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Implications of COVID-19 vaccination
heterogeneity in mobility networks
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Our study utilizes network science to examine how uneven vaccine distribution affects mass

vaccination strategies in the United States. Using mobility network data and epidemiological

models, we find that distributing a fixed quantity of additional vaccines across Census Block

Groups (CBGs) can vary case count reductions by up to 200%. This highlights the impact of

vaccination heterogeneity in mobility networks on epidemic outcomes. Our efficient algo-

rithm identifies optimal vaccine distribution for maximum case reduction. Simulations show a

possible 9.5% decrease in case numbers with just a 1% increase in the national vaccination

rate if vaccines are optimally distributed. This result surpasses those from other vaccine

distribution models. Our findings underline the need for policymakers to understand the

interaction between vaccination patterns and mobility networks, suggesting that grasping

geographical vaccine uptake variations could be as crucial as raising the overall vaccination

rate.
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A lthough mass vaccination is one of the most powerful
ways to quell a pandemic, it has been proven challenging
to achieve universal vaccination and to predict the course

of the pandemic as many sociopolitical factors come into play and
variants emerge1–4. These factors include highly unequal vaccine
allocation across locations5, heterogeneous vaccine acceptance
across social groups3, and their mixing patterns6,7 in social and
mobility networks. Here, by taking a network perspective, our
study shows how this vaccination heterogeneity affects epidemic
outcomes.

Our study investigates the effect of vaccination heterogeneity
through large-scale epidemic simulations on the US mobility
network. Departing from highly aggregated models to understand
vaccination performance8–11, we employ a data-driven approach
to study the impact of spatial vaccination heterogeneity. Specifi-
cally, we leverage fine-grained human mobility, vaccination, and
census data in the US, along with an epidemiological model12–14,
to illustrate how different hypothetical vaccination distributions
can lead to largely different country-wide outcomes.

If vaccination heterogeneity indeed leads to different outcomes,
the distribution of a marginal increase in country-wide vaccina-
tion over different administrative units should have substantial
implications on case counts. Using an agent-based epidemiolo-
gical model on large-scale mobility networks, we compare the
following scenarios for distributing a fixed number of extra vac-
cines over current vaccination status in the US: uniformly
increasing the vaccination rates of all administrative units, greatly
increasing the vaccination rates in a small number of randomly
selected units, the least vaccinated units or highly central units in
the US mobility network. The simulations imply about 200%
variation in overall case count reductions among these scenarios
selecting the highly central units to achieve the largest case
reduction.

To further explore the potential of leveraging vaccination
heterogeneity to reduce case counts and to illustrate the upper
bound for its impact, we develop an efficient algorithm to opti-
mize the distribution of extra vaccines that leads to the maximum
reduction in case numbers. It is computationally challenging to
search over all possible vaccination strategies based on trans-
mission simulations for 200,000 administrative units (census
block groups (CBGs)). Our algorithm solves these challenges by
using gradient-based optimization on a differentiable surrogate
objective. We estimate that a large increase in the vaccination
rates of the units selected by this algorithm can reduce the
number of cases by 9.5% while fixing the overall increase in
country-wide vaccination rate at 1%. Close examination of the
administrative units selected by our algorithm suggests that they
tend to be central units in the mobility network or surrounded by
neighboring clusters with low vaccination rates. While the current
literature already discusses targeted vaccination strategies15,16,
only a few of these studies are as heavily reliant on granular
mobility data at the CBG level as our study. Overall, our
results suggest that understanding geographic patterns of vaccine
uptake could be just as important as improving the overall
vaccination rate.

From a policy perspective, we should not be only concerned
about case counts but also about the implications of vaccination
heterogeneity for equity. Hence, we examine how different dis-
tribution scenarios affect case counts across demographic and
geographic groups, finding that selecting administrative units
informed by our algorithm may even reduce case counts in vul-
nerable or disadvantaged groups more than in other scenarios.

Overall, our contribution is twofold. First, we significantly
advance the understanding of the roles of mobility hubs and
vaccine adoption assortativity in disease transmission through
detailed CBG-level epidemic simulations using high-resolution

mobility data. This process verifies hypotheses derived from
theoretical literature on hub and assortativity effects, as discussed
in17,18. Second, we present an algorithm that can identify the
most critical locations-those that yield the largest reduction in
cases with a given amount of additional vaccination for curbing
disease transmission. Furthermore, our study offers strategies for
accommodating various situations and priorities, such as new
variants and social equity.

Results
Visualization of the prevalence of vaccination heterogeneity.
We begin by presenting the county-level COVID-19 vaccination
rates to understand the prevalence of vaccination heterogeneity in
mobility networks, as presented in Fig. 1. To ease the visualiza-
tion, we retain the top five neighbors with the largest edge weights
(Eq. (1)) in the plot.

We observe two drivers for the spatial heterogeneity of
COVID-19 vaccination. The first driver is assortativity, a
phenomenon of the clustering of similar people, either due to
sorting, social contagion, or local regulations6,19. In our context,
assortativity captures the fact that vaccination rates are similar
among geographically close or socially connected locations20,21.
Panel (a) illustrates strong homophily, shown as localized
clusters of blue and red. For example, we see “blue clusters”
for counties close to New York County in NY and Middlesex
County in MA, while we observe “red clusters” for counties
close to Dallas County in TX and Fayette County in KY. A high
level of assortativity in vaccination leads to clusters of the
unvaccinated, which may trigger localized outbreaks and
produce more cases than expected by the overall
vaccination rate.

The second network effect is the hub effect, where the
vaccination rate of central and highly mobile places can have a
disproportionate impact on the case count22,23. Panels (b) and (c)
are the local networks for Hennepin County in MN and Dallas
County in TX, respectively, where we observe that these hub
counties that are connected to many other counties tend to have a
higher vaccination rate than their adjacent counties. Due to
various reasons, such as the urban–rural divide, hubs in the US
generally have a higher vaccination rate24–26, which may
potentially reduce the severity of outbreaks.

Baseline strategies and case-optimized strategy. We next con-
struct the US nationwide mobility network between users’
home CBGs determined through their mobile phone usage and
the points of interests (POIs) they visit on an hourly basis. We
develop a fine-grained computational model based on the one
proposed by 14 with CBG-level vaccination rates as its input to
investigate the impact of spatial vaccination heterogeneity in the
mobility network on case counts, as described in “Methods”.
Note that we use two-dose vaccination rates as the input,
though our results are robust when we change it to one-dose
vaccination rates or booster rates. We employ Bayesian neural
networks to infer CBG-level vaccination rates as only county-
level vaccination rates are publicly available, but we run high-
resolution simulations at the CBG level. We show that the
prediction performance of this neural network model does not
severely change our main conclusion. This agent-based model
allows us to investigate the impact of heterogeneity in vacci-
nation distribution on case counts. The heterogeneity we study
involves various scenarios that increase the overall vaccination
count by a fixed amount (1% of the US population), thus
allowing for a fair comparison, but differ in how the extra
vaccines are distributed among the CBGs:
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1. Uniform: increasing the vaccination rates of all CBGs by 1%.
2. Random: increasing the vaccination rate of randomly

chosen CBGs by 10% until an additional 1% of the US
population is vaccinated.

3. Least vaccinated: increasing the vaccination rate of CBGs
with the lowest vaccination rate in increasing order by 10%
until an additional 1% of the US population is vaccinated.

4. Most central: increasing the vaccination rate of CBGs with
the highest weighted degree centrality (see Eq. (2)) in the
mobility network in decreasing order by 10% until an
additional 1% of the US population is targeted. Existing
studies such as11 also propose targeting central locations to
substantially reduce transmission; however, they have
examined this empirically at a resolution several orders of
magnitude coarser than this work which covers over
200,000 CBGs across the US.

Figure 2 presents our main simulation results, given the
vaccination state as of January 2022. We also tested the result as
of July 2021 with the perfect vaccine efficacy assumption, the
discrepancy in case counts across distributions doubles (see
Supplementary Note 4). The uniform and the random selection

Fig. 1 Illustration of the average vaccination rate in each county and the county-level mobility network backbone. a The network among all U.S.
counties. b The network for Hennepin County in Minnesota (MN) and its adjacent counties. c The network for Dallas County in Texas (TX) and its adjacent
counties. Nodes correspond to counties and are colored according to their vaccination rate, ranging from red (low) to blue (high), and are positioned
according to the Fruchterman–Reingold layout41. The node size reflects its weighted degree centrality scores.

Fig. 2 Simulation outcomes of five census-block-group-level targeting
distributions. The y-axis is the relative change in case counts, which
compares the simulation result of a selection approach versus the
simulation result using the original vaccination rates. Error bars are
standard deviations of the 25 runs of simulations.
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approaches exhibit the worst outcome, with only a 2.7%
reduction in case counts compared to the baseline of no extra
vaccines. Selecting the least vaccinated CBGs achieves a slightly
better outcome, whereas selecting the most central CBGs is much
more effective and reduces the number of cases by 8.1%.

The variation in transmission rates induced by heterogeneous
vaccination distribution suggests that there may exist a
hypothetical distribution that leads to a maximal reduction in
the case count given the same fixed increase in the overall
vaccination rate. Thus, we study a case-optimized strategy as
follows.

This optimal distribution essentially boils down to the selection
of a small number of CBGs whose vaccination rates should
increase subject to the constraint in the number of extra vaccines.
Deriving the case-optimized CBG targets is a significant
computational challenge because it involves testing numerous
combinations of tens of thousands of CBGs out of over 200,000
CBGs in total. Our main technical contribution here is an
algorithm that addresses this challenge by using the projected
gradient descent27 to optimize a computationally feasible
surrogate objective.

As shown in Fig. 2, targeting these CBGs reduces the number
of cases by 9.5% over the most central CBG selection scenario.
This result implies a promising method for identifying a small
number of the most pivotal locations. We show that, when
targeted, the increased vaccination in these locations has a
disproportionate effect on suppressing the epidemic.

We perform a series of robustness checks in Supplementary
Note 4 and demonstrate our results remain consistent across
various settings.

Impact on demographic and geographic subgroups. Our pro-
posed strategy emphasizes that, besides decreasing cases, it is
crucial to safeguard vulnerable populations and not exacerbate
existing social inequalities. For instance, prioritizing vaccination
efforts for the elderly, who are more susceptible to severe illness

or death, could be of greater importance. Moreover, it is
imperative to avoid a vaccination campaign that solely benefits
high-income groups. The case-optimized strategy we explore in
this study focuses on a limited number of locations, particularly
hub cities, making it essential to assess its effects on various sub-
populations, with an emphasis on disadvantaged groups. To
further evaluate our strategy’s influence on equity, we provide
simulated case counts across diverse demographic and geographic
categories in Fig. 3. Here, we provide definitions of the subgroups:

1. Race. W = White, non-Hispanic; B = Black or African
American, non-Hispanic, A = Asian, non-Hispanic, I =
American Indian or Alaska Native, non-Hispanic, P =
Native Hawaiian or Other Pacific Islander, non-Hispanic,
and H (Hispanic).

2. Age group. We assign a numerical value to each age group
provided by the US census data (9 groups in total). The first
group is 0–10, followed by 20–30, ... until >80.

3. Income group. We assign a numerical value to each income
group provided by the US census data (16 groups in total).
One indicates the lowest income group, whereas 16
indicates the highest income group.

4. Vaccination rate group. We divide the CBG-level vaccina-
tion rates (inferred by our Bayesian deep learning
algorithm) into 10 equal-sized groups. One represents the
lowest vaccinated decile of CBGs, whereas 10 represents the
highest vaccinated decile of CBGs.

5. Population density. We calculate density as the population
divided by the area where both the CBG population and its
area (computed using CBG polygon information) are
provided by the US census data. We then divide CBG-
level population densities into 10 equal-sized groups. One
represents the lowest density decile of CBGs, whereas 10
represents the highest density decile of CBGs.

We find that this hypothetical strategy Pareto-dominates
baseline strategies, i.e., the case-optimized strategy reduces
comparable or more case counts than baseline strategies on

Fig. 3 Outcomes are conditional on different demographic and geographic groups. The outcomes for different racial or ethnic groups, age groups,
different income groups, different deciles of census-block-group-level vaccination rate, different deciles of population density. The curves for “uniform” and
“random” are largely overlapped. Error bars are standard deviations calculated in 25 runs of simulations.
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every demographic group that we could examine by virtue of
substantially suppressing the epidemic. Moreover, compared with
the strategy targeting the least vaccinated CBGs, this hypothetical
strategy can protect the CBGs with the lowest vaccination rates
even better.

However, we should also note that this strategy, along with the
strategy that targets the most central CBGs, tends to dispropor-
tionately benefit the high-income groups. Although this is beyond
the scope of this paper, this issue can be addressed by modifying
the objective function to account for vaccine equity (e.g., the
variance in case reduction across subgroups).

Understanding the CBGs targeted by this algorithm. Next, we
aim to understand what CBGs are selected by our case-optimized
algorithm. To begin with, Fig. 4 illustrates the geographic dis-
tribution of the CBGs selected by our algorithm and compares
them against those selected by the centrality-based targeting.
There is only a 46% overlap between CBGs selected by the
centrality-based targeting and those by our algorithm to have
more than a 5% increase in their vaccination rate. Specifically, our
algorithm avoids targeting highly affluent areas in the Northeast
and Bay area, which are central in the mobility network but
presumably have high vaccination rates. Instead, it selects more
central locations with low vaccination rates in the South.

Figure 5 provides a simple description of the optimally selected
CBGs by comparing them against those not selected along two
important factors for transmission: centrality and average
neighborhood vaccination rate as defined by Eq. (2) and
Eq. (3). Centrality affects how one case in a CBG can severely
impact potentially many other CBGs, and average neighborhood
vaccination rate affects how a CBG’s neighbors are vulnerable to
its cases. This figure suggests CBGs with both low average
neighborhood vaccination rates and high centrality are much
more likely to be selected by the targeting algorithm.

To further investigate what factors influence how locations are
targeted by our optimization algorithm, we deploy a random

forest algorithm to interpret what features contribute more to the
selection of our algorithm. We find that centrality and
neighborhood vaccination rates remain the features of the largest
importance scores. See Supplementary Note 5 for details.

In Supplementary Note 6, we also perform a set of experiments
that further demonstrates how hub and assortativity effects have
played a role in reshaping the historical COVID-19 transmission.

Conclusions
Our results from simulating 200,000 US CBGs highlight the
importance of spatial heterogeneity of additional vaccine uptake.

Fig. 4 Interactive map illustration for our algorithm. Dots are targeted CBGs with >5% increase in vaccination selected by the optimization algorithm,
centrality-based targeting, or the least vaccinated targeting. Please refer to the Section “Interactive Map for Targeted CBGs” for the link to the website.

Fig. 5 The kernel density estimate (KDE) plot for census block groups
(CBGs) being selected by our algorithm versus those not selected.
“log_centrality” and “neighbor_vax” represent the logarithm of weighted
degree centrality of the CBG and the average neighborhood vaccination
rate of its neighboring CBGs, respectively.
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There may even be a large, untapped potential to utilize the
underlying network effects and improve the effectiveness of a
vaccination campaign. The optimal targeting algorithm allocates a
marginal dose of vaccines to areas that tend to be more central or
surrounded by CBGs that have less vaccination. These findings
suggest the presence of two network-based mechanisms in trans-
mission: hubness in the mobility network and local assortativity in
low vaccination. CBGs with both such characteristics play a dis-
proportionate role in transmission, and targeting them protects the
whole population better than common strategies without neces-
sarily disadvantaging certain social groups. These results may
inform policymakers in designing geo-targeted campaigns such as
vaccination advertisements or convenient vaccine stations.

Our methodology can be adapted to future pandemics by
modifying several parameters that should be consistently mon-
itored and readily available during future outbreaks. These include
updating vaccination rates and tallying the number of individuals
who are susceptible, exposed, infected, or recovered to accom-
modate new pathogens, variants, and fluctuating social conditions.
In the face of future pandemics, provided the fundamental attri-
butes of the new infectious disease are determined (i.e., suitable
disease models and a plausible range of epidemic parameters are
identified), we can adjust the model parameters and conduct the
simulation. Although wemay need to update the mobility networks
based on the primary modes of transmission, models rooted in
these networks will continue to be crucial for any infectious dis-
eases. Furthermore, considering our case-optimized algorithm
consistently outpaces naive baselines, it would be intriguing to
investigate this method’s potential for initial dose allocation.

However, we urge that our results be carefully interpreted and
applied by considering diverse contexts, socioeconomic inequal-
ities, and other ethical concerns. Any vaccination plan must
consider numerous ethical issues, such as equitable vaccine dis-
tribution, before real-world implementation. Note that the opti-
mization algorithm discussed here is flexible and can easily
incorporate societal values such as hospitalization or vaccine
equity, which we leave as future directions. In addition, while our
results provide valuable insights into the allocation of extra doses,
policymakers should carefully consider societal factors, such as
equity, when using our model as a basis for decision-making.
With moderate revisions to our optimization model and a com-
prehensive understanding of these factors, our approach can be
informative and useful. Finally, before implementing a policy
informed by our algorithm, we should carefully consider how to
further improve the quality of mobility and vaccination data to
better the fidelity of our simulation models.

Methods
In summary, our study extended the SEIR-based model presented in14 to simulate
the spread of COVID-19, incorporating the vaccination status of individuals at the
CBG level, which is inferred using a Bayesian machine learning model, break-
through infections, and reinfections. Our model aims to examine how vaccination
heterogeneity affects the frequency of infections. We introduce a case-optimized
algorithm that finds the optimal distribution of vaccinations to minimize the
growth of cases, taking into account central hubs and assortativity of vaccination
rates in mobility networks.

In “Data collection”, we discuss the data sources and the pre-processing pro-
cedure. In “Inferring CBG-level vaccination rate with machine learning”, we
describe the use of Bayesian neural networks to infer the vaccination rate at the
CBG level. “Constructing mobility network of CBGs” provides details on how we
construct the mobility network that forms the basis for the transmission dynamics.
Combining the inferred vaccination rates from “Inferring CBG-level vaccination
rate with machine learning” and the mobility network introduced in “Constructing
mobility network of CBGs”, COVID-19 Transmission simulation extends the
model in14 by accounting for CBG-level vaccination rates, among other factors, to
model the transmission dynamics. In “The case-optimized algorithm”, we design a
case-optimized algorithm that explores how to reduce case counts given a limited
marginal increase in overall vaccination rates, which is verified by the SEIR-based
model (introduced in “COVID-19 Transmission simulation”). The results from the

agent-based model can illustrate the effectiveness of the solution proposed by the
algorithm.

The notation table is presented in Supplementary Note 1.

Data collection. We collect the US mobility data from SafeGraph, a company that
provides aggregated data collected from mobile applications. All data is anon-
ymized and aggregated by the company so that individual information is not re-
identifiable. This dataset has been widely adopted to study human mobility pat-
terns, particularly during the COVID pandemic14,19,28–32. SafeGraph receives the
location data from “third-party data partners such as mobile application devel-
opers, through APIs and other delivery methods and aggregates them.” This data
reflects the frequency of mobility between all POIs and the CBGs in the United
States. Specifically, the data contains information on the number of people at a
CBG who visit a POI on a certain day or at a certain hour. The data also contains
the information for each CBG’s area, median dwell times, as well as geo-locations
of all CBGs and POIs. In total, there are 214,697 CBGs and 4,310,261 POIs in the
United States. We mainly use the 2019 mobility data to reflect the scenario when all
businesses were to fully reopen, though we also examine 2020 and 2021 mobility
data as robustness checks.

We also collect the latest US census data from the SafeGraph database (the
complete US Census and American Community Survey data from 2016 to 2019).
The data contains the demographic features of each CBG, such as the fractions of
each sex, age group, racial and ethnic group, education level, and income level. The
vaccination data come from the Centers for Disease Control and Prevention (CDC,
https://covid.cdc.gov/covid-data-tracker), which provides daily vaccination records
on all states except Hawaii. Note that the vaccination data from Hawaii is not
available, thus excluded from our analysis. Given that it is an island with limited
mobility to the rest of the US and its population makes up a tiny fraction of the US,
we believe that its impact on the country-level outcomes could be marginal
compared to other states. Since the vaccination rates are only available at the
county level, we develop a deep learning approach to infer the CBG level using
additional census demographic and spatial features.

Inferring CBG-level vaccination rate with machine learning. Since counties
cover relatively large areas, with significant heterogeneity in terms of demographic
factors and vaccination rates, our epidemic model is formulated at the level of
CBGs, which offers a much higher resolution than county-level models and can
predict epidemic growth with high accuracy. However, the CDC provides data on
vaccination rates only at the county level, and fine-grained CBG-level vaccination
rates are unavailable. Therefore, we train a neural network model to estimate the
CBG-level vaccination rates from county-level data.

This problem is called “small area estimation”33, where the goal is to use
aggregated statistics (such as county-level vaccination rate) and socio-demographic
characteristics to infer corresponding statistics at a more fine-grained resolution
(such as CBG-level vaccination rate). To enable accurate inferences, we use
demographic and geographic features such as sex, age, race and ethnicity, income
level, education level, and geographical coordinates, which are available for all the
CBGs in the prediction model. Note that we acknowledge political ideology is also
predictive, but we cannot use them to impute CBG-level vaccination rates as voting
data are not available on the CBG level. The assumption is that CBGs that are
similar in these features should have similar vaccination rates. This problem is akin
to a latent data imputation problem where the observed variables are county-level
vaccination rates and CBG-level features, while the latent variables are the CBG-
level vaccination rates.

We design a Bayesian model shown in Fig. 6 to impute the CBG-level
vaccination rates. The benefit of the Bayesian approach is that once we define the
data generation process, we can compute the Bayesian posterior over the latent
variables given the observed variables with standard inference methods34. We
define the following data generation process: for each CBG, we observe the
demographic and geographic features; the features are inputs to a Bayesian neural
network35 with unknown parameter Θ, which outputs the vaccination rate of the
CBG. Finally, we average the vaccination rates of all CBGs in a county to obtain the
overall vaccination rate of that county. Since the posterior inference is approximate,
the weighted average of CBG-level vaccination rates in a county does not exactly
match the ground truth vaccination rate for that county. Thus, we rescale the
inferred vaccination rates to match the ground truth county-level vaccination rate.
The algorithm is run for all CBGs in the U.S. simultaneously. Finally, we further
improve performance slightly by ensembling multiple inferred vaccination rates
from randomly initialized approximate inference procedures. In Supplementary
Note 2, we present examples of our inferred results. The interpolated CBG-level
vaccination rates are used as the input for the downstream simulation tasks.

A major challenge is the performance evaluation because no CBG-level ground
truth data is available. We thus resort to validating the zip code level ground truth
data. A county typically consists of multiple zip codes, and a zip code corresponds
to multiple CBGs. We aggregate predicted CBG-level vaccination rates to the
predicted zip-code-level vaccination rate. Then we compare our predictions with
the ground truth on the zip code level. As of January 21st, 2022, the following states
provide zip code-level vaccination rates: California, Idaho, Illinois, Maine, New
York, Oregon, Pennsylvania, and Texas. We thus test the model prediction on the
value from these states. Our approach has a mean absolute error, or MAE
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(weighted by zip code population) of 8.9%, which accounts for 9.1%’s improvement
over directly using the county-level vaccination rates on the relative scale. In
Supplementary Note 2, we provide more details of this validation process and
results.

Constructing mobility network of CBGs. We first construct a mobility bipartite
network between US CBGs and POIs. The edges in the bipartite network are
between POIs (denoted by the set P) and CBGs (denoted by the set C). The edge
weight between a POI p 2 P and a CBG c 2 C corresponds to the number of people
who live in CBG c and visit POI p. The bipartite network can vary over time
according to the SafeGraph mobility data, and in fact14 used the hourly mobility
data, which provides a snapshot of the network per hour. However, for the pur-
poses of simplicity and our particular study, we have elected to amalgamate the
hourly visitation data between all CBG–POI pairs, thus creating a single bipartite
network that represents average mobility throughout the year. This methodology
aligns with our aim to elucidate and harness the overarching influence of vacci-
nation heterogeneity on disease transmission. While recognizing that specific
seasonal patterns in mobility could alter our estimations, we posit that such
modifications will not impede our primary objective of studying vaccination het-
erogeneity. Importantly, our approach retains a high degree of adaptability and can
be applied in real-time to accommodate fluctuations in the mobility network.

Given the bipartite network described above, the actual undirected mobility
network among CBGs, which forms the basis of the analysis, is derived by
projecting the aforementioned bipartite graph, considering the areas and dwell
times of each POI. Effectively, we assume that the edge weight between two CBGs
is measured by the total number of co-visits of their residents. In this network, the
edges between two CBGs c and c0 have weights as

wc;c0 ¼ ∑p2P
dpVðc; pÞVðc0; pÞ

ap
: ð1Þ

where p corresponds to a POI, V(c, p) is the hourly average number of visitors from
CBG c at POI p, ap is the area of POI p. dp is the probability of two people visiting
the POI p at the same time, derived from the median dwell time at the POI. The
edge weight is proportional to the number of people in CBG c who get infected
from CBG c0 assuming the equal ratio of infections across all CBGs. Given the edge
definition above, we define CBG-level centrality as:

centralityðcÞ ¼ ∑c0wc;c0 : ð2Þ
Thus, the centrality of a CBG is its weighted degree or the sum of edge weights
adjacent to it or weighted degree centrality. Intuitively, a more mobile and
populous CBG, or a CBG connected to many other CBGs (through mutually visited
POIs), should have a higher centrality score. There are different ways of defining
the edge weights. We choose this edge weight because it directly reflects the extent
of transmission between two CBGs, as it corresponds to Eq. (4). Thus, a more
mobile CBG is considered more central as it is more vulnerable to contracting the
disease. Similarly, there are other valid choices for the centrality score36. However,
since our study examines a mobility network of more than 200,000 CBGs (with

edges present among a significant fraction of pairs), calculating other centrality
measures (such as eigenvector centrality or betweenness centrality) becomes
computationally expensive. Nevertheless, as previous work has shown, degree
centrality is highly correlated with other centrality measures, specifically
eigenvector centrality37. Thus we do not expect the choice of centrality measure to
significantly change our conclusions. In general, our observation is that CBGs that
are closer to large cities (such as Los Angeles and San Francisco in California and
Dallas and Houston in Texas) have larger centrality scores.

Figure 5 also includes the average neighborhood vaccination rate, which is
defined as an average weighted by edge weights to each neighbor:

neighbor vaxðcÞ ¼ ∑c0wc;c0vaxðc0Þ
∑c0wc;c0

: ð3Þ

Here vaxðc0Þ is the vaccination rate of CBG c0 . If a CBG is highly connected to many
CBGs with low vaccination, it would have a low average neighborhood vaccination
rate. This is an indicator of being embedded in a geographic cluster with low
vaccination. It measures how severe a case in CBG c would affect people in other
neighboring CBGs.

COVID-19 transmission simulation. We extend the model in14 to simulate the
spreading of COVID-19. The model is essentially an SEIR model38, but it is based
on the full human mobility data at the level of CBGs, and the key parameters in the
SEIR model are estimated from the mobility network using machine learning tools.
Susceptible individuals (S) first get exposed (E) to the disease with a certain
probability after contacting infected people; then exposed people develop symp-
toms (I, infected) after a period of time; finally, the infected people get recovered or
removed (R) after a period of time. In our model, we also include the possibility of
breakthrough infections by transitioning from recovered (R) to susceptible (S). The
exact details of our simulation model and points of departure from14 are described
in Supplementary Note 3. Here, we briefly describe important assumptions,
parameters, and the mechanics of the model.

The key difference between our algorithm and the SEIR-based model in14 is that
we also incorporate the vaccination status of individuals in the model using the
CBG-level vaccination rate. For example, if a CBG c has a vaccination rate vc, we
assume that a fraction (αvc) of individuals in the CBG are “recovered” at time 0.
This implies that the vaccine efficacy is α, which under this scenario has an “all-or-
nothing” property. This definition implies that a fraction of 1− α vaccinated
people do not receive any protection from the vaccine. The remaining α fraction,
however, can develop breakthrough infections, which is a separate process from the
perfect protection they receive from the vaccine. The lack of more fine-grained data
implies that we cannot consider heterogeneity within a CBG—we assume all
individuals within a CBG have an equal probability of getting vaccinated or
infected.

Fig. 6 A Bayesian latent variable model to impute the census-block-group-level vaccination rate from the county-level vaccination rate. For each
county (indexed by i), we observe the county-level average vaccination rate; for each census-block-group, we observe demographic and geographic
features (proportions of different sex, age, racial or ethnic, income, and education groups as well as the geo-locations). The latent variables (which we need
to impute) are the vaccination rate for each census block group. We model the mapping from each census block group’s feature to vaccination rate as a
Bayesian neural network with unknown parameters Θ. Given the observed variables (blue boxes), we infer the posterior distribution of the latent variables
(yellow boxes).
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The number of people in CBG c who newly get exposed (and then infected) at
time t from POI p follows a Poisson distribution:

Pois ϕ ∑
c02C

dpS
ðtÞ
c IðtÞc0

apNcNc0
Vðc; pÞVðc0; pÞ

 !
: ð4Þ

Definitions of the variables above are consistent with Eq. (1). Nc and Nc0 are the
number of people who reside in CBG c and c0 , respectively. We follow the
convention, using SðtÞc , EðtÞ

c , IðtÞc , RðtÞ
c to denote the number of people in CBG c who are

susceptible, exposed, infectious, and removed at the time stamp (i.e., hour) t,
respectively. ϕ is the transmission rate hyperparameter. The model assumes that all
exposed people will eventually become infectious, and all infectious will eventually
become “recovered.” Moreover, our study takes into account breakthrough infection
in previously vaccinated individuals and reinfection in previously infected
individuals, which were not considered in the original model in14. Reinfection in our
model implies that recovered cases, either naturally or vaccine-induced, can
eventually return to the “susceptible” state. Specifically, the number of people in CBG
c who switch from “recovered” to “susceptible” follows a Binomial distribution:

Bin RðtÞ
c ;

1
limm

� �
: ð5Þ

where the parameter limm indicates the average length of the immunity period after
recovery or vaccination.

We now describe the details of the parameters in the simulations. For the US
country-level simulation, we set the initial ratio of infections to 0.1%, the country-
wide cross-CBG transmission rate to ϕ= 1500, and within-CBG transmission to
ϕ= 0.005. These numbers are the result of cross-validation from14, which has been
shown to have the best fit into the real-world data. The average natural immunity
period and vaccine wear-off period (limm) are set as 90 days as of January 2022; The
vaccine efficacy (α) is set to be 0.7. The choice of these values is informed by their
estimates in the ten major metro areas studied in14. Marginal changes to these
values would not alter our main conclusions significantly. As for the hourly average
number of visitors to a POI, V(c, p), we use the hourly average number of visits in
2019 rather than any other period. This choice is made explicitly to examine how
vaccination heterogeneity affects the frequency of infections when human mobility
returns to pre-pandemic levels.

To check the robustness of our findings, we examined the model results under
different scenarios, including the aforementioned ones, in Supplementary Note 4.
Here we list a few examples. First, we investigated scenarios with or without the
reinfection/breakthrough infection scenario and full vaccine efficacy. These results
show that our main conclusions are consistently robust—regardless of vaccine
efficacy or the consideration of reinfection and breakthrough infection. The relative
magnitudes of different distributions remain consistent. These simulation results
also suggest that in real-world scenarios, our conclusions on the two network
effects would also be likely robust to different transmission dynamics variants and
vaccine efficacy levels. Finally, our main results are based on the simulations over a
period of 30 days. However, simulations over a longer period lead to similar
conclusions. See Supplementary Note 4 for details on the robustness checks.

The case-optimized algorithm. Due to the computational complexity of directly
optimizing the allocation using the simulation model, we propose an algorithm that
optimizes a surrogate objective, which serves as a suitable approximation of the
simulation outcomes. We subsequently employ the simulation algorithm intro-
duced in “COVID-19 transmission simulation” to validate the effectiveness of our
optimization approach. Let u be the vector of the initial fraction of unvaccinated
for each CBG (i.e., one minus the vaccination rate), and v be the increase in the
vaccination rate under the campaign. Thus, u− v is the unvaccinated fraction
vector after the campaign. Our goal is to find the optimal v* that decreases case
counts as much as possible.

The quantity (u− v)TW(u− v) is our objective function, which captures the
growth of the cases, where matrix W is jCj ´ jCj and each element is defined by
Eq. (1). In addition, we impose several feasibility constraints. Specifically, we
assume that u− v≽ 0, which means that no CBG’s unvaccination rate is negative,
and v≽ 0, which indicates that we only reduce unvaccination rate and never
increase it. Since it is very difficult to decrease the unvaccation rate of a CBG by a
large amount, we require v≼ 0.1 for practical implementation, i.e., the proposed
unvaccination reduction of each CBG is capped at 10%. Finally, to model finite
resources, we limit the total number of vaccine doses to administer by θ, that is
〈v,m〉 ≤ θ, where each element in vector m is the population residing in its
corresponding CBG. For our results, we set θ to 1% of the total population of the
country (0.01 × US population); in other words, our algorithm increases the
country-wide vaccination rate by at most 1%. Accordingly, we formulate the
following optimization problem.

minv ðu� vÞTWðu� vÞ ð6Þ

s:t: hv;mi≤ θ ð7Þ

u� vk0; 0≼ v≼ 0:1 ð8Þ

We begin by providing intuition for the case-optimized algorithm. First, from
Eq. (4), we know that the number of people in CBG c who get infected from people in

CBG c0 is proportional to SðtÞc
Nc

IðtÞ
c0
Nc0

wc;c0 . Under the “perfect” vaccination (i.e., vaccinated

people do not get infected), we assume
IðtÞ
c0
Nc0

is highly correlated with (or approximately

proportional to) the fraction of unvaccinated in c0 , which is (uc0 � vc0 ); and
SðtÞc
Nc

is

highly correlated with (or approximately proportional to) the unvaccination
rate of c, which is (uc− vc). In other words, the unvaccination rate of a CBG
predicts its fractions of susceptible and infected populations. Therefore, the value
ðuc � vcÞwc;c0 ðuc0 � vc0 Þ reflects the transmission from CBG c to c0 up to a constant.
Using the matrix notation, (u− v)TW(u− v) is approximately proportional to
the total transmission for all possible c; c0 pairs, or the number of new cases.

This objective function aims to consider two network effects—central hubs and
assortativity of vaccination rates in mobility networks. First, the increase in the
vaccination rate of a CBG (by vc) reduces the objective function by vc times the
mobility centrality score of the CBG. Therefore, the optimization tends to improve
the vaccination rates of more central CBGs. Second, an increase in a CBG c’s
vaccination rate results in a decrease in the objective function that is proportional
to wc;c0 ðuc0 � vc0 Þ for all other c0 that are connected to c. Therefore, reducing the
vaccination rate of one CBG spills over to the adjacent CBGs. The spillover effect is
larger if the targeted CBG c is in a cluster of CBGs with similarly low vaccination
rates. Thus, the optimization can exploit the assortativity of vaccination rates by
targeting clusters of low vaccination and further reducing the objective function by
the spillover effect.

We solve the optimization problem by projected gradient descent27,39 At each
step, we take a gradient step to minimize (u− v)TW(u− v). The resulting v might
be infeasible, i.e., fail to satisfy the constraints in Eq. (7) and Eq. (8), so we project v
back to the feasible set. In particular, to satisfy Eq. (7), we can compute the
projection by

v0 ¼
v if mTv ≤ θ

v � mTv�θ
kmk22

m if mTv > θ

(
ð9Þ

To satisfy Eq. (8), we can compute the projection by

v00 :¼ minðminðmaxðv0; 0Þ; 0:1Þ; uÞ: ð10Þ
Intuitively, we lower bound vc by 0 and upper bound it by the smaller of 0.1 and uc.

Formally, the algorithm is as follows:

1. Initialize v0, λ0= 0, γ0= 0;
2. For t= 0,… , T:

(a) vtþ1 :¼ vt þ ηt 2Wðu� vðtÞÞ�
;

(b) Set vtþ1 :¼ minðminðmaxðvtþ1; 0Þ; 0:1Þ; uÞ;
(c) Set vtþ1 :¼ vtþ1 � mTvtþ1�θ

mk k22
m, if mTvt+1 > θ.

The algorithm must converge with a suitably selected learning rate ηt based on
standard results in optimization theory27,39 (i.e., because each step in the algorithm
does not increase the L2 distance to the optimal solution). Upon convergence, the
resulting vT is the optimal solution (v*) to the optimization problem in Eq. (6), as
shown by the following theorem.

Theorem 1. If we choose ηt ¼ C=
ffiffi
t

p
for any C 2 Rþ , the algorithm above con-

verges to the global optimum of the optimization problem in Eq. (6).

Proof. We first prove that the optimization problem is convex. First, observe that
the matrix W in Eq. (6) is a positive semi-definite matrix. This is because there
exists matrix U such that W=UUT. Concretely, we can construct U by

Wc;c0 ¼ ∑
p2P

dpVðc; pÞVðc0; pÞ
ap

;Ucp ¼

ffiffiffiffiffi
dp

q
Vðc; pÞffiffiffiffiffiapp : ð11Þ

Second, Eq. (7) is a linear inequality, and Eq. (8) are both linear inequalities.
Therefore, the objective Eq. (6) and the constraints Eq. (7) and Eq. (8) are all
convex or linear. Hence the problem is convex.

In addition, because the optimization objective Eq. (6) is a Lipschitz function,
therefore, by standard results40, projected gradient descent converges to the global
minimum of the optimization problem.

Note that this case-optimized algorithm assumes that the cost of vaccinating an
additional person is constant. In supplementary Note 7, we introduce an approach
to account for the heterogeneity of the cost term.

Data availability
Our data is available on the GitHub Repo. The interactive map for the targeted CBGs is
hosted on https://yuany94.github.io/covid-vaccine/.

Code availability
Our code is available on the GitHub Repo.
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