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Evidence of pseudogravitational distortions of the
Fermi surface geometry in the antiferromagnetic
metal FeRh
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Axel Hoffmann 2,3,4,8,9, Barry Bradlyn 2,10, Nadya Mason2,3 & Matthew J. Gilbert 9✉

The confluence between high-energy physics and condensed matter has produced ground-

breaking results via unexpected connections between the two traditionally disparate areas. In

this work, we elucidate additional connectivity between high-energy and condensed matter

physics by examining the interplay between spin-orbit interactions and local symmetry-

breaking magnetic order in the magnetotransport of thin-film magnetic semimetal FeRh. We

show that the change in sign of the normalized longitudinal magnetoresistance observed as a

function of increasing in-plane magnetic field results from changes in the Fermi surface

morphology. We demonstrate that the geometric distortions in the Fermi surface morphology

are more clearly understood via the presence of pseudogravitational fields in the low-energy

theory. The pseudogravitational connection provides additional insights into the origins of a

ubiquitous phenomenon observed in many common magnetic materials and points to an

alternative methodology for understanding phenomena in locally-ordered materials with

strong spin-orbit interactions.
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The principles of symmetry and symmetry breaking form
one of the cornerstones of our understanding of physics.
The advent of topological materials has reinforced this fact,

while also highlighting the points where symmetry principles
alone cannot provide sufficient understanding of a diverse array
of materials such as insulators1,2, superconductors3,
semimetals4–6 and magnets7,8. Of the multitude of materials that
have been shown to harbor topological phases, the interplay
between band topology and local order in topological super-
conductors and topological magnets are of particular interest as it
is unclear as to the manner in which symmetry and topology
compete to control the observable properties of the underlying
material. Magnetic metals possess many beneficial aspects com-
pared to superconductors, that may lead to device applicability,
such as high Curie temperatures. The high-temperature magnetic
phase permits the observation of the competition between
topology and magnetism to be explored at temperatures in excess
of room temperature in topological magnets. Within this context,
the interplay between topology and magnetic order9–11 allows for
deeper insights into hitherto under-explored experimental sig-
natures observed in both emergent and well-known materials.

In this work, we provide evidence that the interaction between
the local magnetic order and spin-orbit coupling manifest in
field-tunable distortions of the Fermi surface geometry in FeRh
thin films. We use magnetotransport measurements in conjunc-
tion with detailed ab-initio and theoretical analysis to show that
the thin-film form of antiferromagnetically-ordered (AFM) metal
FeRh is a Weyl metal. Furthermore, we demonstrate that the
anisotropic magnetoresistance (AMR), measured as a function of
the field angle and current direction, may be understood in terms
of changes in the Fermi surface topology brought about by geo-
metric distortions that take the form of a coupling of electrons at
the Fermi surface to pseudogravitational fields. In this work, we
define “pseudogravitational” to refer to geometric distortions of
the Fermi surface brought about by the interplay between the
electronic bands and the applied electromagnetic fields that
mimic the effects of gravity without possessing the properties
inherent in true gravitational fields. We demonstrate through
simple models that the theoretical mapping of the distorted Fermi
surface to a pseudogravitational metric allows for a coherent and
consistent understanding of magnetotransport in clean spin-orbit
coupled metals, both with and without nontrivial topology. One
of the crucial limitations in probing topological magnetic metals
is their lack of tunability: typical knobs such as strain, external
magnetic field, and chemical substitution are limited in their
ability to change topological properties. We argue that one
potential remedy to this problem is to exploit the interplay
between spin-orbit coupling and local symmetry breaking order.
The onset of magnetic order, for instance, is known to drastically
alter band structure, allowing for the realization of additional
symmetries that have resulted in the observation of topological
phases harbored in previously unexplored metals and
insulators7–11.

Results and discussion
Magnetic and electronic structure of antiferromagnetic FeRh.
The FeRh films we examine are sputter-deposited onto a [001]-
oriented MgO substrate12. Epitaxial growth occurs such that the
[100]-direction of the FeRh grows along the [110]-direction of the
MgO, as illustrated in Fig. 1a. Although bulk FeRh is cubic,
biaxial strain from the lattice mismatch with the substrate causes
a small lattice distortion, such that the lattice constant of FeRh
along the [001]-direction is ~2% larger than the in-plane lattice
constant13. Furthermore, first-principles calculations suggest that
in the antiferromagnetic phase the crystal is additionally

orthorhombically distorted in the plane of the MgO14. Complete
details on the film growth and structural characterization are
found in the Methods, and Supplementary Note 1 of the Sup-
plementary Materials (SM) respectively.

In bulk FeRh, a metamagnetic phase transition between a
ferromagnetic phase at high-temperatures and an antiferromag-
netic phase at low-temperatures exists near room temperature15.
Thinner films tend to have a depressed transition temperature16.
At low magnetic fields, or fields much less than the exchange
energy, our 20 nm thin films have a metamagnetic transition
temperature of ~290 K. Experimental verification of the transition
may be found in Supplementary Note 1. To understand the
nature of the thin-film FeRh metamagnetic transition, we
examine the band structure under the application of an in-
plane magnetic field using density functional theory (DFT). At
zero field in the AFM phase, the magnetic moments on the Fe
atoms are taken to be collinear, and there is no magnetic moment
on the Rh atoms. By applying an external field, a canted non-
collinear AFM spin structure is induced and the Rh atoms
develop a ferromagnetic moment in the direction of the applied
field, as illustrated Fig. 1a. In Fig. 1b, we show the resultant DFT
calculations of the electronic band structure of thin-film FeRh
corresponding to the collinear (top) and non-collinear (bottom)
spin structures. The collinear magnetic structure has the
symmetries of magnetic space group Pb2/m, where we have
accounted for the orthorhombic distortion of the thin film form
of FeRh14. Examining the DFT results, we observe several large
electron pockets at the Fermi level throughout the Brillouin zone.
The non-collinear magnetic structure shown in Fig. 1b corre-
sponds to a magnetic field that is oriented along the [100]-
direction, as indicated in Fig. 1a. Within the DFT calculations, the
applied in-plane magnetic field is modeled through a non-zero
ferromagnetic Rh moment that points in the same direction as
the applied magnetic field. In the presence of the non-zero Rh
moment, we observe significant Fermi surface reconstruction,
leading to the emergence of topological nodes close to the Fermi
level. The non-collinear structure has no orientation-reversing
symmetries, and so allows for topologically charged Weyl
fermions at generic points in the Brillouin zone; the Weyl
fermions seen in Fig. 1b are pinned to high-symmetry lines in the
Brillouin zone by twofold rotational symmetry. We utilize the
observations obtained via the DFT calculations of thin-film FeRh
to precondition the 8-band tight-binding model parameters that
are discussed in Sec. III A 1 and is explored in more detail in
Supplementary Note 3 of the SM.

For magnetotransport measurements, the films are patterned
into Hall bars using a photolithographic and ion-milling process.
In all transport measurements, the relative angle between the in-
plane magnetic field and the applied current is denoted by ϕ.
Representative field-dependent magnetoresistance effects in the
AFM phase of FeRh are shown for ϕ= 0° and 90° in Fig. 1c. A
ferromagnetic contribution to the magnetoresistance in Fig. 1c is
evident as a small peak when the field is swept at ϕ= 90°. The
peak arises from ferromagnetic AMR of the FeRh near the MgO
interface as the magnetization rotates from being parallel to
perpendicular to the current17. Hysteresis in the magnetoresis-
tance disappears near 1 T, and is consistent with magnetometry
data that shows the residual ferromagnetic moment saturating at
a field magnitude below 1 T. We observe no evidence of Landau
levels or Shubnikov-de Haas oscillations in the non-saturating
magnetoresistance, signifying a quenched orbital angular
momentum in FeRh.

Tight-binding model. To understand the magnetotransport mea-
surements, we construct a minimal tight-binding model that cap-
tures the essential features of the strained thin-film FeRh lattice. We
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start with primitive lattice vectors are a1= (100), a2= (010), and
a3= (001). Although these lattice vectors are cubic, we allow for
terms in the tight-binding model that break the cubic symmetry. To
completely capture the orthorhombic structure of the FeRh lattice,
the unit cell consists of 8 Fe and 8 Rh atoms. However, to arrive at a
qualitatively accurate model of the bands near the Fermi level, we
retain only 2 Fe and 2 Rh atoms per unit cell.

The general form of the Hamiltonian is

H ¼ ∑
hhi;jii

tijc
y
i cj þ ∑

hhi;jii;hli
cyi iλij

!� σ!cj

þ Δ∑
i
ξcyi ðm!� σ!Þci;

ð1Þ

where, ci ¼ ðci"; ci#ÞT are the electron annihilation operator at site
i located at real space point ri and σ= (σx, σy, σz) represent the
Pauli matrices acting on spin, with σ0 ¼ I2 ´ 2. The Hamiltonian
contains three distinct types of terms: the first sum in Eq. (1) are
the spin-independent hopping terms, where 〈ij〉 indicates the
hopping range under consideration and tij is the corresponding
hopping amplitude. The second sum gives the momentum

dependent spin-orbit coupling terms with magnitudes λij
!

. In
Eq. (1), we have used one s-orbital per atomic site; we justify the
approximation as: (1) the Rh atoms are not guaranteed to sit
perfectly centered within the Fe atoms in strained FeRh and (2)
the orbital structure we utilize provides a sufficient approxima-
tion to the projected d-orbital structure in FeRh at half-filling
obtained by integrating out the localized orbital moments18,19.

The final term in the Hamiltonian is the AFM exchange term20

that acts on-site and directly competes with the spin-orbit
interactions. The AFM interaction is characterized by the
magnitude of the exchange, Δ, and the net magnetization
orientation, m!, as illustrated in Fig. 1a. The form of the AFM
exchange term is general in nature and is enforced by the
presence of the matrix, ξ, that ensures that the sign of
the exchange is opposite between successive Fe atoms and zero
on the Rh atoms (see Supplementary Note 3, Sec. E3). The AFM
exchange term is applicable in the presence of an inhomogeneous
interaction, such as the Dzyaloshinskii-Moriya interaction, that
may result from the interplay between the spin-orbit interaction
and the localized, on-site exchange interactions in FeRh21.
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Fig. 1 Characterization and magnetotransport in antiferromagnetic thin-film FeRh. a Schematic of the FeRh lattice with epitaxial matching to an MgO
substrate. ϕ is the orientation of the external magnetic field, H, relative to the current along a well-defined crystallographic direction. The behavior of the
antiferromagnetic (AFM) order is displayed in the limits of both low and high magnetic fields. An increasing field cants the AFM moments into a non-
collinear configuration, and a ferromagnetic moment is generated on the Rh sublattice. The rotation of all magnetization orientations is illustrated as
H rotates. Note that the theoretically expected orthorhombic distortion of the FeRh is not indicated in the schematic. b Electronic band structure
calculations from density functional theory are shown for the orthorhombic collinear AFM structure (top panel) as well as the non-collinear AFM structure
with Rh moment oriented along the [100] direction (bottom panel). c The field-dependent magnetoresistance is shown when the field is swept at ϕ= 0°
and ϕ= 90° at T= 10 K. The magnetoresistance does not saturate in high-magnetic fields, and the lower plot demonstrates a hysteretic anisotropic
magnetoresistance peak at low fields consistent with the presence of residual ferromagnetism. The black arrows denote the direction of the external field
sweep. d The anomalous Hall effect in both the ferro- and antiferromagnetic phase of FeRh are shown at T= 350 K and 110 K respectively. The zero-field
anomalous voltage, better seen in the lower plot, indicates the presence of a Berry phase induced by strong spin-orbit coupling the material and is
concomitant with the presence of a topological response23,24,48,49.
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To ensure that our reduced FeRh unit cell adequately captures
the band crossings at the Fermi level, we constructed an
analogous tight-binding model using the full 16 atom unit cell
and inspected the band structure as the intracell hopping terms
are tuned to arrive at four decoupled 4 atom unit cells. We find
that the reduced symmetry of the 4 atom unit cell only affects the
energy bands at higher energies than those considered in this
work (See Supplementary Note 3 for more details).

We experimentally justify the form of the spin-orbit coupling
in Eq. (1) using Fig. 1d, which shows the measured anomalous
Hall conductivity (AHC) of the thin-film FeRh devices. The AHC
is non-vanishing for both the ferro- and antiferromagnetic
phases, demonstrating the presence of strong spin-orbit coupling
in FeRh. The anomalous Hall conductivity changes sign in the
AFM phase relative to the ferromagnetic phase and, taking into
account the residual ferromagnetism at the MgO interface,
represents a lower estimate of the anomalous Hall conductivity
that is found to be σxy ≈ 104Ω−1m−1. For these measurements the
applied magnetic field is out-of-plane in the [001]-direction and
the observation of a non-zero AHC in the transport character-
istics indicates the presence of Berry curvature in the band
structure of FeRh. In other studies of similar non-collinear
antiferromagnets, the existence of Berry curvature has been
predicted22 and experimentally confirmed23,24 via the generation
of non-vanishing anomalous Hall voltages. The non-vanishing
anomalous voltage at zero-field is attributed to a “remnant” non-
collinear configuration that originates from exchange coupling
with any remnant residual ferromagnetism on the Rh atoms.
Furthermore, recent experiments demonstrate the presence of the
inverse spin Hall effect in AFM FeRh, which adds additional
support to the presence of strong spin-orbit coupling in this thin-
film FeRh25.

FeRh anisotropic magnetoresistance: current in the [100]
crystal direction
Experimental results. In Fig. 2a, we show the experimental angular
dependence of the AMR for in-plane magnetic fields ranging
from 1T to 12T, when the current is along the [100] direction of
FeRh. We plot the AMR as ΔR/Ravg, where ΔR= R(ϕ)− Ravg.
Here, R(ϕ) is the resistance when the magnetic field is at an angle
ϕ relative to the [100] current direction, and Ravg ¼ 1

2π

R 2π
0 RðϕÞdϕ

is the average resistance over the entire angular range. As pre-
viously shown, smooth AMR signals with a continuous derivative
with respect to ϕ, arise when the magnetic order parameter
continuously rotates with the external magnetic field26–29.
Therefore, the continuous AMR we observe in FeRh implies that
the (x− y) plane is an easy-plane, consistent with previous
experimental studies of FeRh30.

The most striking feature of the AMR is the evolution at fixed ϕ
as the magnitude of the in-plane external magnetic field increases.
Focusing on ϕ= 0° for concreteness, the amplitude of the AMR
initially decreases linearly as the magnetic field increases from 1T
to 8T, where ΔR(ϕ= 0)= 0 at a critical value B* ≈ 8T of the
magnetic field. For fields above 8T, the AMR becomes negative
and its magnitude increases linearly with increasing magnetic
field over the range from 8T to 12T. Similar sign changes in the
AMR component have been observed in both ferromagnetic
CoxFe1−x

31, as well as in antiferromagnetic materials such as
EuTiO3

32, and Sr2IrO4
33. By estimating the magnetic suscept-

ibility of the thin-film geometry, we may map the critical
magnetic field at which the sign of the AMR changes, Bc, to a
canting angle of θcant ≈ 13° for the Fe moments. The canting
angle, illustrated in Fig. 1a, is calculated assuming a magnetic
susceptibility of the thin-film FeRh that is three times greater than
previously measured in bulk FeRh34. We note that, due to a

strong diamagnetic background signal from the MgO substrate,
direct measurement of the magnetic susceptibility is not possible
for the thin-film devices used in this work. We expect the
presence of an enhanced susceptibility due to the residual
ferromagnetism in the FeRh thin-film, near the MgO interface
that provides an additional exchange field that aligns with the
external magnetic field.

To quantify the composite amplitudes of each AMR measure-
ment, we perform a spectral analysis of the AMR, writing

ΔR=Ravg ¼ ∑
n
C2nðBÞ cosð2nϕþ φ2nÞ: ð2Þ

The spectral amplitudes C2n of the experimental AMR are shown
in Fig. 2c with corresponding spectral phases ϕ2n shown in
Fig. 2e. We observe that for fields far from Bc the AMR is
dominated by the two-fold component C2. We also see that
C2(Bc)= 0, leading to the dominance of the four-fold harmonic
C4 for fields near Bc.

Theoretical modeling. To understand the AMR results in thin-film
FeRh, we next use our 8-band tight-binding model to calculate
the AMR for current along the [100] crystal direction at T= 10 K.
We utilize the tight-binding Hamiltonian in conjunction with the
non-equilibrium Green’s function formalism to calculate the
observables presented in our work (see Supplementary Note 3 for
complete details of the model and Supplementary Table I for the
parameter values). As we do not experimentally observe the
formation of Landau levels in FeRh, we ignore the orbital effects
of the magnetic field. Instead, the external in-plane magnetic field
is accounted for by a linear reduction in the antiferromagnetic
exchange coupling, Δ and a corresponding linear change in the
cant angle of the local moments from 0°− 25°35. As shown in
Fig. 2b, we find that the calculated AMR qualitatively captures all
of the essential experimentally observed features, including a sign
change in ΔR(ϕ= 0), and a transition from two-fold to four-fold
to two-fold symmetry as the field passes through a critical value.
To facilitate a direct comparison with the experimental data, in
Fig. 2d, f, we plot the spectral amplitudes C2n and phases φ2n of
the corresponding theoretical data. By comparing Fig. 2c, d, we
observe clear qualitative consistencies between theory and
experiment. Most notably, we see in the theoretical calculation
that the AMR is clearly dominated at all field levels by the twofold
symmetric component C2 for small cant angles until θcant ≈ 13. 0°.
Furthermore, the sign change of ΔR(ϕ= 0) appears in the spectral
decomposition as a change in the phase ϕ2n by 180°. We observe
this at θC2

cant ¼ 14:5� in Fig. 2e for the theoretical model, and at
θC2
cant ¼ 13� in the experimental data in Fig. 2f.
Moreover, the four-fold symmetric signal (determined by C4)

dominates the observed AMR in FeRh when C2 component
vanishes in both the theoretical and experimental curves. The
residual harmonic content, which is small in magnitude both
experimentally and theoretically, is dominated by C4. The
theoretical trend predicts a sign change that is not observed in
the experiments at the magnetic fields considered. We attribute
this discrepancy to quasiparticle relaxation effects that were not
considered in the model, but that naturally occur in the
experimental system. Although a full treatment of a disordered
quantum transport calculation is beyond the scope of this work,
an analysis of random variations of uncorrelated magnetization
domains shows that they do not open gaps in the band structure,
and hence result in only small changes to the self-energy. While
the presence of uncorrelated magnetic domains is insufficient to
open a gap in the bands, the overall resistance of the material will
increase; however, we expect this effect to average out in ΔR/Ravg.
Therefore, the quantum transport calculations of the AMR are
insensitive to random magnetic disorder36.
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Origin of the AMR: order parameter induced fermi surface
deformations. The 8-band model of thin-film FeRh allows us to
qualitatively reproduce the observed AMR along the [100] direction.
Going further, our model may be utilized to understand the physical
origin of the sign change in the AMR, as well as the relative mag-
nitude of C2 and C4 as a function of in-plane magnetic field. To do
so, we start by examining the local density of states in our tight
binding model in three parameter regimes, corresponding to low

(θcant < 12°, Δ≫ λ), intermediate (12° ≤ θcant ≤ 15°, Δ ≈ λ) and high
cant angles (θcant > 15°, Δ≪ λ). In Fig. 3, we examine each of these
three distinct regimes when the magnetic field is oriented perpen-
dicular to the current direction (i.e. ϕ= 90°) We show the spectral
density (SDOS) for the [100] current direction in Fig. 3a when the
(θcant= 5°) there exist clear demarcations of the Fermi surfaces that
pass through the constant EF= 0eV cut at kz= 0 within the kx− ky-
plane that are connected and reflected about kx= ky= 0.

Fig. 2 Quantum transport in the [100] crystal direction. a Experimentally measured anisotropic magnetoresistance (AMR) for in-plane magnetic fields
between 1-12 T We see a clear evolution from two-fold (C2) symmetric AMR at low magnetic fields to a four-fold (C4), or non-zero coefficient multiplying
the cos4ϕ term in the AMR spectral decomposition, symmetric AMR and returning to an inverted C2 symmetric AMR at high magnetic fields.
b Theoretically calculated AMR corresponding to canting angles between the Fe moments that lie in the range of θcant= 0°–25°. The spectral
decomposition of (c) the experimental and (d) the theoretical AMR amplitudes. In (c), we have converted the experimental field to a canting angle by using
an assumed magnetic susceptibility for the thin-film samples that is a factor of three greater than the measured bulk magnetic susceptibility of FeRh. The
spectral phase of the harmonics, as a function of the canting angle, for both the experimental and theoretical AMR measurements are shown in (e) and (f).
There is a sharp phase change of 180° in the experimental C2 harmonic that is accurately captured in the theory at the canting angle where the sign change
in the AMR is observed but qualitative differences in the C4 harmonics exist due to the simplistic nature of the model.

Fig. 3 Spectral density of states in FeRh along the [100]. The spectral density of states (SDOS) when the net magnetization orientation, m̂ is pointing
orthogonal to the different crystal directions in FeRh under three distinct conditions: (i) Δ≫ λ (ii) Δ≈ λ and (iii) Δ≪ λ. The rows of plots represent the
three conditions in the crystal grouped according to the net magnetization orientation. In the each horizontal row, we plot the SDOS for each of these
conditions respectively from the left to the right for the [100] (a)-(c). The SDOS is plotted in the kx− ky-plane at kz= 0. Each of the three cases illustrates a
different point in the Lifshitz transition that occurs in FeRh as the in-plane magnetic field is increased. Furthermore, with each successive increase in
magnetic field, the pseudogravitational distortion of the Fermi surface geometry increases.
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Next we increase the cant angle to θ100cant ¼ 14�, as occurs in the
experimental measurements via the application of increasing in-
plane magnetic fields. In Fig. 3b, we show that this causes the
Fermi surfaces to elongate along the [100] direction perpendi-
cular to the [010]-directed external field. By continuing to
increase the cant angle in Fig. 3c to be θ100cant ¼ 25�, corresponding
to the point when C2= 0. In each case the formerly concentric
Fermi surfaces become disconnected. Crucially, we note that the
Fermi contours touch at the same point in parameter space where
C2= 0. The Lifshitz transition in the Fermi surface geometry is
thus correlated with the sign change in the AMR. Finally, as the
cant angle continues to increase under concomitant increases in
the external magnetic field, the Fermi surfaces illustrated in the
SDOS of Fig. 3, become distorted in the direction perpendicular
to the external magnetic field, resulting in the observed AMR
where C2 < 0.

Using the 8-band model for FeRh, we observe that there is a
correlation between the change in the sign of C2 and a change in
geometry and topology of the Fermi surface that occurs as the
cant angle is increased. The appearance of a Lifshitz transition as
the cant angle, or the ratio of exchange energy to spin-orbit
interaction, changes is indicative of a deep connection between
the geometry of the Fermi surface and the magnetic order
parameter that manifest in the change in sign of the AMR. To
clarify the underlying physics, we now construct a minimal model
that contains the crucial physical attributes associated with the
Lifshitz transition, spin-orbit coupling and the magnetic exchange
interaction. To this end, we examine a 2-band ferromagnetic
Rashba spin-orbit coupled metal in two dimensions. The
Hamiltonian for the the ferromagnetic metal is

HFM ¼ ∑
σ;hiji

�tcyiσcjσ þ iλRc
y
iσ ẑ ´ σ!σσ 0

cjσ 0

þ∑
i
cyiσ Δ
!� σ!σσ 0

cjσ 0 þ∑
σ;i
ð4t � μÞcyiσciσ ;

ð3Þ

where t is the nearest-neighbor hopping amplitude, λR is the

Rashba spin-orbit coupling strength, Δ
!

is the ferromagnetic
order parameter that may be manipulated in the same manner as
Eq. (1), and μ is the chemical potential. Note, however, that
unlike in FeRh, here the value of ∣Δ∣ increases with the external
magnetic field due to the ferromagnetic nature of the pairing. In
the context of the model, we note that σ need not represent the
physical spin degree of freedom, instead it may be a spin-orbit
coupled degree of freedom that is projected into a set of low-
energy bands, as in an antiferromagnet. In Fig. 4a, we utilize the
ferromagnetic Rashba model to calculate the AMR as we rotate
the magnetic order parameter. This allows us to emulate the
physics of FeRh in the three critical regions surrounding the sign
change of C2, and thus to codify the interaction between
magnetism, Fermi surface geometry, and the spin-orbit interac-
tion. We observe that the three AMR curves faithfully reproduce
the intricate physics observed in the more complex tight-binding
model for FeRh.

First, we consider the limit Δ≫ λR, where the chemical
potential, μ, cuts across only one of the two spin-split bands. This
results in a spin non-degenerate Fermi surface, as shown in
Fig. 4b. In exploring the Fermi surface, we position the magnetic
order parameter along the ŷ-direction and find the same
distortion of the Fermi surface perpendicular to the direction of
the order parameter as in our model of FeRh. The result of having
a single non-degenerate Fermi surface at the Fermi energy is a
two-fold symmetric AMR with a maximum at ϕ= 0°, or C2 > 0.
Next, when Δ ~ λR, we observe a Lifshitz transition, in Fig. 4c. As
in FeRh, the AMR corresponding to the onset of the Lifshitz
transition contains multiple harmonics of comparable magnitude.

Beyond the Lifshitz transition (Δ≪ λR), the ferromagnetic
Rashba model has two concentric Fermi surfaces when

j Δ!j ! 0, which become distorted for non-zero ∣Δ∣, as seen in
Fig. 4d (See Supplementary Note 3 for more details).

Nevertheless, it is clear that the change in the resistance of the
2-band ferromagnetic Rashba model, computed as a function of
order parameter strength and orientation, captures the essential
features of the more complicated 8-band model of FeRh. In

particular, for small j Δ!j the AMR is predominantly two-fold
symmetric, with a minimum of the resistance at ϕ= 0 (C2 < 0) as
in the extreme spin-orbit coupled limit of FeRh.

AMR from pseudogravitational fields. Both the more accurate
8-band model of FeRh and the more simplified 2 band model of
the ferromagnetic Rashba metal point to the onset of a sign
change in the AMR as a ubiquitous feature present in the AMR of
spin-orbit coupled magnetic materials. Beginning with this
observation, we propose a geometric framework within which to
understand these effects that is rooted in the observation that the
distortions of the Fermi surface in both the FeRh and ferro-
magnetic Rashba model bear a striking resemblance to the cou-
pling of fermions to curved space. For a quadratically dispersing
band, as in the ferromagnetic Rashba model with a small Fermi
surface, the Fermi surface distortion may be parametrized by an
effective low-energy Hamiltonian as

Hquad
eff ¼ gijðΔÞkikj; ð4Þ

where the effective nontrelativistic “metric” tensor gij(Δ) is a
function of the magnetic order parameter and its form determines
the observed Fermi surface geometry. The geometric coupling
arises due to the non-trivial SOC-induced winding of the spin
texture on the Fermi surface interacting with the background
magnetic order parameter, and therefore, is intimately connected
band topology. For the Rashba model with a constant background
magnetic order parameter, the metric describes an elliptical dis-
tortion of the Fermi surface; for larger Fermi surfaces, where
quartic corrections to the dispersion become important, we
recover Fermi surface geometries such as in Fig. 4.

Due to the gravitational parallel we have exploited in our Fermi
surface parametrization, where the coupling of the order
parameter to the carriers results in a distorted Fermi surface, we
refer to the coupling of the order parameter to the Fermi surface
geometry as “pseudogravity”. As we will see via the example of the
Rashba model below, pseudogravitational fields are expected to
arise whenever there is magnetic order in the presence of spin-
orbit coupling. For systems such as FeRh which feature linearly-
dispersing Weyl fermions in addition to quadratically dispersing
Fermi pockets, we expect the Weyl fermions to be coupled to a
relativistic pseudogravitational metric of the form37,38

ð5Þ

In Eq. (5), we show the metric in block matrix form expressed
with the Minkowski signature typical of flat spacetime. The off-
diagonal components of Eq. (5), u may be interpreted as the
velocity of a moving frame, or a tilt in the case of a Weyl
semimetal37,39, and A parametrizes the elliptical distortion of the
Fermi surface.

Using the Rashba model as a simple example, we will now see
how anisotropic magnetoresistance is a signature of pseudogra-
vitation couplings. For a noninteracting system with nonmagnetic
disorder, contributions to the ohmic conductivity originate from
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electrons near the Fermi surfaces, which, as in Fig. 4, distort as a

function of j Δ!j and ϕ. In particular, within the relaxation time
approximation and with nonmagnetic disorder the dissipative
conductivity depends on the geometry of bands near the Fermi
surface, and is given by the Fermi surface integral

σ ij /
Z

d2k
∂ϵk
∂ki

∂ϵk
∂kj

 !
δðμ� ϵkÞ: ð6Þ

around the Fermi surface with energy ϵk. We separate the our
analysis in the two regimes in the AMR that are of interest:
Δ≫ λR, where the C2 harmonics dominate, and Δ≪ λR, where
similar C2 harmonics dominate but with a π

2 phase shift.
We begin by examining the limit Δ≫ λ where we seek both an

expression for the effective metric and the conductivity. In this
limit, we further restrict ourselves to negative values of the
chemical potential μ, such that we have a single Fermi surface.

In this limit, we may write the Bloch Hamiltonian correspond-
ing to Eq. (3) as

HðkÞ ¼ σ0½2tð2� cos kx � cos kyÞ � μ� þ Δ � σ!

þ λRðsin kxσy � sin kyσxÞ
ð7Þ

Since, we have chosen μ such that the Fermi surface is small, we
may expand the Hamiltonian about k= 0 to find

HðkÞ � t k2x þ k2y

� �
� μ

h i
σ0 þ Δ � σ!þ λRðkxσy � kyσxÞ ð8Þ

with corresponding energies

E ± ¼ tjkj2 � μ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλRkx þ Δ sinϕÞ2 þ ðλRky � Δ cosϕÞ2

q
ð9Þ

Let us now suppose that when Δ≫ λR, the Fermi surface lies
entirely in the E− band. By expanding occupied band, E−, in

powers of λR/Δ to find the effective Hamiltonian that is quadratic
in momentum, as expected from Eq. (4), or

E� � Δþ tjkj2 � μþ λRðkx sin ϕ� ky cosϕÞ þ
λ2R
2Δ

ðkx cosϕþ ky sin ϕÞ2:
ð10Þ

We see that, to lowest order the energy, E− is a quadratic form in
momentum, k, and we may complete the square to write,

E� ¼ E�0 þ gijðϕÞk0ik0j; ð11Þ
where to lowest order we may make the following substitutions in
Eq. (10) to arrive at the Eq. (11)

k0x ¼ kx þ λR sin ϕ=2t ð12Þ

k0y ¼ ky � λR cos ϕ=2t ð13Þ

E0� ¼ Δ� μþ λ2R sin ϕ� cos ϕ
� �

igij
sinϕ

� cos ϕ

� �
j

ð14Þ

gij ¼
t þ λ2R

2Δ cos
2ϕ sinϕ cos ϕ λ2R

2Δ

sin ϕ cosϕ λ2R
2Δ t þ λ2R

2Δ sin
2ϕ

0
@

1
A

ij

: ð15Þ

Eq. (15) gives the pseudogravitational metric gij(ϕ) as a function
of the tight-binding parameters. The metric gij(ϕ) naturally
emerges from the parametrization after the low-momentum
expansion. The presence of the pseudogravitational metric is
expected here as it determines the geometry of the Fermi surface
which, in turn, sets the velocity at the Fermi surface. Substituting
Eq. (11) this into Eq. (6) for the conductivity, we find that

Fig. 4 Quantum transport in a Rashba spin-orbit coupled ferromagnet. a Numerically calculated anisotropic magnetoresistance (AMR) corresponding to
a spin orbit coupling of λR= 0.5, a chemical potential of μ= 0.2, and Δ= 0.9 (red), Δ= 0.5 (blue) and Δ= 0.01 (green) where in each case the magnetic
order parameter is oriented along the ŷ-direction in the model. b The distorted non-degenerate Fermi surface corresponding to the C2 symmetric AMR of
Δ= 0.9 c The Fermi surface when Δ= 0.5 shows the appearance of a second concentric Fermi surface at the Fermi level that is indicative of the onset of a
Lifshitz transition resulting in the appearance of harmonics beyond that of C2. d The Fermi surface corresponding to Δ= 0.01 where the Fermi level crosses
both spin bands resulting in concentric spin-degenerate Fermi surfaces and the recovery of an inverted C2-symmetric AMR, as seen in FeRh.
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σ ijðϕÞ
� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det gijðjΔj; ϕÞ
q gijðjΔj; ϕÞ �σ0: ð16Þ

where �σ0 is a ϕ-independent but μ and t-dependent constant.
Eq. (16) shows that the conductivity tensor in this limit is a
function of the pseudogravitational metric. To find the AMR, we
invert Eq. (16) resulting in an equation for the longitudinal
resistivity as a function of ϕ, or

ρxxðϕÞ ¼ �ρþ λ2

4tΔ
cos 2ϕþOðλ3RÞ: ð17Þ

Eq. (17) reproduces the positive two-fold dominant, C2, AMR
observed in the high-field magnetic field limit of both the 8-band
tight-binding model for FeRh and the 2-band Rashba model. In
our analysis, we note that including the next-order correction to
Eq. (17) produces a term that is proportional to cos 4ϕ. The C4

dominant Fourier harmonic is observed both experimentally and
numerically when Δ ≈ λR when the Fermi surface is close to the
onset of the Lifshitz transition.

Next, we examine the conductivity in the low magnetic field
limit, or when Δ≪ λR. In this limit, we expand the energies E± in
Eq. (9) in powers of Δ/λR≪ 1. We take advantage of the fact that

the spin-orbit coupling, λR, multiplies the momentum, j k!j, in
Eq. (9) to make a change of variables such that

k0
! ¼ k

!þ Δ

λR
ðsin ϕ;� cosϕÞ: ð18Þ

In terms of adjusted momentum, k0
!

, we may rewrite the energies
for the 2-band Hamiltonian of Eq. (9) in the low-field limit as

E ± ¼ tj k!
0
j2 ± λRj k

!0
j 1� 2tΔ

λ2R
sinðϕ� θÞ

� �
þ tΔ2

λ2R
� μ ð19Þ

We see that, distinct from the Δ≫ λR limit, in the Δ≪ λR limit
the constant E± contours are anisotropic and depend explicitly on

the angle θ− ϕ between k0
!

and Δ
!

. This dependence, combined

with the explicit dependence of the energy on j k0!j indicates that
the constant energy surfaces of Eq. (19) do not admit a
description in terms of a quadratic form; in this limit, the Fermi
surfaces of the Rashba model are quartic surfaces. Nevertheless,
we observe that by rotating the order parameter, or changing ϕ
induces a distortion of the constant energy contours of Eq. (19).

In a similar fashion to the high-field limit, we may use Eq. (6)
to evaluate the conductivity of the Rashba model perturbatively in
Δ/λR. In the low-field limit, however, we find that the anisotropy

in the conductivity tensor arises due to the Δ
!

dependence of the
quartic Fermi surface shape and, by extension, the Fermi velocity.
The presence of the quartic Fermi surface in this limit does not
admit a simple analytic solution, as was the case in the high-field
limit. On the other hand, in the limit that the chemical potential,
μ lies in between the upper and lower spin-split bands, ensuring
that there is only a single large Fermi surface, we may numerically
solve for the conductivity and resistivity to find that the AMR for
the Rashba model is C2 dominant and negative in the
Δ≪ λR limit.

We may now understand the core physical rationale behind the
appearance of the Lifshitz transition in the FeRh and ferromag-
netic Rashba AMR. In both the Δ≪ λR and Δ≫ λR limits, we
have a strong interdependence between the magnetic order
parameter and the spin-orbit coupling. Therefore, under the
application of a strong in-plane magnetic field, the pseudogra-
vitational fields couple to the electrons on the Fermi surface
leading to the distortions, seen in Figs. 3 and 4. Continued
increases in magnetic field leads to increasing pseudogravitational

modification of the Fermi surface that pulls the connected Fermi
pockets apart leading to the observed features in the AMR. As we
see in Eq. (16), when the Fermi surface is approximately
quadratic, the pseudogravitational distortion directly determines
the conductivity tensor and hence the AMR.

The end result is that we arrive at a simple interpretation of
the observed AMR: the interplay between spin-orbit coupling
and magnetic order creates a pseudogravitational coupling
between the order parameter, the Fermi surface shape that alters
the resultant quasiparticle velocity. The AMR in our 8-band
model of FeRh arises from a similar mechanism and, although
the coupling between the order parameter and the 4 bands
crossing the Fermi surface is more intricate in FeRh, we
nevertheless observe in Fig. 4 that the AFM order parameter
distorts the Fermi surfaces leading to the observed AMR. We
note that our calculations for both the Rashba and 8-band FeRh
model treat disorder as non-magnetic in nature within the
relaxation time approximation. However, since the correspond-
ing self-energies from relevant phonon or spin-fluctuation
contributions are small in magnitude, their presence would not
impact the results presented in this work40.

Conclusions
In this work, we have measured the anisotropic magnetoresis-
tance of thin-film FeRh samples in the antiferromagnetic regime.
We showed that as the magnetic field rotates, the order parameter
smoothly tracks the magnetic field direction. Through a combi-
nation of ab-initio calculations and tight-binding modeling of
thin-film FeRh, we showed how the observed AMR is a result of
the evolution of the Fermi surface geometry as a function of
applied magnetic field. We demonstrated that the coupling
between the inherent magnetic order and Fermi surface geometry
is ubiquitous in spin-orbit coupled magnets and is responsible for
the most salient observables in the AMR measurements. Using a
simplified ferromagnetic Rashba model, we are able to illustrate
the origin of this coupling: spin-orbit coupling induces Fermi-
surface spin textures that are influenced by the magnetic order.
With the aid of a k ⋅ p approximation for small Fermi surfaces in
the Rashba model, we find that the distortion of the Fermi surface
plays the role of an anisotropic band mass tensor that depends on
the magnetic order parameter. From a theoretical perspective, this
tunable band mass anisotropy is analogous to an effective pseu-
dogravitational metric,

1
2m

∑
i
k2i ! ∑

ij
gijðjΔj; ϕÞkikj; ð20Þ

that allowed for a much deeper understanding of the underlying
physics associated with the Lifshitz transition. In FeRh, we have
linearly dispersing Weyl pockets near the Fermi level in addition
to typical quadratic metallic Fermi surfaces. As such, we expect
these Weyl Fermi surfaces are also similarly distorted due to the
coupling between spin-orbit interaction and magnetism. Using
the analysis associated with the pseudogravitational mapping will
shed light on observations in other magnetic systems that possess
both topological and mean-field order such as EuTiO3

32. In a
broader context, our results suggest that easy-plane antiferro-
magnets with strong spin-orbit coupling are candidate systems
for exploring the coupling of fermions to distorted background
geometries.

Methods
FeRh crystal growth. The FeRh films used in this work have been
deposited onto [001]-oriented MgO substrates using DC mag-
netron sputtering. Prior to sputtering, the substrates are heated
within the sputter deposition system to 850 °C for 1 h to ensure
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that potential contaminants are desorbed from the surface. After
the substrates are cleaned, the temperature was lowered to 450 °C
for deposition. The sputter target used for deposition is an
equiatomic FeRh source. During growth, 6.5 sccm of Ar gas was
introduced into the chamber, and the pressure was set to 6
mTorr. The DC sputtering power used was 50 W, and the growth
rate was 0.7 Å/s.

FeRh device fabrication. A photolithographically patterned mask
has been developed onto a continuous film in the intended Hall
bar pattern, and an ion-milling process removes the FeRh film
not under the mask. Magnetotransport measurements were made
inside a Quantum Design, Physical Properties Measurement
System (PPMS). Longitudinal magnetoresistance and transverse
voltage measurements of samples were made using standard lock
in detection with a Stanford Research Systems SR830 lock in
amplifier. To facilitate lock-in detection, a 17 Hz probe current of
nominally 10 μA was used.

Density functional calculations of FeRh. To perform DFT cal-
culations, we use the Vienna Ab-Initio Simulation Package41,42

(VASP). The projected augmented wave (PAW) pseudopotentials43

are used for the calculations and the exchange-correlation energy is
calculated with generalized gradient approximation (GGA) in the
Perdew-Burke-Ernzerof form44. A Γ-centered 11 × 11 × 11
Monkhorst-Pack k-mesh is used for the calculations. We reproduce
the Dzyaloshinskii-Moriya interaction (DMI) using the constrained
moment approach with spin-orbit coupling interactions imple-
mented in VASP so as to calculate the band structure for different
spin orientations45–47. In order to reproduce the strong correlation
of the d-orbitals that drives the magnetism, we use a Hubbard U of
3 eV for both magnetic atoms. In order to understand the evolution
of the bandstructure under the experimental conditions presented in
the main text, we must be able to approximate the effects of an in-
plane magnetic field on the thin-film FeRh. In our work, we mimic
the magnetic field by configuring the normally non-magnetic Rh
magnetic moments to be configured in such a manner so as to
possess an in-plane ferromagnetic orientation. One of the important
consequences of the Rh atoms developing an in-plane ferromagnetic
state is that the nature of the FeRh crystal changes from symmorphic
to non-symmorphic.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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