞ = maxω A retk ðt;ωÞ.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01346-2 ARTICLE

COMMUNICATIONS PHYSICS | (2023)6:245 | https://doi.org/10.1038/s42005-023-01346-2 | www.nature.com/commsphys 3

www.nature.com/commsphys
www.nature.com/commsphys


effective Hamiltonian, which becomes even smaller at later
waiting times. It is noteworthy that the similarity to the effective
description is already obtained at waiting time t= 0, although the
effective Hamiltonian relied on the infinite-driving assumption.
The additional signals at ω/th= ± 10 oscillate in time, but are
suppressed with increasing time. Nevertheless, the peak at ω= 0
becomes more pronounced with time and so the cosine-like in-
gap feature of Fig. 1 appears stable on the time scales treated by
us. We checked that it is also present for other system sizes and
periodic boundary conditions (PBC) so that boundary effects can
be ruled out as an explanation (cf. Supplementary Note 1). By
comparing results for L= 32 and L= 64 we find that the peak
gets sharper for larger system size, while keeping the relative
weight. At early waiting times negative weight appears in the
spectral function. This is not an artefact and traces back to the
non-equilibrium nature of the state. It was reported recently37,66

that upon averaging of the Wigner coordinate tave ¼ ðt þ t0Þ=2
over a driving period, the non-equilibrium density of states for
fermions can be shown to be positive. However, at later waiting
times away from the turning-on of the field at time t= 0, our
spectral function (obtained using “horizontal time
coordinates”37) is also almost completely positive without this
procedure.

To better understand our findings, we study in Fig. 3 the
system at the same value of V/th= 5 but with a driving frequency
closer to resonance Ω/th ≈ 42 ⋅ 10−1 for comparison. The
additional feature in the gap region in this case is even more
strongly pronounced and it goes hand in hand with a significant
reduction of the original spectral features of the CDW insulator.
The question arises how this disappearance of the holon
continuum is connected to a destruction of the CDW state. To
study this, we calculate the CDW order parameter OCDWðtÞ,
which is displayed in Fig. 4a for driving in the Magnus regime
and closer to resonance. In the latter case, OCDWðtÞ completely
vanishes on a time scale t � 10t�1

h , which is in agreement with
the time scale on which the holon continuum disappears in the
spectral function. The behavior for Ω/th= 10 is more compli-
cated, but also here a partial reduction of the CDW order is
realized, which continues over times longer than the ones treated
by us. Note that the parameters of the effective Hamiltonian are
deeper in the CDW phase such that in equilibrium one would
expect a larger CDW order parameter. In contrast, here we
observe a partial melting of the order, which is due to the
absorption of energy. Driven systems in the long-time limit will
realize an infinite-temperature state34,35. In our case, as can be
seen in Fig. 4b, the energy continues to increase as a function of
time indicating that, on the transient time scale treated by us, the

infinite temperature state is not yet fully reached. Clearly, energy
absorption is increased closer to resonance.

Driven CDW without interactions. We would like to distinguish
our finding further from a known effect: In earlier works on
electron-mediated CDW melting67,68, the appearance of in-gap
spectral weight was reported already in a pumped non-interacting
fermion model as a genuine non-equilibrium effect. Hence, the
question arises, if the in-gap band can be obtained also in a
continuously driven CDW system without interactions. To study
this, we adopt the “A-B model” by Shen et al.67 at half filling,

Ĥ ¼� th ∑
j

eiAðtÞcyj cjþ1 þH:c:
� �

þ U
2

∑
i2A

cyi ci � ∑
i2B

cyi ci

� �
;

ð4Þ

and apply the same semi-infinite driving protocol used for the t-V

Fig. 3 Spectral functions of the periodically driven charge-density wave state with drive frequency Ω≈ 4.2th. The system is prepared initially in the
ground state at interaction strength V/th= 5. a Equilibrium spectral function, b–d Nonequilibrium spectral functions A ret

k ðt;ωÞ of the driven system. The
color scheme encodes the value of A ret

k ðt;ωÞ, where blue represents negative and red positive values. The dotted lines in c and d show the function
fðkÞ � � 2:5

4 cosðkaÞ as a guide to the eye (note the difference to the guiding line in Fig. 1). The data in this figure was obtained from time evolution with
matrix product states (MPS) for a chain length of L= 64 sites and with open boundary conditions.

Fig. 4 Dynamics of the total energy change ΔE(t) and the charge-density
wave order parameter OðtÞ after the sudden switch-on of the periodic
driving. a Shows the order parameter, which was calculated with a weak
pinning potential (as outlined in the Technical aspects in the Methods
section) that leads to an explicit breaking of the translational symmetry.
b Shows the difference in total energy to the initial state in units of the
hopping amplitude th. The data in this figure was obtained from time
evolution with matrix product states (MPS) for a chain length of L= 32
sites and both periodic (PBC) and open boundary conditions (OBC)
are used.
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chain. The CDW order in the model is due to the presence of a
staggered on-site potential and leads to a spectral gap of size
Δ ≈U. We use the same Trotterized time-evolution as in the
original work67 and choose a step size of 10�6t�1

h . The results of
the simulations for a driving frequency of Ω= 10th and a gap of
U= 5th are shown in Fig. 5. Panels Fig. 5a–d show spectral
functions as in Fig. 1a–d. The dynamics of the order parameter in
Fig. 5e is more oscillatory than in Fig. 4a. Nevertheless, the mean
value of the oscillations decreases such that one finds a reduction
of the CDW order, similar to the data with Ω/th= 10 in Fig. 4.
The momentum cuts through the spectral function in Fig. 5f–h,
however, show that this is not connected with the formation of a
peak in the spectral gap. One should note that the spectral
function does not become stationary in the model but in the in-
gap region the only effect appears to be a small shift [compare
Fig. 5g and h].

Mean-field dynamics. To go beyond the purely non-interacting
limit we treat the dynamics of the CDW phase in the t-V model
within a Hartree-Fock mean-field (MF) approach, whose results
are shown in Fig. 6. This allows us to investigate the role of
interaction-induced doublon excitations for the in-gap feature. A

more detailed discussion can be found in the Methods section.
The equilibrium MF band structure is similar to the one in the A-
B model. In the driven model, however, we obtain, in addition to
the Floquet replicas of the equilibrium bands, a signal in the band
gap around ω/th ≈ 0, in contrast to the findings for the non-
interacting system of the previous section. This shows that an
interaction-induced CDW state is essential for this feature to
appear.

Comparison to finite temperatures and quench dynamics.
Additional insights can be gained by comparing the results of the
periodic driving to a quench to the high-frequency effective
Hamiltonian as well as to finite-temperature results at equili-
brium. Figure 7 displays exact diagonalization results (ED) for
A ret
k ðωÞ at finite and infinite inverse temperatures (see Methods

section) β, and A ret
k ðt;ωÞ at times t= 0 and t= 10 after the

quench, respectively. As can be seen in Fig. 7a and b, at low
temperatures the in-gap band is not visible in the ED results, but
at intermediate temperatures [β= 1, Fig. 7c] a band-like feature
in the gap region becomes visible, which at β= 0 (Fig. 7d) is
replaced by a flat signal around ω= 0 and additional features at
ω ~ ± V/2. We focus on the feature around ω= 0 at intermediate

Fig. 5 Simulation results for the non-interacting A-B model (4) under semi-infinite sinusoidal driving. In this figure, an on-site potential U= 5th and
semi-infinite sinusoidal driving with amplitude A0= 1 and frequency Ω= 10th is used. The chain length is L= 128 sites. The panels a–d show results for the
non-equilibrium spectral functions A ret

k ðt;ωÞ at different times. Panel e shows the dynamics of the charge-density wave order parameter as a function of
time and panels f–h show cross sections through the spectral functions of b–d. The color scheme encodes the values of A ret

k ðt;ωÞ, where blue represents
negative and red positive values.
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temperatures, since it is most similar to the results in the peri-
odically driven system. We checked for different values of V/th
and find that the bandwidth and position of the in-gap band at
β= 1 seems not to depend on V, similar to the driven system (cf.
Supplementary Fig. 4). In the quench dynamics, already imme-
diately after the quench a weak in-gap band is visible (Fig. 7e),
which is stronger at time t= 10 (Fig. 7f), whose intensity, how-
ever, depends non-monotonically on time. This is in contrast to
the periodically driven system, where the in-gap band seems to be
a stable feature on the time scales investigated by us. These
findings further support the picture that the in-gap band can be
understood already in the lowest order of the high-frequency
expansion. It also shows that in our case the quench dynamics
contains the main spectral features of the periodically driven
system.

A similar band around ω ~ 0 is known to appear in the
dynamical structure factor of quantum antiferromagnets, where
thermal excitation leads to the formation and scattering of
moving domain walls, the so-called “Villain mode”, which has
been observed in neutron scattering experiments53–56. Our
findings indicate that a similar mode is obtained also in the
present system at finite temperatures, and in nonequilibrium after
a sudden quench or when periodically driving: In the CDW state
treated here, such a domain wall is realized by a doublon, i.e. two
adjacent electrons, which can freely itinerate through the system
unless it recombines with the holon. The formation and
delocalization of the doublon lead to a reduction of the CDW
order parameter. A contribution to the spectral function stems
from the scattering between populated eigenstates of the excited
system with at least one doublon. Removing (adding) an electron
without changing the doublon number connects two such states,

Fig. 6 Simulation results for the t-V model under semi-infinite sinusoidal driving within Hartree-Fock mean-field theory. The data in this figure was
obtained for an interaction strength V= 8th and a vector potential with amplitude A0= 1 and frequency Ω= 30th. Panels a–d show results for the non-
equilibrium spectral functions A ret

k ðt;ωÞ at different times. Panel e shows the dynamics of the charge-density wave order parameter as a function of time
and panels f–h show cross sections through the spectral functions of b–d. The color scheme encodes the values of A ret

k ðt;ωÞ, where blue represents
negative and red positive values. The length of the chain is L= 64 sites and periodic boundary conditions have been used. The heatmaps in a–d are drawn
for the reduced Brillouin zone.
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generically at different momenta k and k+ q. For quantum
antiferromagnets, similarly, the scattering between states formed
of a delocalized single domain wall—within the subspace of one
domain wall—leads to a sinusoidal signal around ω= 0 in the
longitudinal dynamical structure factor, which then is called
the Villain mode (or resonance)53,56,69. This is also found for the
transversal dynamical structure factor of the XXZ
antiferromagnet69. The breaking of a doublon, in contrast, leads
to a signal at ω ~ V, as seen in our finite-temperature results at
higher temperatures.

The MPS results show an asymmetric line-shape (see Supple-
mentary Figs. 1–3), which is also reported for the Villain mode in
antiferromagnets69. Although the fundamental mechanism behind
the Villain mode, i.e. free doublon propagation, can also occur in
mean-field theory, it clearly does not capture those asymmetries.
Nevertheless, our data indicates Villain-like resonances as a likely
explanation of the observed in-gap feature. To further understand
the properties of the in-gap band, a similar calculation to the one

pursued by Jones et al.69 for the spinless-fermion model is needed,
which goes beyond the scope of this paper.

Conclusions
We report the formation of a cosine-shaped signal in the time-
dependent (retarded) spectral function upon periodic driving of
an initial CDW insulator. For driving frequencies Ω larger than
the spectral gap, it occurs in addition to the equilibrium spectral
features, which are modified according to the prediction by the
high-frequency effective Hamiltonian29. When approaching
resonance, the spectral function changes significantly as com-
pared to the equilibrium case and a flat band around ω= 0
becomes the dominant feature.

We find these results based on quasi-exact time evolution using
matrix product states. The additional signal is not observed when
periodically driving a non-interacting CDW state, but a mean-
field treatment of the Hamiltonian (1) reveals a similar in-gap
signal around ω= 0. However, its properties still differ sig-
nificantly from the MPS results, in particular with respect to the
line shape.

Comparing to finite-temperature results and to the dynamics
of a quench to the high-frequency effective Hamiltonian reveals
that also in these cases the in-gap band is present, and its
properties are very similar to the one seen in the periodically
driven system. This indicates that exciting the system by adding a
finite amount of energy populates certain states not present in the
ground state spectral function. This is reminiscent of the behavior
of the dynamical structure factor of quantum magnets, where
different possible scenarios for temperature-induced additional
branches are known, e.g., i) Villain mode of moving domain walls
in spin-1/2 quantum antiferromagnets53–56; ii) scattering of ele-
mentary excitations (e.g. magnons in spin-1 chains57); iii)
population of bound states58. The bandwidth of the observed in-
gap band appears to be independent of V, similar to the Villain
resonance53, so that our fermionic system likely realizes a Villain-
like band at finite (intermediate) temperatures and out-of-equi-
librium, in both the quench dynamics and under periodic driving.
At high temperatures, a flat band is obtained at ω ≈ 0, which is
also observed when driving close to resonance, where the results
are very similar to the β= 0 results, indicating heating to infinite
temperature.

Note that a Villain-like mode has also been reported for the
fermionic Hubbard chain at finite temperatures, however, there it
is seen in the structure factor of the density-density
correlations70. It will be interesting to further investigate this
feature in this simple correlated system, e.g., using perturbative
approaches69 or Bethe ansatz, or semiclassical approaches, such
as fermionic truncated Wigner approximations71–73. It is an open
question to see whether the interplay of the melting of CDW
states and electron correlations can lead to similar additional
resonances in the spectral function also in periodically driven
interacting two-dimensional systems. This is relevant for pre-
dictions for ongoing pump-probe investigations, e.g., in two-
dimensional transition metal dichalcogenides (TMDCs)74. It will
be fruitful to explore the interplay of such in-gap features, Floquet
side-bands and dephasing mechanisms in strongly correlated
materials, and also in related model realizations by quantum
simulators with ultracold gases on optical lattices20,21,75.

Methods
Green’s functions. All Green’s functions (GFs) are derived from
the contour-ordered single-particle Green’s function76

Gαβðt; t0Þ ¼ �i T̂CcαðtÞcyβðt0Þ
D E

; ð5Þ

Fig. 7 Spectral functions at nonzero temperature T and after a quench.
a–d Exact diagonalization results for the equilibrium spectral function
A retk ðωÞ of a chain with interaction strength V/th= 5 and inverse
temperature β= 1/T, as indicated in the panels. The dashed line in c is a
guide to the eye indicating the in-gap band displayed in Fig. 1d. The data
was obtained for a chain with L= 12 lattice sites and open boundary
conditions. e, f Nonequilibrium spectral function A retk ðt;ωÞ after a sudden
quench (no periodic driving) to the zeroth order high-frequency effective
Hamiltonian. The data is obtained from time evolution with matrix product
states in a system with L= 32 lattice sites for open boundary conditions.
The color scheme encodes the values of the spectral functions, where in
e and f blue color represents negative values.
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which can be written in a matrix representation with respect to
the forward and backward branches of the real-time axis. In this
representation the greater, G >

αβ ðt; t0Þ, and lesser Green’s function
G<
αβðt; t0Þ each have one time argument lying on the forward and

one on the backward branch of the real-time contour. The
retarded GF is a linear combination of the two with an additional
theta function,

G ret
αβ ðt; t0Þ ¼ θðt � t0Þ G >

αβ ðt; t0Þ � G<
αβðt; t0Þ

� �
:¼ �iθ t � t0ð Þ cαðtÞcyβðt0Þ

D E
þ cyβðt0ÞcαðtÞ
D E� �

:
ð6Þ

At equilibrium, one of the two time variables can be suppressed
due to time-translational invariance. Out-of-equilibrium, how-
ever, one needs to consider both time variables, and the Fourier
transform to frequency space is not unique any more. In order to
minimize the numerical costs, we choose to use “horizontal” time
coordinates, in which we evolve the wavefunction up to a time t0

and then perform the Fourier transform with respect to the
relative time τ ¼ t � t0, after further evolving the system in time,
with t>t0. Kalthoff et al.37 obtained similar results for this choice
of the waiting time and the Wigner choice ðt þ t0Þ=2 in the case of
a free fermion model. The states are labelled by momentum
indices k (depending on boundary conditions, see below). In the
numerics we calculate the auxiliary quantities

C<
klðt0; τÞ ¼ hcykðt0 þ τÞclðt0Þi

C >
kl ðt0; τÞ ¼ hclðt0Þcykðt0 þ τÞi ;

ð7Þ

such that

G ret ;≶
kk ðt0; τÞ ¼ �iθðτÞC≶

kkðt0; τÞ�; ð8Þ
and we finally obtain the nonequilibrium spectral functions

A ret ;≶
k ðt;ωÞ ¼ �Im

1ffiffiffiffiffi
2π

p
Z 1

�1
d τ eðiω�ηÞτGret ;≶

kk ðt; τÞ ;

A ret
k ðt;ωÞ ¼ A ret;<

k ðt;ωÞ þ Aret ; >
k ðt;ωÞ :

ð9Þ

In equilibrium the retarded GF contains information about the
density of states while the lesser and greater GFs contain
information about occupations of the states. The latter is reflected
in the fact that due to the absence of the θ(τ) the whole “history”
of the lesser and greater GFs needs to be traced back until time
−∞. In this work we only compute the retarded Green’s function.
Integration of Aret

k ðt;ωÞ over k directly yields the time-dependent
local density of states. In contrast to the equilibrium situation the
quantity Aret

k ðt;ωÞ is not necessarily positive, so that care needs to
be taken with this interpretation63.

A more subtle issue concerns the gauge-invariance of the
calculated spectral function. In accordance with other studies in
the literature44,77, we perform calculations in a fixed gauge.
Gauge-invariant formulations have been proposed17,61,62, in
particular for overlapping pump and probe pulses, or if the
system possesses multiple bands. These are, however, difficult to
implement in practice and fixed-gauge calculations already yield
qualitatively insightful results.

Therefore, we focus on the most important qualitative features
evolving with time. Central predictions of Floquet theory, like the
effective Hamiltonian picture, are captured with a good accuracy,
so that we believe that our results not only provide a qualitative
picture, but also quantitative predictions with a good accuracy.

Technical aspects
Spatial Fourier transform. For periodic boundary conditions
(PBC) we use k 2 2π

L � f0; ¼ ; Lg while for open boundary con-
ditions (OBC) k 2 π

Lþ1 � f1; ¼ ; Lg corresponding to a sine

transform78,79 with

ck ¼
ffiffiffiffiffiffiffiffiffiffiffi
2

Lþ 1

r
∑
k
sinðkriÞci: ð10Þ

The OBC momenta differ slightly ( ~ 1/(L+ 1)) from simple
fractions of π, e.g. π/2, so we always write ≈ and the closest k-value.

Temporal Fourier transform. Due to the finite maximal τ that we
are able to reach and due to the theta function, the temporal
Fourier transform produces a non-zero background ~ 10−5 signal
everywhere in the spectral function. Since we expect the exact
spectral function to have value zero if no signal is present, we
decided to subtract this background. We add a damping factor
η ≈ 0.1 to regularize the finite time-propagation with respect to τ.
In addition, to improve the ω-resolution we padded the τ-data
with zeros to obtain at least 4096 frequency points.

Symmetry-broken CDW state. For MPS calculations with OBCs we
prepare the system at half filling with μl= 0. In the CDW phase,
this leads to an exact superposition of the two possible symmetry-
broken ground states, so that for a finite system OCDWðtÞ ¼ 0 for
all times t. In order to be able to keep track of the dynamics of the
CDW order parameter, we performed additional simulations
where we applied a ‘pinning field’ at the edge μ1,L ≠ 0, which selects
one of the ground states and allows us to study OCDWðtÞ. We
checked that the spectral function does not differ if calculated with
or without the pinning field. In order to minimize possible
boundary effects in the order parameter, we perform the sum in
Eq. (3) only over the four unit cells in the center of the system.

MPS calculations. For comprehensive reviews we refer to the
literature48,49. Here we only focus on the main aspects concerning
the computation of the time-dependent spectral functions. In
order to compute G ret ;≶

kk ðt; τÞ using matrix product states we start
from the system’s ground state GSj i and consider the following
quantum states 		ψðtÞ� ¼ UTDVPðt; 0Þ

		GS �;		ϕ<l ðtÞ� ¼ cl
		ψðtÞ�;		ϕ >

l ðtÞ� ¼ cyl
		ψðtÞ�;		ϕ≶l ðt þ τÞ� ¼ UTDVPðt þ τ; tÞ

		ϕ≶l ðtÞ�;
ð11Þ

where UTDVP(t, t0) denotes time-evolution using the MPS reali-
zation of the time-dependent variational principle (TDVP). Here,
we always apply a two-site TDVP algorithm49. The operators ck
carry momentum space labels. However, we always work in
position space and exploit that we can write momentum space
annihilation and creation operators as a sum of local operators
ck=∑jPk,jcj, where we have introduced the transformation matrix
P, allowing us to compute C≶

klðt; τÞ through a series of local MPO-
MPS applications. P depends on the boundary conditions used.
Using the states (11) we calculate the quantities

C<
klðt; τÞ ¼ ψðt þ τÞjcykjϕ<l ðt þ τÞ

D E
; ð12Þ

C >
kl ðt; τÞ ¼ ϕ >

l ðt þ τÞjcykjψðt þ τÞ
D E

; ð13Þ

which are related to G ret ;≶
kk ðt; τÞ, see Eq. (8). For PBC we imple-

ment a “snake geometry” (Paeckel, S. & Köhler, T. Private
communication)80 for the labelling of the sites in the chain. It
turned out that the DMRG ground state search always choses one
of the degenerate ground states which allowed us to calculate the
order parameter directly. Further details on the calculation of the
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non-equilibrium spectral function with MPS methods can be
found elsewhere79.

Hartree-Fock time evolution. We start from a Hartree-Fock
decoupling of the interaction term and assume a two-site unit cell
with sublattices A and B. Let us denote

ρA :¼ hcyi ciii2A; ρ0 :¼ hcyi ciþ1ii2A;
ρB :¼ hcyi ciii2B; ρ1 :¼ hcyi ciþ1ii2B:

ð14Þ

Using the Fourier basis (Q= π)

cyi2A ¼ 1ffiffiffi
V

p ∑
k2 rBZ

e�ikri cyk þ cykþQ

� �
cyi2B ¼ 1ffiffiffi

V
p ∑

k2 rBZ
e�ikri cyk � cykþQ

� � ð15Þ

we obtain, using the definitions ϵk ¼ �2th cosðkÞ,
χk ¼ V ρ0e

�ik þ ρ�1e
ik


 �
, the following representation of the

Hamiltonian

ðHÞ ¼ cyk cykþQ

� �
ϵk � Re ðχkÞ þ VðρA þ ρBÞ � μ iIm ðχkÞ þ VðρB � ρAÞ

�iIm ðχkÞ þ VðρB � ρAÞ �ϵk þ Re ðχkÞ þ VðρA þ ρBÞ � μ

� �

ck
ckþQ

 !
:

ð16Þ

In the following we consider half filling μ= V(ρA+ ρB). The
saddle point values of ρA, ρB, etc. are determined with a simulated
annealing approach. Diagonalization of the Hamiltonian yields
the eigenenergies

Ek ¼ ± � � ϵk � Re ðχkÞ

 �2 � Im ðχkÞ2 � V2 ρB � ρA


 �2h in o1=2

¼ ± jϵk � χkj2 þ V2ðρB � ρAÞ2
� 1=2

:

ð17Þ
Hence, the spectral gap is given by 2V(ρB− ρA).

For the dynamics we first solve the time-diagonal problem and
obtain the full one-particle reduced density matrix
ρijðtÞ ¼ hcyi ðtÞcjðtÞi. In a second iteration we solve the equation
of motion for the relative time τ using the time-diagonal data
from the first iteration. This corresponds to solving the Kadanoff-
Baym equations with a Hartree-Fock self-energy76.

Computation of the finite-temperature spectral function. We
use the Lehmann representation for the equilibrium retarded
spectral function at finite temperatures,

Aret
k ðωÞ ¼ 1

Z
∑
m;n

hmjckjni
		 		2 e�βEn þ e�βEm


 ��
δ ðEn � EmÞ � ω

 �

;

ð18Þ

where Z ¼ ∑ne
�βEn is the partition function. The eigenstates mj i

and nj i as well as the eigenvalues En of the Hamiltonian (1)
evaluated at time t= 0 were obtained using QuSpin81,82. We
grouped the frequencies into bins of width 10−2.

Data availability
All data shown in this paper (MPS, noninteracting, mean-field and exact diagonalization
calculations) can be accessed at the repository https://gitlab.gwdg.de/stefan-kehrein-
condensed-matter-theory/alexander-osterkorn/cdw_chain_dynamics.

Code availability
The matrix product state calculations have been carried out using the SymMPS toolkit
(developed by Sebastian Paeckel and Thomas Köhler), which is freely available at

www.symmps.eu (accessed on 2020-09-23). The exact diagonalization results at
nonzero temperature in Fig. 7 were obtained using QuSpin81,82, which is available at
quspin.github.io/QuSpin (version 0.3.7). The codes for the noninteracting A-B and for
the mean-field time evolution are available in the same repository as the data (see
“Data Availability”). Further configuration files and scripts can be obtained from the
authors upon request.
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