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Quantum reference frames for an indefinite metric
Anne-Catherine de la Hamette 1,2,5✉, Viktoria Kabel 1,2,5, Esteban Castro-Ruiz3,4 & Časlav Brukner1,2

The current theories of quantum physics and general relativity on their own do not allow us to

study situations in which the gravitational source is quantum. Here, we propose a strategy to

determine the dynamics of objects in the presence of mass configurations in superposition,

and hence an indefinite spacetime metric, using quantum reference frame (QRF) transfor-

mations. Specifically, we show that, as long as the mass configurations in the different

branches are related via relative-distance-preserving transformations, one can use an

extension of the current framework of QRFs to change to a frame in which the mass con-

figuration becomes definite. Assuming covariance of dynamical laws under quantum coor-

dinate transformations, this allows to use known physics to determine the dynamics. We

apply this procedure to find the motion of a probe particle and the behavior of clocks near the

mass configuration, and thus find the time dilation caused by a gravitating object in super-

position. Comparison with other models shows that semi-classical gravity and gravitational

collapse models do not obey the covariance of dynamical laws under quantum coordinate

transformations.
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The theory of general relativity provides us with excellent
tools to study and predict the dynamics of objects in the
vicinity of gravitating bodies, as long as the latter are

considered to be classical. The theory of quantum physics
describes the behavior of quantum systems with impressive pre-
cision, allowing us to study quantum phenomena such as inter-
ference, superposition, and entanglement. Moreover, quantum
field theory in curved spacetime describes quantum fields in a
classical, possibly curved, spacetime background. However, up
until today, we are still lacking a theory that permits us to
describe the dynamics of physical systems in the neighborhood of
gravitational sources that are genuinely quantum in full gen-
erality. One might think that these issues only concern highly
energetic or cosmological scenarios, but in fact they are inherent
to the low energy regime as well. This was first noted by Richard
Feynman at the 1957 Chapel Hill Conference, where he suggested
that “one should think about designing an experiment which uses
a gravitational link and at the same time shows quantum
interference”1,2. The situation we consider here is precisely of this
type: Given a configuration of masses in a spatial superposition,
how do physical systems evolve in its vicinity?

Most full quantum gravity approaches such as string theory3

and loop quantum gravity4 have not attempted to answer this
specific question for now as this would require a rigorous tran-
sition to the low energy regime. On the other hand, there are
perturbative approaches to quantum gravity, such as linearized
quantum gravity5 or effective quantum descriptions of the grav-
itational quantum potential6, which are able to make predictions
but are based on perturbations on a fixed spacetime background
and are limited to weak gravitational fields. Other models such as
semi-classical gravity7 or gravitational collapse models8–13 can
treat the aforementioned situations in more generality and predict
an effectively classical gravitational field, at least after a short
amount of time. In contrast, recent proposals argue for the
quantum nature of the gravitational field and in particular predict
the generation of gravity-induced entanglement and other
quantum phenomena14–20. With rapid advances in measuring the
gravitational field of microscopic source masses21 as well as
creating and verifying superpositions of large molecules22,
experimental tests which can corroborate or exclude some of
these approaches are getting within reach23. The hope is that in
the near future, these two states of the art can be combined to
design experiments in which superpositions of gravitational
quantum sources can be created and the nature of their gravita-
tional field investigated. In the meantime, further insight relies on
theoretical investigation and a proper conceptual understanding
of these problems. We show here that the above-mentioned
question can be answered without making any a priori assump-
tions about the nature of the gravitational field sourced by a mass
configuration in superposition. The aim of this paper is to con-
struct a rigorous argument that is based on a minimal set of
assumptions, in particular an extended symmetry principle24, and
still allows us to predict the dynamical behavior of probe systems
in the vicinity of masses in superposition. As the results we find
are in line with gravitational fields in superposition, they provide
an independent justification for developing a quantum formalism
for the spacetime metric. Conversely, if particular predictions
based on the assumption that a quantum object sources a grav-
itational field in superposition are experimentally verified in the
future, this would provide empirical evidence for our extended
symmetry principle.

The main tool used in the construction of this argument are
quantum reference frames (QRFs). The approach of QRFs has
received a lot of attention in recent years, from the quantum
gravity community25–27 and the quantum information and
quantum foundations community alike28–52. Most approaches to

quantum reference frames take as a premise that the reference
system relative to which a physical system is described needs to be
explicitly included into the description. While several different
frameworks can be found in the literature, we will make use of a
combination of specific formalisms35,40. We refer the reader to
Supplementary Note 1 for a short introduction to quantum
reference frames.

Our argument is based on an extended symmetry principle: the
“covariance of dynamical laws under quantum coordinate trans-
formations”. This assumption allows us to change from a situation
in which a massive object is in superposition of spatial locations to
a situation in which it is definite, that is, in a single position, and
thus the gravitational field and metric are well-defined. We can
then determine the time evolution in this frame and use the
inverse QRF transformation to obtain the dynamics in the original
frame. Just as with classical coordinate transformations, this is
only possible if the dynamical laws are covariant under the
reference frame transformations. In general relativity, the dyna-
mical evolution is governed by the Einstein field equations. For
completeness, we remind the reader of their explicit form:

Rμν �
1
2
Rgμν þ Λgμν ¼

8πG
c4

Tμν ; ð1Þ

where Rμν is the Ricci curvature tensor, R the scalar curvature, gμν
the metric tensor, Tμν the stress-energy tensor, Λ is the cosmo-
logical constant, G the Newtonian constant of gravitation, and c
the speed of light in vacuum. Note that the Einstein field equations
are covariant under general classical coordinate transformations,
which change the Einstein tensor Gμν ¼ Rμν � 1

2Rgμν and the
energy-momentum tensor Tμν in the same manner. The goal of
this paper is to find an extension of these to “quantum coordinate
transformations”, i.e. superpositions of the classical coordinate
transformations, and subsequently use them to solve the afore-
mentioned typical problems in the low-energy quantum gravity
regime. In general, this seems to require the introduction of a
quantum state and corresponding Hilbert space for the metric
tensor as it transforms non-trivially under general coordinate
transformations. However, this additional step can be avoided if
the metric tensor remains invariant under the applied coordinate
transformations, i.e. if they are isometries. We can further con-
sider transformations that move all systems, including the grav-
itational source, rigidly. By this, we mean that the relative
coordinate distances between all systems remain invariant, where
the coordinates are defined by a physically instantiated reference
system (see “The case of one massive object” in “Results” section
for a more detailed discussion). These additional transformations,
which amount to global translations and rotations of all physical
systems, do not affect the dynamics. If we want to be able to
change into a frame in which the mass configuration is definite by
means of these transformations and at the same time preserve the
dynamical laws, we have to restrict to situations in which the mass
configurations themselves are related by relative-distance-
preserving transformations in the above sense. Before you put
down this paper too quickly, note that this restriction does not
imply that we can only consider trivial situations, in which the
gravitational field is the same in each branch from the start. This
would be true only if the gravitational source was the only object
in the universe53. The presence of test particles breaks the
equivalence of the mass configurations related by these transfor-
mations in different branches. In particular, we can still consider
situations in which the distance between the mass configuration
and the test particle is in a superposition. Given a situation in
which mass configurations are related by relative-distance-
preserving transformations across different branches, we can
transform to the quantum frame in which the gravitational source
becomes definite to compute the dynamical evolution of quantum
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objects in its presence. Transforming back to the original frame,
we are thus able to make concrete predictions for the motion of
test particles or clocks in the presence of a gravitational source in
superposition.

The general idea employed here is to use the relativity of
superpositions24 under QRF transformations to make an indefi-
nite metric definite. This aspect is similar to the one in previous
works on QRFs for indefinite metrics43,49, however, there are
important differences between the approaches. In recent
work43,49, a local quantum inertial frame is introduced, which can
be associated with a frame attached to a quantum particle falling
freely in a superposition of gravitational fields. It was shown that
in the transition to the local quantum inertial frame, the metric
becomes Minkowskian, extending the validity of Einstein’s
equivalence principle to quantum reference frames and space-
times in general superpositions. However, it permits the trans-
formation into a definite metric only in the infinitesimal vicinity
of the origin of the local quantum inertial frame, whereas outside
this range the metric remains indefinite. Our approach enables us
to make the spacetime globally definite and is thus restricted to a
superposition of configurations related by relative-distance-
preserving transformations. Moreover, the above-mentioned
previous works assume a Hilbert space structure for gravita-
tional fields and thereby the assignment of a quantum state to the
metric. Here, we avoid this methodological step.

Results
The general argument and its applicability. We begin by stating
the general argument, illustrated in Fig. 1. Consider a mass

configuration M in superposition of semi-classical states with
respect to a reference system R. Within this set-up, we would like
to predict the motion of a sufficiently light probe S in the pre-
sence of the superposition. While the current established theories
– quantum theory and general relativity separately – do not allow
us to determine the gravitational field sourced by massive objects
in superposition, we can solve the problem by transforming into a
better suited quantum frame of reference. We achieve this by
minimal assumptions and in a limit in which a future theory of
quantum gravity is expected to have the same qualitative pre-
dictions. By applying a QRF transformation in the form of con-
trolled shifts and rotations, depending on the position of M, we
can change into the frame in which the mass is in a definite
position while the test particle and the reference frame are in
spatial superposition (Fig. 1). We now make the following
assumption: Covariance of dynamical laws under quantum
coordinate transformations: physical laws retain their form under
quantum coordinate transformations. This assumption can be
seen as a generalized symmetry principle, extending covariance
under classical coordinate transformations to quantum super-
positions thereof. It allows us to solve the dynamics in the
reference frame of the mass configuration M and then transform
back into the original frame to find the motion of the particle S in
the presence of a mass in superposition. By changing to the
reference frame of M, we enter the regime of a quantum particle S
in the presence of a classical gravitational source M. In the most
general case, the behavior of quantum objects in a fixed grav-
itational field is governed by quantum field theory on curved
spacetime54. The regime has been studied both theoretically and,

Fig. 1 Qualitative depiction of the general argument in four steps. We start in the frame of the reference system R with a probe system S and a mass
configuration M that is in a quantum superposition (depicted by fainter colors). We apply the quantum reference frame transformation ŜR!M

to move to
the frame in which M and thus the spacetime metric are definite whereas the reference system R and the probe S are both in a superposition. In this frame,
we can use known physics to solve for the dynamics of the probe system S. Here depicted is the geodesic motion of the probe S in the gravitational field
sourced by a single mass M. Finally, we apply the inverse transformation ŜR!M

� �y
to the evolved state to change back to the original frame. We thus find

the dynamics of S in the presence of an indefinite mass configuration. In particular, we observe that S moves in a superposition of trajectories and becomes
entangled with the mass configuration M. All in all, the time evolution in the frame of R (gray arrow) is obtained by the above sequence of quantum
reference frame changes and the time evolution in the frame of M (black arrows). Note that our argument is general and can be applied to cases beyond a
single mass in superposition.
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in the low energy limit, experimentally. In an interferometric
experiment with neutrons in 1975, Colella, Overhauser, and
Werner55 observed a phase shift induced by the gravitational field
of the Earth, establishing that different branches of a spatial
superposition “feel” different gravitational potentials. Their
results were improved and extended to atomic fountains to
measure the phase shift due to Earth’s gravitational potential56,
and to more general gravitational sources leading to more general
spacetime curvatures57. While these works are restricted to a
Newtonian gravitational field, an extension to general spacetimes
was studied theoretically by Stodolsky58. He determined the
motion of quantum particles along semi-classical paths in a
general gravitational field and, in particular, calculated the
quantum phase accumulated along these paths. Note that the
different regimes regarding quantum systems on curved space-
time are characterized by two limits: one regarding the quantum
nature, from particles to fields, of the object experiencing the
gravitational field and one regarding the strength of the gravita-
tional field (Fig. 2).

The general argument presented in this article is in principle
not restricted by either of these limits. Whenever a treatment of a
situation with a definite spacetime is possible, it can be extended
to the corresponding situation in which the gravitational source is
in a quantum superposition of semi-classical states. Our explicit
calculations and examples in the present section mainly focus on
the regime of quantum particles in Newtonian gravity (1), which
is also the regime of potential table-top experiments23. Note that
the regime of quantum mechanics can be further subdivided into
a realm in which only superpositions of semi-classical trajectories
of quantum particles are considered and one in which particles
follow a more general quantum evolution. In order to provide an
intuition for the motion of the probe, we focus our attention in
this section on the regime of quantum particles following semi-

classical trajectories. This means assuming that the gravitational
fields vary sufficiently slowly within distances of the order of the
De-Broglie wavelength of the probe for each semi-classical
trajectory of the superposition and that the position and
momentum associated to each amplitude are approximately
well-defined at the same time58. In the “Methods” section, we will
show how to make use of the Hamiltonian formulation of time
evolution, which is available for instance in the Newtonian limit
(see “Transformation of the Hamiltonian operator” section). This
allows us to treat general quantum states for the probe. Quantum
particles in the semi-classical subsector of regime (2) can be
tackled with a generalized QRF transformation operator, which
we introduce in the “Relative-distance-preserving transformation
using an auxiliary system” subsection of the “Methods” section.
Finally, the quantum field theoretic regimes (3) and (4), could be
treated with an extension of our QRF change operator to act on
probe systems which are quantum fields.

The case of one massive object. Let us now go through the steps
of the argument in detail for the simple case of one massive object
M in superposition of two well-defined, fixed, and classically
distinguishable positions with respect to a quantum reference
system R. By this, we mean that the mass is prepared and kept in
a superposition of coherent states xðiÞ; p ¼ 0

�� �
centered around

mean positions x(i) and zero momentum. This is motivated by
most experimental proposals which involve masses that are kept
at their initial position using optical or magnetic traps23. With
strong potentials holding the mass in place, its time evolution
becomes trivial. Moreover, due to the negligible magnitude of the
momentum fluctuations in the coherent states, we neglect their
contribution to the stress energy tensor. Finally, we take the mean
positions x(i) to be sufficiently far apart such that the overlap
between the corresponding coherent states is negligible. This
allows us to neglect the spread of the wavefunction in position
space and effectively describe the massive object in terms of a
superposition of position eigenstates xðiÞ

�� �
. This remains true

throughout the duration of the experiment as the state of the
massive object does not change over time. Note further that any
issues regarding singularities that arise from treating a point mass
could be dealt with by taking into account the extension of the
massive object.

For all states xj i in this article, x always refers to the coordinate
distance between the system and the designated reference system
and is associated with a concrete preparation procedure. We want
to briefly address the question of how to assign well-defined
coordinates in a frame in which the spacetime metric is indefinite.
One option is motivated by the experimental procedure used to
set up the situation: before the mass is put into a superposition,
the spacetime metric is definite and taken to be Minkowski,
which allows to assign coordinates to events operationally in a
straightforward way. In particular, we can choose to assign the
origin to the reference system and define the spatial coordinates
of all other objects in the set-up through the Euclidean distances
from the reference system. The spatial coordinates assigned to the
massive object in superposition are then set by the positions of
the traps used to hold the mass in this coordinate system, before
the mass is placed in the traps. Even after inserting the massive
object into the set-up, the coordinates remain well-defined.
Furthermore, one can always give physical meaning to the
coordinate distances in the frame of R, even after the massive
object has been inserted, by finding the corresponding physical
distances in the frame of M. More specifically, by changing into
the frame of M in which the spacetime metric is definite, one can
relate the transformed coordinates to the proper distances
between objects in a well-defined spacetime.

Fig. 2 Discussion of different regimes of applicability. The four different
regimes characterized by the nature of the probe (vertical axis) and the
gravitational field (horizontal axis). (1) Non-relativistic quantum mechanics
(QM). Quantum particles in Newtonian gravity (regime covered by near-
future table-top experiments). (2) Quantum particles on general
spacetimes, among them quantum particles following semi-classical
trajectories along the geodesics of general spacetimes. (3) Quantum field
theory (QFT) in weak gravity. (4) Quantum field theory on curved
spacetime. While our explicit calculations and examples mainly pertain to
regime (1), our argument extends to regime (2) using the generalized
operator introduced in “Generalization to N masses” subsection in the
“Results” section. With an extension of the quantum reference frame
change operator to treat probes as quantum fields, the same argument of
using quantum reference frame transformations to change into a frame
with definite metric also applies to regimes (3) and (4).
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To keep the reference system decoupled from the gravitational
influence of the massive objects, it is usually assumed that it is
infinitely far away from them. However, in the quantum
mechanical treatment of the problem, one can achieve this
decoupling operationally with less stringent requirements and, in
particular, without imposing any further conditions on the
configurations of the rest of the systems. This is detailed in
Supplementary Note 2. A sufficiently light quantum probe S is
initially placed in a definite position with respect to R, close
enough to feel the gravitational pull of the mass M (this is
illustrated in the top left subfigure of Fig. 1). We assume that the
mass of the probe particle is small enough to neglect the
gravitational field sourced by it. Moreover, for illustrative
purposes, we treat the dynamics of the probe S in the semi-
classical approximation in this section. In the “Transformation of
the Hamiltonian operator” section, we show how to use the
Hamiltonian formulation to determine the time evolution of a
probe in a general quantum state.

Reference frame of R. Consider the joint state of R, M, and S in the
reference frame of R,

ψ
�� �ðRÞ

RMS ¼ 0j iR
1ffiffiffi
2

p xð1ÞM

��� E
M
þ xð2ÞM

��� E
M

� �
xS
�� �

S; ð2Þ

where xj i denotes the eigenstate of the position operator relative
to R while the superscripts (1) and (2) label the different bran-
ches. On the left-hand side, the superscript (R) indicates the
reference frame and the subscript the systems described by the
quantum state. Finally, note that we are following the notation of
de la Hamette and Galley40, in which the trivial state of the
reference frame is included in the description.

Reference frame of M. To go into the reference frame of M, we
perform a QRF transformation in the form of a controlled shift
ÛT ¼ P̂MRe

i
_x̂Mp̂S 35, where the parity swap operator P̂MR �

SWAPMR � R dx �xj i xh jM exchanges the labels of M and R, tak-
ing into account relevant sign changes. The resulting state is

ψ
�� �ðMÞ

MRS ¼ 0j iM
1ffiffiffi
2

p �xð1ÞM

��� E
R
xS � xð1ÞM

��� E
S
þ �xð2ÞM

��� E
R
xS � xð2ÞM

��� E
S

� �
;

ð3Þ
describing the position of the particle S and the reference system
R with respect to M.

Dynamical evolution in the reference frame of M. Since M is now
in a definite position at the origin, we can determine the particle’s
motion. In the semi-classical approximation and assuming that
no other forces act on the quantum particle or the massive object,
which is taken to remain static with respect to R, the time evo-
lution of the probe is governed up to a phase by the geodesic
equation

d2xμ

dτ2
þ Γμνρ

dxν

dτ
dxρ

dτ
¼ 0 ð4Þ

with initial positions ~xð1ÞS � xS � xð1ÞM and ~xð2ÞS � xS � xð2ÞM . Writing
down the solutions for the spatial coordinates in terms of the time
coordinate t= x0, we denote them by ~xð1ÞS ðtÞ and ~xð2ÞS ðtÞ respec-
tively. The phase accumulated along the semi-classical path from
spacetime point AðiÞ � ð0; ~xðiÞS Þ to BðiÞ � ðt; ~xðiÞS ðtÞÞ is given by58

ΦðiÞ ¼
Z BðiÞ

AðiÞ
mSdτ ¼

Z BðiÞ

AðiÞ
mS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gμνdx

μdxν
q

; ð5Þ

where mS is the mass of S. Note that we use the metric convention
(−,+,+,+), in contrast to Stodolsky58. The total state of the

wavefunction after time t is thus

ψðtÞ
�� �ðMÞ

MRS
¼ 0j iM

1ffiffiffi
2

p e�
i
_Φ

ð1Þ �xð1ÞM

��� E
R
~xð1ÞS ðtÞ
��� E

S
þ e�

i
_Φ

ð2Þ �xð2ÞM

��� E
R
~xð2ÞS ðtÞ
��� E

S

� �
:

ð6Þ
To give a concrete example, consider the case of a spherically

symmetric mass in the Newtonian limit, characterized by a weak
gravitational field and non-relativistic particles such that we only
need to take into account the time-time-component of the metric,
g00(x)=− 1− 2V(x)=− 1+ 2GM/∣x− xM∣. Given a probe par-
ticle with zero initial velocity and its initial positions in
superposition forming one line with the location of the mass,
the geodesics are

~xðiÞS ðtÞ ¼ ð~xðiÞS Þ
3
2 � 3

ffiffiffiffiffiffiffiffi
MG
2

r
t

 !2
3

ð7Þ

along this line. The corresponding phase is obtained by
integrating the line element over the semi-classical path. In the
weak-field limit, we have gμν= ημν+ hμν with h00=− 2V(x) the
only relevant component in the case of a Newtonian gravitational
field. Following Stodolsky58, the phase can be split into a special-
relativistic contribution

ΦðiÞ
0 ¼ mS

Z BðiÞ

AðiÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ημνdx

μdxν
q

¼ mS

Z t

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð _~xðiÞS ð~tÞÞ

2
q

d~t ð8Þ

and a gravitational contribution

φðiÞ ¼ mS

Z t

0
V ~xðiÞS ð~tÞ
� �

d~t ¼ �mS

ffiffiffiffiffiffiffiffiffiffi
2MG

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~xðiÞS Þ

3=2 � 3ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
MG=2

p
Þt3

q
�

ffiffiffiffiffiffi
~xðiÞS

q� �
:

ð9Þ
While this concrete example pertains to the regime of semi-

classical trajectories and weak gravitational fields, which is the
relevant regime for table-top experiments, more general solutions
could be considered equally well within this framework.

Reference frame of R after time evolution. Finally, by the principle
of “covariance of dynamical laws under quantum coordinate

transformations”, applying the inverse QRF transformation Û
y
T ¼

e�
i
_x̂Mp̂SP̂RM yields the time-evolved state of M and S from the

point of view of R,

ψðtÞ
�� �ðRÞ

RMS
¼ 0j iR

1ffiffiffi
2

p e�
i
_Φ

ð1Þ
xð1ÞM

��� E
M
~xð1ÞS ðtÞ þ xð1ÞM

��� E
S
þ e�

i
_Φ

ð2Þ
xð2ÞM

��� E
M
~xð2ÞS ðtÞ þ xð2ÞM

��� E
S

� �
:

ð10Þ
In this frame of reference, the particle gets entangled with the

massive body, moving in a superposition of trajectories in the
potential sourced by a mass at xð1ÞM and xð2ÞM respectively.

This result is consistent with the assumption that the solution
comes from a “linear combination” of gravitational fields, as
discussed in Christodoulou and Rovelli’s analysis of the Bose-
Marletto-Vedral proposal18. Assuming that we can associate a
semi-classical state g

�� � to the gravitational field sourced by the
mass M in each branch and that the time evolution of other
systems is governed by the field in each branch separately while
taking into account the relative phase caused by the different
gravitational fields, one arrives at the same conclusion. We,
however, derive this result from the principle of “covariance of
dynamical laws under quantum coordinate transformations”,
rather than making assumptions about the Hilbert space structure
of gravitational field states or the dynamics in the presence of
superpositions thereof. In other words, we argue that the question
of whether the gravitational field is quantized or not must be
answered affirmatively if Einstein’s equations satisfy the extended
symmetry principle.
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We would also like to stress again that the fact that the two
configurations can be related by a simple spatial shift does not
imply that the gravitational field was the same in each branch
from the start. As already pointed out in the introduction, such an
argument disregards the presence of the probe particle S and the
reference system R. It breaks the equivalence by giving physical
meaning to the spacetime points of their locations and to the
proper distances between them and the gravitational source.
These proper distances are diffeomorphism invariant quantities,
which are in a true superposition in the example considered in
this section. If the massive object was floating in empty space, its
positions and hence superpositions thereof would be meaningless.
However, as soon as other objects are introduced, the position of
the mass regains physical significance relative to these other
objects and we can meaningfully speak of superpositions53.

Generalization to N masses. In the following, we generalize the
above argument to the case of N gravitating point masses in a
superposition of configurations. In this section, we are going to
work within the weak-field (i.e. Newtonian) limit only. A more
general approach can be found in the “Methods” and “Relative-
Distance-Preserving Transformation Using an Auxiliary System”
sections. Note that we have to restrict to the case in which these
configurations are related by relative-distance-preserving trans-
formations. In the weak-field limit, this means that the mass
configurations are related via translations and rotations, i.e.
Euclidean isometries. This restriction is required since we do not
want to work with the metric directly, as discussed in the intro-
duction. If we were to, this would require the formulation of a
rigorous mathematical framework, including a precise notion of a
Hilbert space structure for the metric together with a well-defined
inner product. Furthermore, this would potentially require the
extension of QRFs to quantum fields in order to change the
metric locally in each spacetime point. However, the aim of this
work is not to build such a framework but to provide an argu-
ment which allows to circumvent the issue of handling super-
positions of metric states altogether. This can be achieved by
restricting relative-distance-preserving transformations.

Consider the system M consisting of N gravitating point
masses, a quantum system S in an arbitrary state and a reference
frame R. It is crucial that R carries enough degrees of freedom in
order to uniquely specify the transformation that maps the state
relative to R to the one relative to M. In the weak-field limit, this
amounts to R being made up of two particles (see Fig. 3). The
constituents of R will serve as an indicator of direction, specifying
the origin and one axis of the reference frame R. Let us start with
the following state:

ψðtÞ
�� �ðRÞ

RMS ¼ 0j iR1
e1
�� �

R2
� 1ffiffiffiffi

K
p ∑

K

i¼1
xðiÞ1
��� E

xðiÞ2
��� E

¼ xðiÞN
��� E� �

M

� ϕðtÞ
�� �

S;

ð11Þ
where Ri, i= 1, 2 denote the different subsystems of R and xðiÞj is a
three-vector denoting the position of the subsystem Mj in
Euclidean space. The subscripts 1,…,N indicate the subsystem of
M under consideration while the superscripts (i), i= 1,…, K
denote the branch of the superposition. Also, e1 indicates the
main axis marked by the vector from R1 to R2 (see Fig. 3). The
time t denotes the coordinate time; in particular, it can
operationally be seen as the proper time of the reference system
R. The conditions for this coordinate time to be well-defined as
the proper time of R are discussed in Supplementary Note 2.

Again, the idea is to perform a quantum change of coordinates,
such that in the new coordinate system with respect to system M,
the configuration of M is definite. Here, to provide more intuition
for the motion of the probe, we make use of the semi-classical

approximation to treat the trajectory of the probe. Keep in mind
however that our method goes beyond this approximation.
Starting from the description in the new coordinate system, we
can use the geodesic equation together with the phase in Eq. (5) to
compute the semi-classical trajectories of a freely falling probe S,
as in the previous section. Since we are restricting to the weak-field
limit in this section, however, we can also make use of the explicit
Hamiltonian to determine the general motion for an arbitrary
quantum state of S. After time evolution, we apply the inverse
QRF transformation to transform back into the original frame.

Let us quickly outline the strategy to make the mass
configuration definite. Note, however, that the detailed calcula-
tions are given in “Methods” section, in the subsection “Explicit
calculation for the general case of N masses”. The transformation
consists of four steps: First, we change into more easily tractable

relative coordinates by applying T̂
ðMÞ
rel . In particular, this maps the

states of the first few subsystems of M to relative coordinates
a= x2− x1, b= x3− x1, c= x4− x1. Secondly, we perform a
controlled shift and rotation ÛMSR on all systems M, S, and R.
Then, we apply a generalized parity swap P̂MR which exchanges
the labels of M1 and M2 with R1 and R2 respectively, implements
reflections and thus assigns M the role of the reference frame.

Finally, T̂
ðMÞy
rel transforms back to the original type of coordinates,

but now relative to the new frame. The full QRF change operator
is given by

ŜR!M
� �y

¼ T̂
ðMÞy
rel � P̂MR � ÛMSR � T̂ ðMÞ

rel : ð12Þ

Note that this operator is unitary since it is a composition of
unitary operators and consequently preserves the observed
probabilities. A concrete example to illustrate the action of the

QRF change operator ŜR!M
can be found in Supplementary

Note 3. Applying the operator to the initial state in Eq. (11) gives
rise to the following state:

ψðtÞ
�� �ðMÞ

MRS
¼ ŜR!M

ψ
�� �ðRÞ

RMS
¼ 0j iM1

f1
�� �

M2

eb��� E
M3

ecj iM4
¼ exN�� �

MN

� 1ffiffiffiffi
K

p ∑
K

i¼1
�xðiÞ1
��� E

R1

Fe1
aðiÞ

��� E
R2

� eϕðiÞ��� E
S

� �
;

ð13Þ
where f1 denotes a length-adjusted version of e1, the vectorseb;ec; ~xi, and ~ϕ

ðiÞ
are obtained from b, c, xi, and ϕ(i) through

rotations and shifts, and Fe1
aðiÞ corresponds to a(i) flipped across

the e1-axis. We see that, as expected, relative to M, system M is
itself in a definite configuration and the state of the quantum
system S becomes entangled with system R. Now, it is possible to
write down the Hamiltonian determining the motion of system S.
We again assume that the masses in this set-up are static and do
not evolve dynamically with respect to R. As a consequence, to
obtain the time evolution of the state of all systems relative to the
reference frame associated with system M, it is enough to
compute the time-evolved state of system S,eϕðiÞðt þ ΔtÞ

��� E
S
¼ e�

i
_Ĥ

ðMÞ
SR Δt eϕðiÞðtÞ��� E

S
; ð14Þ

using the Hamiltonian

Ĥ
ðMÞ
SR ¼ π̂2

S

2mS
þmSV̂ðq̂SÞ ¼

π̂2
S

2mS
�mS ∑

N

i¼1

GMi

jq̂S � qMi
j ð15Þ

in the Newtonian gravity limit. Finally, using the principle of
“covariance of dynamical laws under quantum coordinate
transformations”, we can apply the inverse QRF transformation

ðŜR!MÞ
y
¼ ŜM!R

which gives the time-evolved state relative to
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the original frame of system R:

ψðt þ ΔtÞ
�� �ðRÞ

RMS ¼ 0j iR1
e1
�� �

R2
� 1ffiffiffiffi

K
p ∑

K

i¼1
xðiÞ1
��� E

M1

xðiÞ2
��� E

M2

¼ xðiÞN
��� E

MN

� ϕðiÞðt þ ΔtÞ
�� �

S

� �
:

ð16Þ

As one can see from this, the state of system S becomes entangled
over time with the mass configuration M.

Note that it is possible to go beyond the Newtonian case, i.e.
beyond Euclidean isometry transformations. For this, one
requires a more general operator that can implement general
coordinate transformations. For the sake of the argument we
make in this article, these transformations should still be relative-
distance-preserving transformations. The precise form of such a
more general operator is given in the “Methods” section
“Relative-distance-preserving transformation using an auxiliary
system” section. Note that the specific operator that we find
requires adding an ancilla system whose quantum state marks the
distinct branches of the superposition. At this current stage, it is
only suitable for situations that are physically different from those
considered so far, namely for set-ups which involve an additional
system that can serve as the ancilla. The existence of such an
auxiliary system is compatible with some experimental proposals,
e.g. those utilizing a Stern-Gerlach set-up to create massive
superpositions23. However, most other proposals do not include
such an additional system and therefore no such degree of
freedom. In any case, the experimental set-ups realizable in the
near future rely on the weak-field limit and thus the operator
given in the present section is suitable.

Application: time dilation. We can apply the same argument to
study the behavior of a clock in the presence of a massive object
in superposition. To this end, consider a single mass M in a
superposition of two spatial locations, a clock C and a remote
initial reference system R, whose proper time can be identified
with the coordinate time t. A complementary situation was
considered in Zych et al.59,60, where a clock moving in a super-
position of trajectories in a definite metric generated by a large
mass in the laboratory frame was studied. The clock was found to
exhibit a superposition of time dilations as its trajectories passed
through different gravitational potentials. To test an extension of
the Einstein equivalence principle to QRFs, Giacomini45 and
Cepollaro and Giacomini61 considered a similar situation by
moving to the reference frame of the clock, where the laboratory
and thus the mass are in a spatial superposition. Here we consider
a related yet different situation, where the clock is localized and
the large mass is in a superposition in the reference frame of the
laboratory, so that the metric is indefinite. Following Zych et al.62,
we take the clock to be a two-level system with an external degree
of freedom specifying its position and an internal degree of
freedom describing its energy, which can take values E0 or E1
associated to eigenstates 0j i and 1j i respectively. Hence, the
internal Hamiltonian is given by Ω̂ ¼ E0 0j i 0h j þ E1 1j i 1h j,
although more general Hamiltonians could be considered as well.
Note that as an internal property, the superposition state of
energies evolves with the proper time of the clock in its rest frame
– just as the decay rate of a relativistic particle is given in terms of
the proper time with respect to its rest frame. Finally, we assume
that the positions of the mass and the clock are held fixed with

Fig. 3 Superposition of two mass configurations. We consider four massive objects M (in orange), the reference system R (in blue) and a system S (in
violet). The reference R consists of two particles; this is because it serves as a reference frame for both position and orientation in space. The subfigures (a)
and (b) depict the configuration in two different branches and the quantum reference frame transformations therein. The upper configurations are given in
the reference frame of R while the lower ones are given in the frame of M. To go from one frame to the other, the quantum reference frame transformation
Ŝ
R!M

is applied. This transformation controls on the angle θ between the axes e1 and a and rotates the entire configuration by− θ. Furthermore, it controls
on x1 and shifts the entire configuration by− x1 such that one of the massive objects is in the origin. The end result is that, although the masses are in a
superposition of positions in the frame of R (top right and top left), all masses are in a definite position for all amplitudes in the frame of M (bottom
depiction in a and bottom depiction in b.
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respect to the reference system throughout the experiment, for
example through a strong potential, and focus on the evolution of
the clock’s internal energy.

Consider two events, E0 and E1, such as reading the position of
the hands of a clock, and denote by t0 the coordinate time
assigned to E0. Due to the functional dependence of the proper
time τ of the clock on the coordinate time t, we can further
associate a proper time τ(t0)= τ0 to this event. At this time, the
internal state of the clock is initialized to sðτ0Þ

�� � ¼ 1ffiffi
2

p ð 0j i þ 1j iÞ.
The initial state of the composite system is then given by

Ψðt0Þ
�� �ðRÞ

RMC
¼ 0j iR

1ffiffiffi
2

p xð1ÞM

��� E
M
þ xð2ÞM

��� E
M

� �
xC
�� �

Cext
sðτ0Þ
�� �

Cint
:

ð17Þ
The second event E1 marks the reading of the clock’s internal

state and occurs at a later coordinate time t. To determine the
state ψðtÞ

�� �
, we need to find the proper time τ elapsed between

coordinate time t0 and t. This, however, depends on the
gravitational field at the position of the clock, which is not
well-defined in the reference frame of R. We thus change into the
reference frame of M using the same transformation as in “The
case of one massive object” section and obtain

ψðt0Þ
�� �ðMÞ

MRC
¼ 0j iM

1ffiffiffi
2

p
�
�xð1ÞM

��� E
R
xC � xð1ÞM

��� E
Cext

þ �xð2ÞM

��� E
R
xC � xð2ÞM

��� E
Cext

�
sðτ0Þ
�� �

Cint
:

ð18Þ

In this frame, the mass is in a definite position while the clock
is in a superposition of two positions, ~xð1ÞC � xC � xð1ÞM and
~xð2ÞC � xC � xð2ÞM . This is precisely the situation discussed in Zych
et al.62. Since the gravitational field is definite in this frame, one
can determine the elapsed proper time τ(i) in each branch i= 1, 2.
In the Newtonian limit, it is

τðiÞð~xðiÞC ; tÞ ¼ t 1þ Vð~xðiÞC Þ
c2

 !
: ð19Þ

To obtain the time-evolved state, we further have to take into
account the dynamics of the external degrees of freedom. While
we assume that they are kept fixed throughout the duration of the
experiment, the state nevertheless accumulates a phase Φ(i)

determined by Eq. (5) for constant ~xðiÞ in each branch. Note
that the phase Φ(i) can be split into a gravitational part φ(i) and a
special relativistic contribution, the former of which corresponds
to the COW (Colella-Overhauser-Werner) phase
φ(i)=mSg∣x(i)∣t55. Since the special relativistic phase depends
only on the velocity of the probe, which is kept zero in our set-up,
it is the same in both branches and can thus be omitted. The
time-evolved state is therefore

ψðtÞ
�� �ðMÞ

MRC
¼ 0j iM

1ffiffiffi
2

p
�
�xð1ÞM

��� E
R
e�

i
_Φ

ð1Þ
~xð1ÞC

��� E
Cext

sðτ0 þ τð1ÞÞ
�� �

Cint

þ �xð2ÞM

��� E
R
e�

i
_Φ

ð2Þ
~xð2ÞC

��� E
Cext

sðτ0 þ τð2ÞÞ
�� �

Cint

�
;

ð20Þ
where sðτ0 þ τðiÞÞ

�� � ¼ e�iΩ̂τðiÞ sðτ0Þ
�� �

. Finally, we change back to
the original reference frame with the inverse QRF transformation
to obtain

ψðtÞ
�� �ðRÞ

RMC ¼ 0j iR
1ffiffiffi
2

p e�
i
_Φ

ð1Þ
xð1ÞM

��� E
sðτ0 þ τð1ÞÞ
�� �

Cint
þ e�

i
_Φ

ð2Þ
xð2ÞM

��� E
sðτ0 þ τð2ÞÞ
�� �

Cint

� �
xC
�� �

Cext
:

ð21Þ
Note that the external state of the clock factorizes out because

we trap the clock to stay at the same spatial location. The internal

degree of freedom, on the other hand, gets entangled with the
mass due to different time dilations in each branch, which in turn
derive from the difference in relative distance between the clock
and the mass. Let us stress that in the situation described here, we
have a genuine superposition of an observable quantity,
independent of the reference frame: the proper time of the clock
(Fig. 4). Moreover, the time dilation at the heart of this
superposition is a universal effect, depending only on the
spacetime and the position of the clock in it and not on the
internal structure of the clock or the nature of the non-
gravitational force that controls its ticking. In this sense, the
superposition of gravitational time dilation of a clock located on a
single spacetime trajectory (in the reference frame of R) is a
genuine phenomenon due to a non-classical spacetime. While it is
possible to reproduce this effect in a definite spacetime if the
clock is set to follow a superposition of two different trajectories,
this is impossible for a clock following a single trajectory as we
consider here.

As a rough estimate for the difference in time dilation, consider
M to be a solid state sphere of 10−8kg. Taking the distance
between M and S to be l(1)= 5.0 × 10−5m and l(2)= 5.5 × 10−5m
in the first and second branch respectively and considering a time
evolution for t= 1s, we find that Δτ= τ(2)− τ(1) ≈ 10−32 s.
Although this time is extremely small compared to the best
atomic clocks of today, it is many orders of magnitude larger than
the Planck time (5.31 × 10−44 s). This shows that effects due to
spacetime superpositions can occur well before the typical Planck
scale63.

Of course, any experiment that measures the gravitational
effects of massive superpositions will face significant challenges.
Firstly, one would need to suppress the gravitational and non-
gravitational fields sourced by any object other than the
gravitational source under consideration. By carefully controlling
the gravitational field of the environment, such that there are no
significant differences across the branches of the superposition,
one should be able to isolate the effects sourced by the massive
configuration. Furthermore, due to the interaction with an
external environment, the gravitational source and the probe
particle can become entangled with their surroundings and may
lose their quantum coherence. Many specific models in which a
system interacts with its environment have been studied
including collisional and thermal decoherence64–66 as well as
the decoherence induced by the gravitational field
background67–70. Any experiment will have to be performed
within a time frame shorter than the decoherence time.

Discussion
In this work, we provide a rigorous argument that allows us to
make predictions for situations in which the gravitational source
is not in a classical configuration but in a quantum superposition
thereof. Using a quantum reference frame transformation, we can
change into the frame associated with the massive object, in
which the gravitational field is definite, and use known physics to
solve concrete problems and in particular determine the time
evolution of objects in the presence of the mass configuration.
Assuming the “covariance of dynamical laws under quantum
coordinate transformations”, applying the inverse transformation
to the evolved state yields the dynamical description in the ori-
ginal frame. This procedure does not a priori rely on a theory for
the gravitational field sourced by an object in a quantum super-
position or on assigning orthogonal quantum states to the grav-
itational field. We make the important observation that this
requires the gravitational source to be in a superposition of
configurations related by relative-distance-preserving transfor-
mations. If this is not the case, the QRF transformation does not
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constitute a symmetry of the physical situation. This is analogous
to – and in fact a generalization of – the familiar situation in
Newtonian physics, in which changing into a rotating or accel-
erating frame of reference will not leave covariant the dynamical
laws and in particular the form of the gravitational force.

For the case of Newtonian gravity, we provide an explicit
operator in “The case of one massive object” and “Generalization
to N masses” sections which transforms states in the reference
frame of R to states in the reference frame of the system of
massive objects M. We discuss set-ups in the semi-classical
approximation and beyond. In particular, we determine the
motion of a probe particle following semi-classical trajectories
and further employ the Hamiltonian formalism to compute the
evolution of any quantum mechanical probe system in a general
state in the “Transformation of the Hamiltonian operator” sec-
tion. In the “Application: time dilation” section we give an
application of the above argument and transformations: we
consider a simple quantum clock in the presence of one mass in a
superposition of different spatial locations and show, using QRF
transformations and time evolution in the frame with a definite
spacetime, that this gives rise to a superposition of time dilations
of the clock. While the resulting difference in proper times is still
outside the reach of current atomic clocks, it is many orders of
magnitude larger than the Planck time, showing that effects due
to spacetime superpositions can occur well before the typical
Planck scale, at which quantum gravity effects are usually
expected to manifest. In “Relative-distance-preserving transfor-
mation using an auxiliary system” we present a more general QRF
change operator that can be applied to configurations with gen-
eral spacetime metrics and thus extends beyond the weak-field/
perturbative regime. Note that this transformation makes use of
the semi-classical approximation for the probe S, i.e. the probe
moves in a superposition of semi-classical trajectories.

The main argument provided in this paper is of a very general
nature – it extends our ability to solve any problem in presence of
a classical gravitational source to situations in which the grav-
itational source is in a superposition of configurations related by

relative-distance-preserving transformations. We thus expect that
it can equally well be applied to situations in which the probe is
described by a quantum field. While the current framework of
QRF transformations does not extend to quantum fields at this
moment, the principle of “covariance of dynamical laws under
quantum coordinate transformations” can still be applied in this
context. The construction of a transformation operator that can
be applied to quantum fields thus provides a fruitful direction for
future work. Unlike many other works on the QRF formalism, we
do not only construct a framework but also provide explicit tools
to solve concrete problems. As a first step, we apply them to
predict the dynamics of probe particles in the presence of grav-
itational sources in superposition, but we are confident that their
application goes beyond the scenarios considered here.

Besides its application to concrete physical problems, our
approach also provides a posteriori a justification for developing a
quantum formalism for the gravitational field. One of the long-
standing problems in fundamental physics is whether the grav-
itational field is quantized or not. In the absence of experimental
evidence, theoretical arguments have been advanced for both
possibilities. Our results can be interpreted to mean that,
assuming that Einstein’s equations satisfy the extended symmetry
principle, quantization of gravity is necessary in the sense that
general relativity holds in each branch of the superposition
separately. In particular, one could assign a state xM; g

�� �
to

describe the position of M in each branch and the gravitational
field degrees of freedom enslaved by the spatial location of the
massive object(s)71. That is, we consider only the degrees of
freedom determined entirely by the source mass, excluding any
independent degrees of freedom associated with gravitational
waves, and consequently do not include any gravitons in the

quantum description. Specifically, the metric g in xðiÞM ; g
��� E

is the

classical solution sourced by a mass stationary in the position xðiÞM
in the i-th branch. These states xðiÞM ; g

��� E
can be linearly super-

posed and are orthogonal for different x(i), given the classical

Fig. 4 Qualitative depiction of the behavior of a quantum clock. Subfigure (a) depicts the description relative to the reference frame of R (not depicted
explicitly). Subfigure (b) depicts the description in the reference frame of the gravitational source M. In the latter frame, the massive object is in a definite
state while the clock is in a superposition of spatial locations (x-axis). It ticks – that is, oscillates between the states �j i and þj i – at different rates. The
figure shows the probability to find it in the þj i-state over time. The latter is given by PðiÞþ ðtÞ ¼ cos2 E0�E1

2 ð1� GM
c2

1
xðiÞM
Þt

� �
and depends on the energy levels E0

and E1 of the clock as well as the mass M and the position xðiÞM of the gravitational source. This superposition of ticking rates carries over to the reference
frame of R, in which the clock is in a definite position while the gravitational source is in a spatial superposition.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01344-4 ARTICLE

COMMUNICATIONS PHYSICS |           (2023) 6:231 | https://doi.org/10.1038/s42005-023-01344-4 | www.nature.com/commsphys 9

www.nature.com/commsphys
www.nature.com/commsphys


distinguishability of the mass distributions. Thus, in future work,
the argument provided in this work can be used to justify the
assignment of orthogonal quantum states to classically distin-
guishable gravitational fields43,49 – keeping in mind the condition
that the superposed mass configurations are related by relative-
distance-preserving transformations. It also vindicates a short-cut
for determining the dynamics in the presence of massive objects
in superposition by assuming a superposition of gravitational
fields in the above sense from the start.

The superposition of gravitational fields is also in line with the
ansatz of linearized quantum gravity5, in which perturbations of
the metric are quantized. However, we go beyond the regime
covered by this theory as we are not restricted to the perturbative
regime. In particular, we can consider superpositions of gravita-
tional fields (in the above sense) which are significantly different
at a given spacetime point, as opposed to being related by a
perturbative contribution (Supplementary Note 4). Moreover,
under the restricted set of mass configurations studied here, our
approach allows us to transform to a frame in which the space-
time becomes globally definite, contrary to recent constructions
of a local quantum inertial frame in which the metric becomes
definite only in the origin of the reference frame43,49. This feature
of our transformation allows us to describe the entire spacetime
trajectories of probe particles within spacetimes in superposition,
which is one of the paradigmatic problems of quantum gravity
and the one most likely to be first implemented experimentally in
the future.

Furthermore, we start from a more fundamental assumption,
namely “covariance of dynamical laws under quantum coordinate
transformations”, instead of making any a priori statement about
the quantum nature of the gravitational field. If future experi-
mental results can confirm predictions based on our argument,
this serves as corroboration for the underlying extended sym-
metry principle. Moreover, if the predictions made by other
proposals, based on the assumption of a linearly superposed
gravitational field in the above sense, are confirmed experimen-
tally, this can be seen as indirect evidence for the principle of
covariance under quantum coordinate transformations as well.
On the other hand, our predictions stand in stark contrast with
proposals such as semi-classical quantum gravity and gravita-
tional collapse models9–11. The former predicts a definite space-
time sourced by a gravitational source in superposition and thus
avoids any entanglement between the probe and the massive
objects as well as any superposition in the path of the particle.
The latter predicts that a superposition of gravitational fields
must necessarily collapse and thus entanglement and super-
position cannot be sustained. As illustrated in Fig. 5, this is in
contradiction with the principle of “covariance of dynamical laws
under quantum coordinate transformations”. There is an inher-
ent asymmetry between a situation in which a light probe particle
is localized in the presence of a large massive object in super-
position and one in which the probe is in a superposition while
the large mass is localized. Given that this is the same situation
described in different frames, as argued in this paper, we see that
these proposals must implicitly assume a preferred reference
frame24.

Concerning future research directions, our work can be
extended in different ways. The most pressing issue concerns a
rigorous construction of a QRF framework for quantum fields.
Based on this, one could study many more interesting effects
within the realm of quantum field theory on curved spacetime,
e.g. the Unruh effect in a superposition of spacetimes. Secondly,
there are several assumptions made in this article that could be
lifted in future work. This includes letting the reference frame R
interact gravitationally with the source masses and, possibly,
considering a backreaction of the probe system on the metric.

With regards to the massive objects, an interesting extension of
the current work would be to go beyond semi-classical states and
including a non-trivial time evolution with respect to the refer-
ence system. Thirdly, we believe that there is much room to go
beyond the applications discussed above and use the tools pro-
vided in this article to design experimental proposals within the
reach of near-future table-top experiments, probing the quantum
nature of spacetime. Given the rapid advances in quantum
technologies, which open up new avenues for testing the grav-
itational properties of quantum matter, we believe that important
developments on the theoretical side are crucial to understand the
implications of such experiments for the notion of spacetime in
the quantum regime. Our work is a step forward in this direction.
Finally, in line with the construction of the general theory of
relativity in which the covariance under general coordinate
transformations played a crucial role72, the “covariance of phy-
sical laws under quantum coordinate transformations” can serve
in the long term as a guiding principle in the construction of a
proper theory of quantum gravity.

Methods
Transformation of the Hamiltonian operator. Consider first a
single mass in superposition of K different positions. If we assume
that the gravitational field sourced by the mass is weak and that
the particle is not moving with relativistic velocities, we can work
within the Newtonian approximation in which the only deviation
from Minkowski spacetime manifests in the time-time-
component of the metric, g00=− 1− 2V(x) with V(x)=−
GM/∣x− xM∣. In this case, the geodesic equation simplifies to
Newton’s equation,

m
d2x
dt2

¼ �m∇VðxÞ: ð22Þ

In order to determine the unitary transformation implement-
ing the time translation of the quantum state of the particle, we
need to write down the Hamiltonian governing the temporal
evolution. To avoid confusion between operators defined with
respect to different reference frames, we denote by x̂ and p̂ the
three-dimensional position and momentum operators with
respect to R while using q̂ and π̂ in the reference frame of M.
Assuming that the dynamics of the reference frame can be
neglected, we obtain the Hamiltonian in the reference frame of M

Ĥ
ðMÞ
RS ¼ π̂2

S

2mS
þmSV̂ðq̂SÞ ð23Þ

where V̂ðq̂SÞ is the gravitational potential, which, for one point
mass, takes the form V̂ðq̂SÞ ¼ � GM

jq̂S�qMj. Note that since we are

working in the frame of M, we have qM= 0. In the above
equation, identity transformations on the subspaces of the
reference system and the mass are left implicit. The unitary
which transforms M’s into R’s frame of reference is

Û
y
T ¼ e�

i
_x̂Mp̂S P̂y

MR ¼ P̂RMe
i
_q̂R π̂S : ð24Þ

Applying this to the Hamiltonian above, we obtain

Ĥ
ðRÞ
MS ¼ Û

y
TĤ

ðMÞ
RS ÛT ¼ P̂RS

π̂2
S

2mS
P̂y

RM þ P̂RM ∑
1

n¼0

1
n!

i
_
q̂Rπ̂S;mSVðq̂SÞ

	 

n

� �
P̂y

RM

ð25Þ
where [X, Y]n= [X, [X, Y]n−1] and [X, Y]0= Y. If the potential is
infinitely differentiable, we can use

i
_
q̂Rπ̂S;Vðq̂SÞ

	 

n

¼ q̂nRV
ðnÞðq̂SÞ; ð26Þ
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which can be proven straightforwardly via induction to obtain

Ĥ
ðRÞ
MS ¼

p̂2S
2mS

þ ∑
1

n¼0

mS

n!
V ðnÞðx̂SÞð�x̂MÞn: ð27Þ

The last term is just the Taylor series of the potential Vðx̂S �
x̂MÞ around x̂S. Thus,

Ĥ
ðRÞ
MS ¼

p̂2S
2mS

þmSVðx̂S � x̂MÞ: ð28Þ

Note that the dependence on the position of the massive object

relative to R has changed from a definite value in Ĥ
ðMÞ
RS to an

operator in Ĥ
ðRÞ
MS. Thus, when acting on a state in which the

masses are in a superposition, the potential will look different in
each branch. With the Hamiltonian in the frame of R, we can
now determine the evolution of a quantum state

ψ
�� �ðRÞ

RMS
¼ 0j iR

1ffiffiffiffi
K

p ∑
K

i¼1
xðiÞM
��� E

M

� �
ϕ
�� �

S
; ð29Þ

with a general quantum state ϕ
�� � of the probe particle S directly

as

ψðtÞ
�� �ðRÞ

RMS
¼ e�

i
_Ĥ

ðRÞ
MSt ψ
�� �ðRÞ

RMS
: ð30Þ

Similarly, we can consider the Hamiltonian for N masses,

Ĥ
ðMÞ
RS ¼ π̂2

S

2mS
þmSVðjq̂S � q̂Mi

jÞ ð31Þ

in the frame of M, where Vðjq̂S � qMi
jÞ ¼ �∑N

i¼1
GMi

jq̂S�qMi
j is the

Newtonian potential, and we use that qM1
¼ 0 and replace the

vectors qMi
by the operators q̂Mi

. This does not make a difference
in the frame in which the positions of all masses are definite.

Applying the generalized transformation operator given in
Eq. (12), we find that this Hamiltonian transforms as

Ĥ
ðRÞ
MS ¼ Ŝ

R!M
� �y

Ĥ
ðMÞ
RS Ŝ

R!M ¼ p̂2S
2mS

þmSVðjx̂S � x̂Mi
jÞ: ð32Þ

Explicit calculation for the general case of N masses. As
introduced in “Generalization to N masses”, the operator which
performs the QRF change transformation from system R to
system M is given by

ŜR!M ¼ T̂
ðMÞy
rel � P̂MR � ÛMSR � T̂ ðMÞ

rel : ð33Þ
Let us take a closer look at the individual components of this

operator. The first step is to change the coordinates of M to an
origin, three distinguished axes and otherwise relative coordi-
nates. The origin and the three axes are given by

x1 ! x1 ðoriginÞ ; ð34Þ

x2 ! x2 � x1 � a; ð35Þ

x3 ! x3 � x1 � b; ð36Þ

x4 ! x4 � x1 � c: ð37Þ
All other degrees of freedom of M are expressed relative to this

frame. That is, for all n∉ {1, 2, 3, 4}, the relative position vector is
decomposed as exn � xn � x1 ¼ r1naþ r2nbþ r3nc ð38Þ
and each position vector is mapped as xn→ rn. By inverting the
above relation, one can find an explicit expression of r1n; r

2
n and r3n

in terms of the components of x1, x2, x3, x4, and xn. Altogether, we

Fig. 5 Comparison of predictions of different approaches to quantum gravity. We consider a massive object in superposition of two locations with a
probe located exactly in the middle of these locations in the reference frame of R (not explicitly depicted here). The upper subfigures illustrate the situation
in the original frame while the lower subfigures show the situation in the reference frame of the massive object M. a Semi-classical gravity predicts an
effective classical gravitational field, obtained from the expectation value of the matter degrees of freedom, resulting in a vanishing potential at the location
of the probe. As a result, it remains stationary. b According to gravitational collapse models, the state of the massive object collapses into a definite
position state after a short time. Conditioned on the outcome of the collapse (indicated by the face of the coin), the probe either moves to the left or the
right. c Using the argument presented in this article, we find the probe in a superposition of moving to the left and to the right, entangled with the position
of the mass. In the frame of M, all three approaches would make the same predictions: the probe, which starts in a superposition of positions, moves in a
superposition of trajectories towards the mass. This is in agreement with the fact that all three theories are compatible with each other when light massive
objects are spatially superposed. However, only the trajectories in in the third case are in accordance with the motion in the frame of M and thus respect
the principle of “covariance of dynamical laws under quantum coordinate transformations''.
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thus have the following transformation:

x1
x2
x3
x4
x5

..

.

xN

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
!

x1
x2 � x1
x3 � x1
x4 � x1

r5ðx1; x2; x3; x4; x5Þ
..
.

rN ðx1; x2; x3; x4; xN Þ

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
: ð39Þ

The operator implementing this transformation is

T̂
ðMÞ
rel ¼

Z YN
i¼1

d2xi

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det Jj

p
x1
�� �

x1
� ��

M1
� aðx1; x2Þ
�� �

x2
� ��

M2

� bðx1; x3Þ
�� �

x3
� ��

M3
� cðx1; x4Þ
�� �

x4
� ��

M4
�ON

n¼5

rnðx1; x2; x3; x4; xnÞ
�� �

xn
� ��

Mn
� 1SR;

ð40Þ

where J denotes the Jacobian of the transformation satisfying
det J ≠ 0. The advantage of this strategy is that the relative
coordinates r5,…, rN are invariant under the rotations and shifts
and thus factorize out for the configurations considered here.

The next step of the QRF change is implemented by the
operator

ÛMSR ¼
Z

d3x1d
3a Rð�θðe1; aÞÞx1
�� �

x1
� ��

M1
� aj i ah jM2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

controls and rotates on part of M

� R̂M3
ð�θðe1; aÞÞ � R̂M4

ð�θðe1; aÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
rotates rest of M

�1M5;::;MN

� e
i
_Rð�θðe1;aÞÞx1p̂S R̂Sð�θðe1; aÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

shifts and rotates S

�ð1R1
� e�

i
_ðRð�θðe1;aÞÞa�e1Þp̂R2 Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
adjusts R

;

ð41Þ
where R̂Jð�θðe1; aÞÞ denotes the three-dimensional rotation
matrix that rotates system J=M3,M4, S by− θ(e1, a), with
θ(e1, a) the angle between the vectors e1 connecting R1 and R2,
and a connecting masses M1 and M2. In particular, the operator
controls on systems M1 and M2 and reads out position x1 and
relative distance a. Systems M1, M3, and M4 are then rotated
accordingly, as can be seen in Fig. 3. Note that M2 will be
modified later by the operator P̂MR. Likewise, system S is rotated
and shifted by− R(− θ(e1, a))x1.

Recall that in three spatial dimensions, a rotation can be fully
characterized by one angle θ plus an axis of rotation u. For
completeness, note that for general θ and normalized u, the
rotation matrix about axis u by angle θ takes the form

R ¼
cos θ þ u2x 1� cos θð Þ uxuy 1� cos θð Þ � uz sin θ uxuz 1� cos θð Þ þ uy sin θ

uyux 1� cos θð Þ þ uz sin θ cos θ þ u2y 1� cos θð Þ uyuz 1� cos θð Þ � ux sin θ

uzux 1� cos θð Þ � uy sin θ uzuy 1� cos θð Þ þ ux sin θ cos θ þ u2z 1� cos θð Þ

0B@
1CA:

ð42Þ
Thus, in order to rotate a into e1, we apply a rotation in the

plane orthogonal to u ¼ e1 ´ a
je1 ´ aj by the angle �θ ¼ � arccos a�e1jaj .

The resulting rotation matrix is completely specified by the vector
a and its relation to e1.

Finally, system R is adjusted such that the vector between R1

and R2 has the same length as a. This is necessary since R is later
swapped with M and we must avoid any transformation on
system M that is not a relative-distance-preserving transforma-
tion, such as stretching or squeezing. Moreover, this change on R2

does not affect the dynamics since its contribution in the
Hamiltonian is trivial.

After this, the generalized parity swap operator

P̂MR ¼ SWAPðMi;RiÞi¼1;2
�
Z

d3x �xj i xh jM1
�
Z

d3a Fe1
a

��� E
ah jM2

� 1M3 ¼MNSR

ð43Þ
is applied. This implements a reflection of M1 about the origin
and a reflection of M2 about the e1-axis.

Finally, the labels of M1 and R1, and M2 and R2 are exchanged
respectively. As a last step, we apply the inverse transformation

T̂
ðMÞy
rel . At the end, we are left with the coordinates relative to the

origin M1 in system M and a right-handed orthonormal frame
attached to M1 and M2. When applied to a state of the form (11),
the end result is a state of the form (16), thereby changing into a
quantum reference frame where the metric is definite. Applied to
a quantum state with one single amplitude for the mass

distribution, the QRF change operator ŜR!M
reduces to a

classical coordinate transformation, involving only translations
and rotations in three-dimensional space.

Relative-distance-preserving transformation using an auxiliary
system. As mentioned in “Generalization to N masses”, it is
possible to implement QRF changes that go beyond quantum
superpositions of Euclidean isometries. In this section, we present
a more general QRF change operator V̂ that can implement more
general relative-distance-preserving transformations. Note that
this operator V̂ can perform general quantum coordinate chan-
ges. For the sake of the main argument made in this article, i.e.
predicting the dynamics of a probe system S in the vicinity of
mass configurations in quantum superpositions using QRF
transformations and the dynamics in the frame of the massive
objects, one does have to restrict to relative-distance-preserving
transformations, though.

This more general QRF change operator requires an additional,
auxiliary system which marks the branch of the superposition of
the configuration. If the ancilla system is in a different,
orthogonal state in each branch of the superposition, this allows
to control on and perform different transformations in each
branch. This may seem like too strong an assumption. However,
some experimental set-ups such as spin-controlled interferometry
do involve an additional system that is required to construct the
superposition of mass configurations and that becomes entangled
with the latter in the process23.

In the following, we restrict to two point masses and two
distinct mass configurations in superposition. It is straightforward
to generalize to N point masses and K configurations in
superposition. Consider the following state of an ancillary system
A, two masses M1 and M2, and a probe system S:

1ffiffiffi
2

p 0j iA xμ1;0
�� E

M1

xμ2;0
�� E

M2

þ 1j iA xμ1;1
�� E

M1

xμ2;1
�� E

M2

� �
� xμS
�� �

S:

ð44Þ
Here, xμj i denotes the quantum state of a four-vector xμ 2

Rð1;3Þ such that xμj i 2 L2ðRð1;3ÞÞ. The total state can be seen as
the one relative to some reference system R, whose state can be
omitted since it is not required to distinguish the different
branches. Note that the ancillary system takes on different
orthogonal states in different branches. This allows us to
implement different unitary operations in different branches
while still keeping the unitarity of the total operator.

We are looking for a transformation V̂ that maps the state
(44) to

~xμ1
�� �

M1
~xμ2
�� �

M2
� 1ffiffiffi

2
p 0j iA ~xμS;0

��� E
S
þ 1j iA ~xμS;1

��� E
S

� �
; ð45Þ
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in which the states of the masses factorize out. Hence, in the new
quantum coordinate system, the mass configuration is classical
and thus also the spacetime sourced by the masses. Due to the
principle of “covariance of dynamical laws under quantum
coordinate transformations”, the equations of motion retain their
form under this quantum change of coordinates. The transfor-
mation V̂ is a quantum-controlled unitary of the form

V̂ ¼ 0j i 0h jA � ðÛ0ÞM1;M2;S
þ 1j i 1h jA � ðÛ1ÞM1;M2;S

; ð46Þ

such that

Û0 x
μ
1;0

�� E
M1

xμ2;0
�� E

M2

xμS
�� �

S
¼ ~xμ1
�� �

M1
~xμ2
�� �

M2
~xμS;0

��� E
S
; ð47Þ

Û1 x
μ
1;1

�� E
M1

xμ2;1
�� E

M2

xμS
�� �

S
¼ ~xμ1
�� �

M1
~xμ2
�� �

M2
~xμS;1

��� E
S
: ð48Þ

Here, ~xðxÞ is a “quantum coordinate system”, meaning it
assigns different coordinates to all systems in different branches
of the superposition. Hence, the coordinates are implicitly given
with respect to a reference frame that is itself in a superposition
relative to the old reference frame. The general form of the
unitary operations Û0 and Û1 is given by

Û0 ¼
Z

d4x1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det J0j

p
f μ0ðxμ1Þ
�� �

xμ1
� ��

M1
�
Z

d4x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det J0j

p
f μ0ðxμ2Þ
�� �

xμ2
� ��

M2

�
Z

d4xS
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det J0j

p
f μ0ðxμSÞ
�� �

xμS
� ��

S
;

ð49Þ

Û1 ¼
Z

d4x1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det J1j

p
f μ1ðxμ1Þ
�� �

xμ1
� ��

M1
�
Z

d4x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det J1j

p
f μ1ðxμ2Þ
�� �

xμ2
� ��

M2

�
Z

d4xS
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det J1j

p
f μ1ðxμSÞ
�� �

xμS
� ��

S;

ð50Þ

where det J0=1 ≠ 0. Here, we set the functions f μ0=1 such that

f μ0 xμ1;0
� �

� f μ1 xμ1;1
� �

¼: ~xμ1; ð51Þ

f μ0 xμ2;0
� �

� f μ1 xμ2;1
� �

¼: ~xμ2: ð52Þ

The operators Û0=1 each perform a classical coordinate
transformation xμ→ f0/1(xμ). Now, in the coordinate system
~xðxÞ, the masses are in definite positions and source a classical
spacetime. We can then solve the geodesic equation separately for
the two initial conditions ~xμS;0 � ~xμS;0ðτ ¼ 0Þ and
~xμS;1 � ~xμS;1ðτ ¼ 0Þ, where x(τ) and t(τ) denote the coordinate
position and coordinate time, and τ is the parameter in the
geodesic equation. Furthermore, the phase between these two
different semi-classical paths can be determined using Eq. (5).
Evolving the states in time, this gives rise to the state

~xμ1
�� �

M1
~xμ2
�� �

M2
� 1ffiffiffi

2
p e�

i
_Φ

ð0Þ
0j iA ~xμS;0ðτÞ
��� E

S
þ e�

i
_Φ

ð1Þ
1j iA ~xμS;1ðτÞ
��� E

S

� �
;

ð53Þ
where Φ(i) is defined through Eq. (5). Note that we assume the
masses M1 and M2 to remain static during the entire evolution.
As mentioned earlier, this assumption is justified in case of
experimental set-ups in which the masses are trapped and
therefore stationary. Now, we can apply the inverse

transformation V̂y
to the global state:

V̂y
~xμ1
�� �

M1
~xμ2
�� �

M2
� 1ffiffiffi

2
p e�

i
_Φ

ð0Þ
0j iA ~xμS;0ðτÞ
��� E

S
þ e�

i
_Φ

ð1Þ
1j iA ~xμS;1ðτÞ
��� E

S

� �� �
¼ 1ffiffiffi

2
p e�

i
_Φ

ð0Þ
0j iAÛ

y
0 ~xμ1
�� �

M1
~xμ2
�� �

M2
~xμS;0ðτÞ
��� E

S

� �
þ e�

i
_Φ

ð1Þ
1j iAÛ

y
1 ~xμ1
�� �

M1
~xμ2
�� �

M2
~xμS;1ðτÞ
��� E

S

� �� �
¼ 1ffiffiffi

2
p
�
e�

i
_Φ

ð0Þ
0j iA f �1

0 ð~xμ1Þ
�� �

M1
f �1
0 ð~xμ2Þ
�� �

M2
f �1
0 ð~xμS;0ðτÞÞ
��� E

S

þ e�
i
_Φ

ð1Þ
1j iA f �1

1 ð~xμ1Þ
�� �

M1
f �1
1 ð~xμ2Þ
�� �

M2
f �1
1 ð~xμS;1ðτÞÞ
��� E

S

�
:

ð54Þ
Thus, relative to the initial frame of reference, the probe system

S becomes entangled with the positions of the masses during its
time evolution. In each separate branch (i), i= 0, 1, S follows a
geodesic in the spacetime that would be sourced if the masses
were completely classical and at positions xμ1;i and xμ2;i.

One option to verify these predictions is to disentangle the
ancilla system from the rest of the systems by post-selecting in the
basis f 1ffiffi

2
p ð 0j i þ 1j iÞ; 1ffiffi

2
p ð 0j i � 1j iÞg. Then, conditioned on the

result observed, one can certify the entanglement of the probe
system with the masses15,16 and thus corroborate the predictions
made based on the extended principle of covariance.
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