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Precision-dissipation trade-off for driven stochastic
systems
Karel Proesmans 1✉

Over the last few decades, stochastic thermodynamics has emerged as a framework to study

the thermodynamics of small-scaled systems. The relation between entropy production and

precision is one of the most prominent research topics in this field. In this paper, I answer the

question how much dissipation is needed to follow a pre-determined trajectory. This will be

done by deriving a trade-off relation between how precisely a mesoscopic system can follow

a pre-defined trajectory and how much the system dissipates. In the high-precision limit, the

minimal amount of dissipation is inversely proportional to the expected deviation from the

pre-defined trajectory. Furthermore, I will derive the protocol that maximizes the precision for

a given amount of dissipation. The optimal time-dependent force field is a conservative

energy landscape which combines a shifted version of the initial energy landscape and a

quadratic energy landscape. The associated time-dependent probability distribution con-

serves its shape throughout the optimal protocol. Potential applications are discussed in the

context of bit erasure and electronic circuits.
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The dynamics of mesoscopic systems are heavily influenced
by thermal fluctuations. Controlling those systems gen-
erally incurs a thermodynamic cost. Over the last decade,

several general bounds on this cost have been derived within the
framework of stochastic thermodynamics1,2. For example, the
thermodynamic uncertainty relation states that the signal-to-
noise ratio of any thermodynamic flux is bounded by the dis-
sipation rate (i.e., entropy production rate) of the system3–11; the
thermodynamic speed limit states that the speed at which a sys-
tem can be transferred from an initial to a specific final finite state
is bounded by the dissipation rate12–21; the dissipation-time
uncertainty relation bounds the total amount of dissipation for
any first-passage time of far-from-equilibrium systems22–24; and
an entropic bound based on a communication channel
interpretation25. These bounds have led to several applications,
such as assessments of the efficiency of cellular processes and
methods to infer the dissipation rate from measurements of
thermodynamic fluxes26–30.

Most of the aforementioned entropic bounds focus either on
the precision associated with thermodynamic fluxes, or on limits
on the speed at which one can complete a process. Thermo-
dynamic limits on the precision at which one can follow an entire
trajectory have, to the best of my knowledge, not been thoroughly
addressed. The central goal of this paper will be to close this gap
by answering the question: ‘How precisely can a system follow a
pre-defined trajectory while keeping the total expected amount of
dissipation associated with the process below a fixed limit?’, for
continuous-state Markov systems. This will be done by using
methods from optimal transport theory12,31–33 to derive a closed
expression for the minimal expected deviation between the
desired trajectory and the actual trajectory, given a fixed amount
of entropy production and provided that one has full control over
the system. The collection of optimal solutions for different values
of total expected dissipation, also known as a Pareto front34,35,
determines the minimal average deviation from the desired tra-
jectory as a function of dissipation, effectively rendering a trade-
off relation between precision and dissipation, cf. Eqs. (5)-(7)
below. This trade-off relation generally has a rather complicated
form but simplifies in the small-deviation limit. In this limit, the
minimal expected deviation from the desired trajectory is inver-
sely proportional to the amount of dissipation in the process.

The next section of this paper introduces the basic notation
and reviews some results of stochastic thermodynamics that will
then be used to derive the precision-dissipation trade-off relation
and the associated driving protocols. Subsequently, I will show
applications of the framework in information processing and in
electric circuits. The paper ends with a discussion on potential
applications and future research directions.

Results
Stochastic thermodynamics. Throughout this paper, I will focus
on n-dimensional continuous Markov systems whose state can be
described by a variable x= (x1, x2, . . , xn). The probability, p(x, t),
for the system to be in state x at time t satisfies an overdamped
Fokker-Planck equation:

∂

∂t
pðx; tÞ ¼ �∇ � vðx; tÞpðx; tÞ� �

; ð1Þ

where v(x, t) is the probability flux, given by,

vðx; tÞ ¼ D
kBT

Fðx; tÞ � kBT∇ ln pðx; tÞ� �� �
: ð2Þ

Here F(x, t) is the force field that the system experiences, D is the
diffusion coefficient, kB is the Boltzmann constant, and T is the
temperature of the environment. Throughout this paper, T and D
are assumed to be constant. The Fokker–Planck equation, Eq. (2),

can describe a broad class of systems including the position of a
colloidal particle in a potential energy landscape36, the distribu-
tion of electrical charges across the conductors of a linear elec-
trical circuit37, the state of a spin system38, or the concentrations
of molecular species in a chemical reaction network39.
Throughout this paper, I will assume that one has full control
over the force field at all times, unless specified otherwise. This
means that one can construct any time-evolution for the prob-
ability distribution p(x, t) (cf. Supplementary note 1).

The goal of this paper is to determine the optimal time-
dependent force field, such that the state of the system, x, follows
a given pre-defined trajectory X(t) as closely as possible between
an initial and a final time, t= 0 and t= tf. The expected deviation
from X(t) can be quantified by a function ϵ, defined as

ϵ ¼
Z tf

0
dt

Z 1

�1
dx pðx; tÞ x � XðtÞð Þ2; ð3Þ

i.e., the expected squared distance from the pre-defined trajectory
integrated over the duration of the protocol. Meanwhile, one also
wants to minimize the amount of dissipation. Stochastic
thermodynamics dictates that the average amount of entropy
dissipated throughout the process is given by1

ΔiS ¼
Z tf

0
dt

Z 1

�1
dx

kB
D
vðx; tÞ2pðx; tÞ: ð4Þ

Note that this expected amount of dissipation is always positive,
in accordance with the second law of thermodynamics.

Precision-dissipation trade-off. The central goal of this paper
will be to minimize the expected deviation, ϵ, while also mini-
mizing the expected amount of dissipation, ΔiS, by choosing an
optimal protocol for the force field, F(x, t). ϵ is generally mini-
mized by immediately forcing the probability distribution to be
peaked around X(t), which leads to a diverging amount of dis-
sipation. Meanwhile, the total dissipation can be set to zero, by
setting Fðx; tÞ ¼ kBT∇ lnðpðx; 0ÞÞ at all times. One can use Eqs.
(1) and (4) to show that this force fields leads to a stationary state
with zero dissipation, but in this case ϵ will generally be large. In
other words, the minimization of ϵ and ΔiS, are mutually
incompatible and there is no unique optimal trajectory. There-
fore, the focus of this paper will be on minimizing the expected
deviation ϵ for a fixed amount of dissipation ΔiS, or vice versa.
Such a minimum is known as a Pareto-optimal solution.
Although Pareto-optimality is a often-used technique in the fields
of economics and engineering34, it has only recently been intro-
duced in the context of stochastic thermodynamics35. The col-
lection of all Pareto-optimal solutions is known as the Pareto
front. For any point on the Pareto front, one can only lower the
expected deviation, ϵ, by increasing the amount of dissipation and
vice versa. In supplementary note 1 I show that the Pareto front
can generally be written as a parametric set of equations:

ϵ ¼
Z tf

0
dt aðλ; tÞx þ bðλ; tÞ � XðtÞð Þ2� �

0; ð5Þ

ΔiS ¼
kB
D

Z tf

0
dt

∂

∂t
aðλ; tÞx þ ∂

∂t
bðλ; tÞ

� �2
* +

0

; ð6Þ

with

aðλ; tÞ ¼ cosh λðtf�tÞð Þ
coshðλtf Þ ;

bðλ; tÞ ¼ λ sinhðλtÞ
coshðλtf Þ

R tf
0 dτ coshðλτÞXðtf � τÞ

�λ
R t
0 dτ sinhðλτÞXðt � τÞ;

ð7Þ

and 〈.〉0 stands for the average taken over the initial probability
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distribution p(x, 0), gðxÞ� � ¼ R1
�1 dxpðx; 0ÞgðxÞ, for any test

function g(x). The full Pareto front can be found by varying λ
between zero and infinity, which corresponds to changing the
value of ΔiS or ϵ, under which one minimizes the other quantity.
This Pareto front serves as a trade-off relation between the
amount of dissipation, ΔiS and the precision, ϵ: once one reaches
the Pareto front one can only further decrease ϵ by increasing ΔiS
and vice versa. Although the Pareto front can only be reached
under the correct level of control, Eqs. (5)–(7) still serve as a
lower bound for systems with limited levels of control: for each
value of ϵ, Eq. (6) serves as a lower bound on the amount of
dissipation. The explicit bound is written in Supplementary
note 1, c.f., Eqs. (A.25)-(A.26). This Pareto front is the central
result of this paper.

It should be stressed that this bounds the precision of any
continuous-state Markov system following a time-dependent trajec-
tory. Furthermore, the Pareto front only depends on the initial state of
the system through its first two moments, hx2i0 ¼

R1
�1 dx pðx; 0Þx2

and hxi0 ¼
R1
�1 dx pðx; 0Þx. This shows that the Pareto front for

very distinctive problems can have exactly the same shape. In
particular, one can map any Pareto front on that of a Gaussian system
with the same initial average and variance.

In most relevant applications, one is primarily interested in
reaching a very high level of precision, i.e., very small ϵ. In this
limit, the expression for the Pareto front simplifies to (c.f.,
Supplementary note 3)

ΔiS �
kB ðx � Xð0ÞÞ2� �

0 þ∑i2fjumpsg ΔXi

� �2� 	2

4Dϵ
;

ð8Þ

where {jumps} stands for the collection of discontinuities in the
protocol, limt!tþi

XðtÞ � limt!t�i
XðtÞ � ΔXi≠0. Therefore, one

can conclude that,- in the high-precision limit, the minimal
expected amount of dissipation is inversely proportional to the
expected deviation from the desired trajectory. The bound Eq. (8)
is only strictly true in the limit ϵ→ 0, but it can serve as a good
approximation to the exact Pareto front, Eqs. (5)–(7), for
sufficiently low values of ϵ, as will be shown in the
examples below.

So far, I have focused on the expression of the Pareto front, but
it is also possible to obtain the associated optimal protocols for
the force field and the probability distribution. Firstly, the optimal
time-dependent force field is given by (c.f., Supplementary
Note 2)

Fðx; tÞ ¼ �∇Uðx; tÞ;
Uðx; tÞ ¼ kBT

D aðλ; tÞ ∂
∂t

x�bðλ;tÞð Þ2
2aðλ;tÞ

� 	
� D ln p x�bðλ;tÞ

aðλ;tÞ ; 0
� 	� 	

:

ð9Þ
This force field is of a gradient form, i.e., the optimal protocol
only involves a conservative energy landscape and non-
conservative forces will generally not improve the precision of
the driving without inducing extra dissipation. This is in stark
contrast to discrete-state systems, where non-conservative forces
are generally necessary to minimize dissipation40. Equation (9)
also reveals the level of control needed to reach the Pareto front:
the optimal energy landscape is the sum of a time-dependent
harmonic oscillator and an energy landscape that has the same
shape as the equilibrium energy landscape at t= 0,
�kBT ln pðx; 0Þ. This means that if the system is initially in a
Gaussian state, the optimal energy landscape, Eq. (9), corresponds
to an harmonic oscillator at all times. This expression also gives a
clear interpretation to the functions a(λ, t) and b(λ, t): a(λ, t) is a
decreasing function, independent of the target trajectory X(t),
which leads to a tightening of the energy landscape throughout

the protocol, while b(λ, t) determines the positional shift of the
energy landscape.

It is also possible to calculate the probability distribution
associated with the state of the system at all times (c.f.,
Supplementary note 2):

pðx; tÞ ¼
p x�bðλ;tÞ

aðλ;tÞ ; 0
� 	
aðλ; tÞn : ð10Þ

In other words, the protocol that minimizes ϵ for a given value of
ΔiS conserves the shape of the probability distribution associated
with the state of the system at all times. This result is in
agreement with the aforementioned interpretation that a(λ, t) is
responsible for the narrowing of the distribution while b(λ, t)
leads to a positional shift.

Applications. The general bound and optimal protocols derived
above can be applied to a broad class of systems. To illustrate this,
I will look at two examples (cf. Fig. 1): information processing,
where this framework allows to optimize arbitrary complicated
bit operations, and electronic circuits, which serve as an ideal
setting to check how well systems under limited control can
approach the Pareto front.

Computational bits can be modeled using a one-dimensional
Fokker-Planck equation with a double-well potential41,42,

∂
∂t pðx; tÞ ¼ D

kBT
∂
∂x pðx; tÞ ∂

∂x U0ðxÞ þ kBT
∂
∂x pðx; tÞ

� �
;

U0ðxÞ ¼ E0
x
x0

� 	4
� 2c2 x

x0

� 	2
� �

;
ð11Þ

where E0, x0, and c are free parameters. The bit is then said to be
in state 0 if x < 0 and in state 1 if x > 0. In equilibrium, the bit is
equally likely to be in state 0 and to be in state 1, p(x < 0)=
p(x > 0)= 1/2. If one wants to erase the bit to state 0,
p(x < 0)= 1, one needs to perform an amount of work, W, to
the system by modulating U(x, t). The expectation value of W is
bounded by Landauer’s limit, Wh i≥ kBT ln 2. Over the last
decade, several methods have been derived to extend Landauer’s

Fig. 1 Schematic drawings of the applications discussed in this paper.
a Erasure plus bit-flip of a bit that is initially in equilibrium. The probability
distribution is shown in black, while the potential energy landscape at time
t= 0, U0(x), is shown in green. b Electrical circuit with time-dependent
voltage source Vs(t), resistor R and capacitor C.
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principle to finite-time processes12,16,17,43–46, where one can
show that one needs to put in an extra amount of work,
corresponding to the dissipation. With the framework derived in
this paper it is possible to extend these results to more
complicated bit operations. In particular, I will focus on the
precision-dissipation trade-off associated with erasing a bit to
state 0 and subsequently flipping the bit to state 1, c.f. Fig. 1a.
This corresponds to

XðtÞ ¼ �cx0 t<
tf
2

c0x0 t>
tf
2

(
ð12Þ

and p(x, 0) corresponds to the equilibrium distribution associated
with U0(x). The resulting Pareto front is shown in Fig. 2a (c.f.,
Supplementary note 4 for detailed calculations). One can see that
the high-precision limit, Eq. (8) is in very good agreement with

the exact Pareto front for ϵ≲ 0:5tf x
2
0, but no longer serves as a

lower bound for larger values of ϵ. The explicit protocols in the
low-deviation (ϵ=ðtf x20Þ ¼ 0:5) and the high-deviation
(ϵ=ðtf x20Þ ¼ 2) limit are shown in the supplementary videos 1–2.
Furthermore, Supplementary figure 2 shows a(λ, t) and b(λ, t) for
different levels of precision. One can verify that the positional
shift, b(λ, t) follows X(t) closer at higher precision and mainly
deviates around the jump in X(t). Meanwhile the probability
distribution tightens exponentially fast, as illustrated by the decay
of a(λ, t).

There are many systems, where one does not have full control
over the driving protocol. This can make it impossible to
implement the optimal protocol, Eq. (8), and saturate the bound,
Eqs. (5)–(7). It is not a priori clear how close the Pareto front
under limited control is to the one under full control. To test this,
I will now turn to the electronic circuit shown in Fig. 1b, where an
observer controls a time-dependent voltage source Vs(t) con-
nected to a resistor, with resistance R, and a capacitor, with
capacitance C. One can then use the time-dependent voltage
source to make sure that voltage over the capacitor, vC, follows a
pre-defined trajectory. For small-scaled systems, this voltage will
generally fluctuate due to thermal noise. Control over Vs(t) does
not allow for any arbitrary force field F(vc, t), as will be shown
below. Therefore, the minimal deviation for a given amount of
dissipation will not saturate the Pareto front.

The voltage fluctuations associated with thermal noise are
given by the Johnson-Nyquist formula37. In this case, one can
show that the voltage over the capacitor satisfies:

∂

∂t
pðvc; tÞ ¼ � ∂

∂vc

VsðtÞ � vc
� �

RC
pðvc; tÞ

� �
þ kBT

RC2

∂2

∂v2c
pðvc; tÞ:

ð13Þ
This corresponds to a Fokker-Planck equation, similar to Eq. (1),
with F(vc, t)= C(Vs(t)− vc) and D= kBT/(RC2). The voltage
source can now be used to apply a time-dependent voltage over
the capacitor. Here, I will focus on a protocol where one tries to
charge the capacitor

VT ðtÞ ¼
V0t
tf

: ð14Þ

Initially, the capacitor is assumed to be in equilibrium with the
voltage source,

pðvc; 0Þ ¼
ffiffiffiffiffiffiffiffiffi
kBT
2πC

r
e�

Cv2c
2kBT : ð15Þ

With this boundary conditions, one can write a general
expression for the probability distribution at all times:

pðvc; tÞ ¼
ffiffiffiffiffiffiffiffiffi
kBT
2πC

r
e�

C vc�VC ðtÞð Þ2
2kBT ; ð16Þ

with

VCðtÞ ¼
Z t

0
dτ

VsðτÞe
τ�t
CR

CR
: ð17Þ

This expression can be verified by plugging it in into Eq. (13).
One can use the general framework for thermodynamics of
electronic circuits to calculate the total amount of dissipation
during the process37. This gives an expression that corresponds
exactly to Eq. (4). Furthermore, the precision is defined in the
same way as in Eq. (3), with X(t)= VT(t).

Both the theoretical precision-dissipation Pareto front under full
control, Eq. (5)–(7) and the Pareto front when one only has control
over the voltage source are calculated explicitly in supplementary
notes 4 and 5 respectively. The Pareto fronts are shown in Fig. 2b,

Fig. 2 Pareto front for the examples discussed in this paper. a Pareto
front for erasure plus bit-flip, with c ¼

ffiffiffi
2

p
, E0= 2kBT and c ¼

ffiffiffi
2

p
. The

dashed green line corresponds to Eq. (8). b the electrical circuit, as depicted
in Fig. 1. b Pareto front for an electrical circuit with time-dependent voltage
source Vs(t), resistor R and capacitor C, with tf= RC/3 and CV2

0 ¼ 2kBT.
The green region corresponds to the values of ϵ and ΔiS that can be
reached by only controlling the voltage source, whereas the red region
corresponds to the theoretical Pareto front under full control. The dashed
red line corresponds to Eq. (8).
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together with the high-precision bound, Eq. (8). The green region
corresponds to the values of ϵ and ΔiS that can be reached by
controlling the voltage source, whereas the red region corresponds to
values of ϵ and ΔiS that can only be reached under full control. One
can verify from Fig. 2b that the high-precision region cannot be
reached by only controlling the voltage source.

The supplemental videos 3–6 show optimal protocols both
under full control (for ϵ= 0.05 and ϵ= 0.5) and under limited
control (for ϵ= 0.5 and ϵ= 0.6). One can see that the full-control
protocol primarily focuses on avoiding big fluctuations while the
limited control protocol focuses more on optimizing the average
value. Furthermore, one can see that the optimal protocol mainly
deviates from X(t) at the end of the protocol. This can also be
seen in Supplementary fig. 2.

Discussion
In conclusion, this paper derives a general expression for the
minimal thermodynamic cost associated with following a pre-
defined trajectory at a given precision, cf. Eqs. (5)–(6). This
bound holds for all systems that can be described by an over-
damped Langevin system and becomes particularly useful in the
high-precision limit where ϵ is at least inversely proportional to
the amount of dissipation. This means that the results can be
applied to a broad class of biological and chemical systems,
alongside the examples in information processing and electronic
systems discussed above.

This work opens up several potential directions for future
research. One particularly interesting application would be to use
the Pareto front to infer a lower bound on the amount of entropy
production from experimental measurements of the precision.
Indeed, by calculating ϵ with respect to any choice of X(t), one
can use the Pareto front derived in this paper to infer a lower
bound on the dissipation rate of the experimental system.

Although there exists a broad range of methods to infer dissipa-
tion for steady-state systems29,47–49, extensions to time-dependent
systems often involve response functions8,50, time-inverted
dynamics9, or other quantities that might not be experimentally
accessible12,15,51. Therefore, the number of methods to estimate the
entropy production in time-dependent systems from a single set of
measurements is rather limited33,52,53 and it would be interesting to
quantitatively compare our bound with these methods.

To do this, one can look at a broad range of experimental
systems, including micro-electronic systems similar to the
example discussed in this paper54, or colloidal particles trapped
by optical tweezers55,56. It might also be possible to use the Pareto
front to improve model discovery techniques, such as Stochastic
Force Inference25 and Sparse Identification of Nonlinear
Dynamics57, where measurements of ϵ and ΔiS might put addi-
tional constraints on the choice of models. Another interesting
application would be to use the bound as a quantitative test to
study how efficient a choice of control parameters is.

There are also several ways in which the results from this paper
can be extended. For example, one can use the same methodology
to derive lower bounds for the entropy production associated
with minimizing other observables. It might also be possible to
extend the results of this paper to discrete state systems and
systems with strong quantum effects, using similar ideas as in the
known extensions of the thermodynamic speed limit15. It would
also be interesting to compare the results of this paper with
similar Pareto fronts under limited control. One particularly
interesting type of control is counterdiabatic driving, in which the
system is forced to follow an adiabatic trajectory58. This has
important applications in several fields such as quantum
control59, information processing46, and population genetics60. It
would be interesting to see whether one can derive a similar

precision-dissipation trade-off within such a limited-control fra-
mework. This might be possible by redoing the derivation in
Supplementary note 1 where the control constraints lead to extra
terms in the Lagrangian, Eq. (A.1). Furthermore, it has been
shown that Pareto fronts under limited control can have inter-
esting phenomenology such as phase-transitions35.

Data availability
No datasets were generated or analyzed in this study.
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