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Realization of Wilson fermions in topolectrical
circuits
Huanhuan Yang 1, Lingling Song1, Yunshan Cao1 & Peng Yan 1✉

The Wilson fermion (WF) is a fundamental particle in the theory of quantum chromody-

namics. Theoretical calculations have shown that the WF with a half skyrmion profile

represents a quantum anomalous semimetal phase supporting a chiral edge current, but the

experimental evidence is still lacking. In this work, we report a direct observation of the WF in

circuit systems. We find that WFs manifest as topological spin textures analogous to the half

skyrmion, half-skyrmion pair, and Néel skyrmion structures, depending on their mass.

Transformations of different WF states are realized by tuning the electric elements. We

further experimentally observe the propagation of chiral edge current along the domain-wall

separating two circuits with contrast fractional Chern numbers. Our work provides experi-

mental evidence for WFs in topolectrical circuits. The nontrivial analogy between the WF

state and the skyrmionic structure builds an intimate connection between the two burgeoning

fields.
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Lattice quantum chromodynamics is an effective method to
study the strong interactions of quarks mediated by
gluons1,2. In lattice quantum chromodynamics calculation,

quarks are represented by fermionic fields and placed at lattice
sites, and gluons play the role of interactions between neighboring
sites3. However, when naively putting the fermionic fields on a
lattice, we will meet the fermion doubling problem4, i.e., the
emergence of 2d−1 spurious fermionic particles for each original
fermion (d is the dimension of the spacetime). The origin of the
doubling problem is deeply connected with chiral symmetry and
can be traced back to the axial anomaly5. To remove the ambi-
guity, Kenneth Wilson developed a technique by introducing
wave-vector-dependent mass, which modifies the Dirac fermions
to Wilson ones6. The fermion doubling issue exists in condensed
matter physics as well7–11. It prevents the occurrence of quantum
anomalies in lattices, such as the quantum anomalous Hall
insulator10 and Weyl semimetal with single node11. It is known
that Dirac fermions manifest as the low-energy excitations of
topological semimetals/insulators (e.g., graphene)12–15. However,
the observation of Wilson fermion (WF) is yet to be realized.

Recent works show that electrical circuits can be used to mimic
and explore the properties of both bosons16,17 and fermions18–20.
In this work, we utilize a lattice model to realize the WF and
probe it in topolectrical circuit experiments20–39. We find that the
nontrivial state of the WF strongly depends on its mass and can
be classified into three categories characterized by different Chern
numbers of 0, ±1/2, and ±1, corresponding to the half-skyrmion
pair, half skyrmion, and Néel skyrmion, respectively. We propose
a circuit method to efficiently manipulate the transport and
transformation of the WF states. In this system, the fractional
Chern number dictates a quantum anomalous semimetal
(QASM) phase with a chiral edge current as suggested in ref. 40.
Here, we report a direct observation of the chiral current along
the domain wall (DW) separating two circuits with contrast
fractional Chern numbers being 1/2 and −1/2. WFs in a three-
dimensional (3D) circuit system are constructed as well. They are
characterized by 3D winding numbers and accompanied by the
emergence of the surface states and DW states at the boundaries.
Our work opens the door for realizing the exotic WFs in solid-
state systems.

Results and discussion
We begin from the Dirac Hamiltonian H ¼ ck � αþmc2β with c
the light speed, k the wave vector, and α, β being the Dirac
matrices, which describes a Dirac fermion with the mass m41.
Expressing this Dirac Hamiltonian on a lattice of the tight-
binding form, we obtain HD ¼ ∑d

i¼1
_v
a sinðkiaÞαi þmv2β with a

the lattice constant and ℏv the hopping strength (d is the space
dimension). It is straightforward to verify that 2d− 1 non-physics
fermion doublers appear at the Brillouin zone (BZ) boundaries
ki= π/a. Following Wilson’s method, we derive the WF Hamil-
tonian of the following form H ¼ HD þHW with HW ¼
4b
a2 sin

2 kia
2 β being the k-dependent Wilson mass term40. Here, the

k-independent mass m in Hamiltonian HD is referred to as the
dispersionless mass of WFs. It is noted that the HW term breaks
the parity symmetry in two-dimensional (2D) and chiral sym-
metry in 3D cases, which can circumvent the fermion doubling
problems4 and reproduce the quantum anomaly in the con-
tinuum limit. In Supplementary Note I, we show the details how
the doublers from Dirac Hamiltonian are removed by introducing
the Wilson mass term. Next, we report the realization of the
Wilson Hamiltonian in electrical circuits.

Circuit model. We consider a 2D spinful square lattice in Fig. 1a.
The circuit is constituted by four types of capacitors ± C1,2 and

the negative impedance converters with current inversion (INICs)
in Fig. 1b, where A and B parts correspond to the massless Dirac
and Wilson mass Hamiltonians, respectively. It is noted that one
can utilize inductors to replace negative capacitors because the
admittance of the negative capacitor −iωC is equivalent to the
inductor �i 1

ωL for L= 1/(Cω2)42. Here, ω is the working fre-
quency. We implement two sites to imitate a (pseudo-) spin,
indicated by the red rectangle in Fig. 1a, b. The INIC is set up by
an operational amplifier and three identical resistors R, as shown
in Fig. 1c. In Fig. 1d, we show the realization of the staggered on-
site potential, which is modeled as the dispersionless mass of WF.

The circuit response is governed by Kirchhoff’s law IðωÞ ¼
J ðωÞVðωÞ with I the input current and V the node voltage.
J ðω; kÞ is the circuit Laplacian written as

J ðω; kÞ ¼ j11 j12
j21 j22

� �
; ð1Þ

where j11 ¼ 4iωC2 � 2iωC2ðcos kx þ cos kyÞ þ 4iωΔC2; j12 ¼
2iG sin kx þ 2ωC1 sin ky; j21 ¼ 2iG sin kx � 2ωC1 sin ky; and
j22 ¼ �4iωC2 þ 2iωC2ðcos kx þ cos kyÞ � 4iωΔC2, with G= 1/R
the conductance and Δ being the mass coefficient of WFs. In the
presence of conductance, the time-reversal symmetry (T ) of the
system is broken because of J ðω; kÞ�≠� J ðω;�kÞ27.

By expressing J ðωÞ ¼ iHðωÞ with the Dirac matrices, we
obtain

HðωÞ ¼ 2G sin kxαx þ 2ωC1 sin kyαy þ 4ωC2 sin2
kx
2
þ sin2

ky
2

� �
βþ 4ωΔC2β;

ð2Þ
where αx, αy and β represent the Pauli matrices σx, σy, and σz,
respectively. It is noted that the above Hamiltonian fully
simulates the lattice model of WFs. The first three terms in
Eq. (2) represent the Hamiltonian of WF, and the last term is the
dispersionless mass of WF. Meanwhile, by tuning the electric
elements parameters G, C1, and C2, one can conveniently
manipulate the shape of Wilson cones (similar to the Dirac
cones).

In what follows, we analyze the topological properties of the
lattice model.

Topological phase and phase transition. For a T -broken 2D
two-band system, one can evaluate the Chern number43

C ¼ � 1
2π

Z
BZ

∂Ay

∂kx
� ∂Ax

∂ky

 !
dkxdky; ð3Þ

to judge its topological properties. Here AðkÞ ¼ ihukj∇kjuki is the
Berry connection with juki the eigenstate of lower band.

In following calculations, we adopt Ci= C= 1 nF (i= 1, 2),
f= ω/(2π)= 806 kHz (In experiments, we will use L= 39 μH to
replace −C, so we choose ω ¼ 1=

ffiffiffiffiffiffi
LC

p
), and G= ωC= 0.005Ω−1

(R= 200Ω). Calculations of Chern number as a function of the
dispersionless mass parameter Δ are plotted in Fig. 2a. We find
the Chern numbers are quantized to five values ± 1, ± 1

2, and 0. It
is noted that the Chern number is irrelevant to the value of C1 but
becomes opposite if C2 changes its sign. We show the first BZ and
typical band structures in Fig. 2b. Combined with the topological
index, we classify these topological phases as follows. The band
gaps open for the parameter intervals ① and ⑦, where the Chern
number is zero. It gives the trivial insulator phase. For parameters
in ② and ⑥, the band gaps close at M and Γ points, respectively.
Surprisingly, the Chern numbers are quantized to ∓1/2,
respectively. This phase is dubbed the QASM40. For parameter
zones ③ and ⑤, the band gaps open with the topological number
C ¼ �1, both of which represent Chern insulators with opposite
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chiralities. For the parameter region ④, the band structure closes
at X point with a vanishing Chern number, indicating a normal
semimetal phase.

By expressing Eq. (2) as H ¼ fðkÞ � σ, one can define a unit
spin vector f̂ðkÞ as f̂ðkÞ ¼ fðkÞ

jfðkÞj, where f(k)= (fx, fy, fz) is the

coefficient of Pauli matrices and jfðkÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2x þ f 2y þ f 2z

q
. Fig-

ure 2c displays the spin textures of 2D WFs, which evolve as the
increasing of dispersionless mass. The spin textures are
reminiscent of the magnetic solitons in the condensed matter
system44–46. It is observed that the spin textures of trivial
insulator, Chern insulator, QASM, and normal semimetal
correspond to the ferromagnetic ground state, skyrmion, half
skyrmion, and half-skyrmion pair, respectively. By evaluating the

topological charge Q ¼ 1
4π

R
BZ f̂ � ð ∂f̂∂kx ´

∂f̂
∂ky
Þdkxdky in Fig. 2c, we

identify an intimate connection with the Chern number as
Qþ C ¼ 0. This finding thus establishes an interesting map
between WFs and magnetic solitons in electrical circuits.

In the broad spintronics community, the manipulation of
skyrmion motion is crucial for the next-generation information

industry47. Here, we propose a method to control the circuit
skyrmion motion in momentum space. We first consider a
skyrmion configuration with Δ=− 0.5. To generate a skyrmion
propagation along kx direction over a distance k0, one can modify
Eq. (2) to HðωÞ ¼ 2G sinðkx � k0Þσx þ 2ωC1 sin kyσy � 4ωC2

½cosðkx � k0Þ þ cos ky þ 1
2�σz , which can be recast as HðωÞ ¼

2G0 sin kxσx � 2G00 cos kxσx þ 2ωC1 sin kyσy � ½4ωC0
2 cos kx þ 4ω

C00
2 sin kx þ 4ωC2ðcos ky þ 1

2Þ�σz . Compared with the original
Eq. (2), one merely needs to modify two hopping strengths
(G0 ¼ G cos k0 and C0

2 ¼ C2 cos k0) and to add two extra hopping
terms (�2G00 cos kxσx and 4ωC00

2 sin kxσz). Variable resistors and
capacitors can be conveniently adopted to realize these operations
in circuit systems.

Quantum anomalous semimetals. To show the properties of
QASM (Δ= 0 with C ¼ 1

2), we consider a ribbon configuration
with periodic boundary condition along x̂ direction and Ny= 50
nodes along ŷ direction. Figure 3a shows the admittance spectra,
where the conduction and valence bands touch at kx= 0. There is

Fig. 1 Two-dimensional model of Wilson fermions. a Illustration of a 2D spinful square lattice. b The circuit realization of the hopping terms by A+B parts.
Part A consists of two kinds of capacitors ± C1 and the negative impedance converters with current inversion (INICs). Part B is composed of two types of
capacitors ± C2. The red rectangle indicates the correspondence between spin and circuit nodes. c Details of the INIC. The INIC is composed of an
operational amplifier (OP) and three resistors R, acting as a positive (negative) resistor from right to left (left to right). d The realization of the staggered
on-site potentials.
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Fig. 2 Topological indexes and Wilson fermions. a The Chern number C steps as a function of the dispersionless mass Δ. The red stars and circle
represent C ¼ ± 1

2 and C ¼ 0, corresponding to quantum anomalous semimetal and normal semimetal phases, respectively. b The first Brillouin zone and
the typical band structures for Δ=−2.5, −2, −1.5, −1, −0.5, 0, 0.5, respectively, corresponding to different parameter intervals in (a). The orange and blue
curves indicate the two branches of band structures. c The spin textures of Wilson fermions in the momentum space.
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no isolated band in this admittance spectra, so the edge state is
absent. Considering the Hamiltonian (2), one can define a velo-
city operator as v ¼ 1=ði_Þ½x;H� ¼ ∂H

∂kx
¼ 2G cos kxσx þ 2ωC2

sin kxσz . The transverse current density then can be written as

jðyÞ ¼ ∑
εn<μ

n

Z
½2G cos kxϕ

y
nðkx; yÞσxϕnðkx; yÞ þ 2ωC2 sin kxϕ

y
nðkx; yÞσzϕnðkx; yÞ�dkx;

ð4Þ

with ϕn(kx, y) being the wave functions of the n-th band and the
sum index n indicating the bands below the admittance μ. We
plot the current density for different positions in Fig. 3b. It is
found that the current density decays from the boundary nodes,
and its values are opposite for the top and bottom edges. Con-
sequently, the chiral edge currents constitute the bulk-edge cor-
respondence of QASM40,48. It is noted that the chiral current
differs from the one in magnetic systems that originates from the
chiral spin pumping effect induced by the topological structures
in real space49,50.

Then, we consider a 10 × 10 square lattice to study the finite-
size effect. Diagonalizing the corresponding circuit Laplacian, we
obtain the admittance spectra shown in Fig. 3c and the wave
functions near jn= 0Ω−1 in the inset of Fig. 3c. In our circuit, the
impedance between the node a and the ground is computed by

Za;ground ¼ ∑n
jϕn;aj2
jn

with ϕn,a the wave function of node a for nth

admittance mode, which reflects the features of wave functions
near jn= 0Ω−1 and can be measured readily25,33. By comparing
Fig. 3d and 3c (inset), we find that the impedance of each node
against the ground exhibits almost the same spatial distribution to
wave functions, and one does not find an edge state.

To demonstrate the bulk-boundary correspondence, we
consider a one-dimensional DW with 10 × 11 “spins” (an extra
column is set up for DW configuration), as shown in Fig. 3e,
where the capacitor C2 has a kink at the center of the sample, i.e.,
C2 > 0 ( < 0) in the light blue (green) region. In this circumstance,
the Chern number varies from 1/2 (left) to −1/2 (right). The
eigenvalue and wave function of the bound state can be solved as

J= 2ωC1ky and ϕðx; yÞ ¼ 1ffiffiffiffi
2π

p χy
ffiffiffi
λ

p
expð�λjxj þ ikyyÞ with χy ¼ffiffi

2
p
2 ð�i; 1ÞT and λ ¼ C1

jC2j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC1
C2
Þ2 þ k2y

q
. The nonzero eigenvalue

means the bound states do not localize at zero admittance. One
can obtain the effective velocity of the bound state
veff ¼ ∂J

∂ky
¼ 2ωC1, indicting the DW bound state propagating

along ŷ direction (see Supplementary Note 2). In Fig. 3f, we show
the admittance spectrum with the insets displaying the wave
functions and impedances, from which one can clearly see the
bound state confined inside the DW. Here, we use the inverse
participation ratio p= lg(∑i∣ϕn,i∣4) of the system to characterize
the localization properties of the wave functions51,52, and the
green dots indicate the localized state.

Then, we prepare a printed circuit board to verify the
numerical results, as shown in Fig. 3g (see Methods for details).
Figure 3h shows the experimental impedance distribution. It
demonstrates a localized state between two domains, which
compares well with the theoretical result in Fig. 3f. The existence
of one bound state is closely related to the fact that the topological
invariants between the two sides of the DW differ by 1. In
addition, one cannot observe the edge states on the rest
boundaries of the sample, which confirms that there is indeed
no edge state. We also study the influence of the homogeneity of
the circuit components on our results, which does not change our
conclusion.

To show the chiral propagation of the bound state, we perform
the circuit simulation with the software LTSPICE (http://www.
linear.com/LTspice). By inputting a Gauss signal close to the DW,
we observe the bound mode propagating along the ŷ direction of
DW. Finally, the voltage signal becomes a steady bound state
inside the DW (see Supplementary Note 2).

Chern insulators and normal semimetal. To characterize Chern
insulators (C ¼ ± 1), we compute the admittance for a ribbon
configuration, with the results being shown in Fig. S3 of Sup-
plementary Note 3. For the parameter Δ=−0.5 and −1.5, we
find two crossing bands in the admittance gaps but with opposite
charities. To show the chiral propagation of edge states, we per-
form the circuit simulation on a finite-size square lattice and
observe a chiral voltage propagation (see Supplementary Note 3).

We note that at the phase transition point separating two
Chern insulators (Δ=−1), the Chern number vanishes but the
spin texture is still non-trivial. We consider a finite-size lattice

Fig. 3 Features of the quantum anomalous semimetal. a Admittance spectrum of the ribbon geometry. b The current density distribution for two different
“Fermi” levels slightly deviating from the admittance eigenvalue jn= 0Ω−1 (dashed lines in (a). c The admittance spectrum with the inset showing the
wave functions near jn= 0Ω−1. d The impedance distribution of the sample. e The configuration of the circuit domain wall with ± 1/2 topological charges in
light blue and green regions. f The admittance spectrum. Insets: The distribution of the wave functions and impedances. g The partial printed circuit board
used in the experiment. h Experimentally measured impedance.
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with 10 × 10 “spins”. The admittance spectrum is plotted in
Fig. 4a, showing that a series of localized states lie near
jn= 0Ω−1, and the corner states lying at nonzero admittance is
caused by the open of band gap at phase-transition point (see
Supplementary Note 4). The wave functions of localized states are
displayed in the inset of Fig. 4a, from which we identify a corner
state. The origin of the emerging corner states can be interpreted
as the convergence of two Chern insulators with opposite
chiralities, as shown by the green and black arrows in Fig. 4b.
Due to the contrast of the chirality, the one-dimensional edge
states can only accumulate at the sample corners, forming the
zero-dimensional localized states, i.e., corner states. These corner
states can be detected by measuring the distributions of
impedance, as shown in Fig. 4c. If we consider circular samples
with these parameters, the corner states will disappear for the
circle with a large radius (smooth boundary) and the wave
functions will concentrate on the convex right angle of the sample
for a small circle (see Supplementary Note 5).

Three-dimensional Wilson fermions. As a nontrivial general-
ization, we consider a 3D hyper-cubic lattice with four sites in
each cell, as shown in Fig. 5a. The hopping terms and on-site
potentials are shown in Fig. 5b, c, respectively. One can write the
circuit Laplacian as J ðωÞ ¼ iHðωÞ with
HðωÞ ¼ 2G sin kxαx þ 2ωC1 sin kyαy þ 2G sin kzαz

þ 4ωC2 sin2
kx
2
þ sin2

ky
2
þ sin2

kz
2

� �
βþ 4ΔωC2β;

ð5Þ

where αx= σx⊗ σx, αy= σx⊗ σy, αz= σx⊗ σz, and β= σz⊗ σ0
are Dirac matrices (see Supplementary Note 6).

The topological properties of the 3D system can be
characterized by the winding number w3

53. We find that the
topological index w3 can only take five quantized values, i.e.,
0, ± 1

2, ± 1. For the topological insulator phase w3= 1, one can
observe surface states. At the border of the two topological
insulators with opposite winding numbers, we find the hinge
states induced by the overlap of the surface states. For the
QASM phase w3= 1/2, we observe the bounded surface state in
a finite-size DW circuit along the x̂ direction (see Supplemen-
tary Note 6).

Conclusions
To summarize, we experimentally observed WFs in circuit sys-
tems. In addition, we mapped WFs with different masses or
configurations to magnetic solitons with different skyrmion
charges, which will enable us to study the properties of sky-
rmions, half skyrmions, and half-skyrmion pairs in electrical
circuit platforms. We showed that the nontrivial spin-texture of
WFs in momentum space is fully characterized by Chern num-
bers and winding number in 2D and 3D systems, respectively.
The chiral edge current associated with the QASM state dictated
by a fractional Chern number was directly detected. Although we
have measured the band structures of WFs and their topological
boundary states, how to reveal the quasiparticle nature of WFs is
still an open question. Our work presents the first circuit reali-
zation of WFs, which sets a paradigm for other platforms, such as

a b c

130 Ω

360 Ω

Fig. 4 The emergence of corner states. a The admittance of the finite-size square lattice with 10 × 10 “spins” with the inset showing the wave functions
near the admittance eigenvalue jn= 0Ω−1. b The corner state formed by the convergence of Chern insulators with opposite chiralities. c Numerical
impedance.

Fig. 5 Three-dimensional circuit model of Wilson fermions. a Three-dimensional hyper-cubic lattice model with four sites in each supercell. b The
interactions between two cells along x̂, ŷ, and ẑ directions. c The realization of the on-site potentials.
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cold atoms, photonic, and phononic metamaterials, to further
explore these fascinating phenomena.

Methods
Experimental details. We implement the circuit experiment on a printed circuit
broad shown in Fig. 6a. The circuit is composed of 10 × 11 cells, with each cell
containing two nodes. The details of the circuit components are shown in the inset
of Fig. 6a. Figure 6b displays the experimental instruments: DC power supply
(IT6332A) and impedance analyzer (E4990A), which are used to provide the power
for the operational amplifiers and measure the impedance over the sample,
respectively.

In Table 1, we list all elements used in our experiments, including the product
companies, packages, mean values and their tolerances.

Data availability
Data available upon request from the authors.

Code availability
Code available upon request from the authors.
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