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Nonlinear interactions between vibration modes
with vastly different eigenfrequencies
Oriel Shoshani 1✉ & Steven W. Shaw 2

Nonlinear interactions between modes with eigenfrequencies that differ by orders of mag-

nitude are ubiquitous in various fields of physics, ranging from cavity optomechanics to

aeroelastic systems. Simplifying their description to a minimal model and grasping the

essential physics is typically a system-specific challenge. We show that the complex

dynamics of these interactions can be distilled into a single generic form, namely, the Stuart-

Landau oscillator. With our model, we study the injection locking and frequency pulling of a

low-frequency mode interacting with a blue-detuned high-frequency mode, which generate

frequency combs. Such combs are tunable around both the high and low carrier frequencies.

By discussing the analogy with a simple mechanical system model, we offer a minimalistic

conceptual view of these complex interactions originating the frequency combs, together

with showcasing their frequency tunability.
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Nonlinear interactions of modes with vastly different
eigenfrequencies (VDE) are unique because, unlike stan-
dard internal resonances1–5, the eigenfrequencies need not

be rationally related. In VDE modes, interactions occur between
the envelope of the high-frequency (HF) carrier signal and the
oscillations of the low-frequency (LF) carrier signal (Fig. 1).
While these VDE modal interactions are peculiar, they are ubi-
quitous and occur in a wide range of fields of physics. Examples
include (i) cavity optomechanics6–13 and plasmomechanics14–18,
where these interactions are between HF optical modes and the
LF mechanical modes; (ii) interactions between HF nano- and LF
micro-mechanical modes19–21; (iii) certain classes of aeroelastic
instabilities, such as stall flutter22 and transverse galloping23,
where these interactions are between HF vortex modes of the
turbulent wake (the so-called Kármán vortex street) and the LF
modes of the elastic structure (Fig. 1); and many other
systems24–36. These interactions have gained significant interest,
particularly in cavity optomechanics37–45, since they offer novel
means to generate engineered quantum states46–49 and practically
unlimited bandwidth for enhanced sensing of acceleration50,
mass51, force52, vibration53, chemical quantities54, and biological
quantities55.

Nonlinear VDE modal interactions have been of interest for
decades56–66. However, to the best of our knowledge, no theory
presents a simple model that captures the essential physics of
these interactions and maps them onto a single generic (normal)
form. In this paper, we develop such a theory. In particular, we
consider the lowest-order (quadratic) nonlinear modal coupling,
and show that VDE modal interactions can be mapped onto the
normal form of a supercritical Hopf bifurcation described by the
Stuart-Landau oscillator67,68. Moreover, we present a simple
prototypical pendulums system that exhibits VDE modal inter-
actions and offers a simple conceptual view of the generic char-
acteristics of these interactions.

Results and Discussion
Minimalistic model. To derive a minimalistic model for VDE
modal interactions, we consider a pair of driven vibration modes
that, by the definition of eigenmodes, are linearly uncoupled. We
denote their modal coordinates as (q0, q1) and their eigen-
frequencies as (ω0, ω1), where ω0≪ ω1. The Hamiltonian of the
system is given by H=H0+H1+Hint, where H0;1 ¼ ðp20;1 þ
ω2
0;1q

2
0;1Þ=2� q0;1F0;1 cosðωF0;1

tÞ are the Hamiltonians of the
individual modes, p0,1 are the attendant momenta, F0,1 and ωF0;1

are the amplitude and frequency of the modal drives, respectively,
and Hint=Hint(q0, q1) is the interaction Hamiltonian, which
necessarily couples the modes in a nonlinear way.

We restrict the analysis to the lowest order nonlinearity, and
write the following single-term interaction Hamiltonian
Hint ¼ αq0q

2
1, which is consistent with the interaction Hamilto-

nian in cavity optomechanics that generates the radiation-
pressure force42. We note that the inclusion of a term βq20q1 in
the Hamiltonian is also possible; however, its contribution is
negligible since it does not promote energy exchange during the
interactions of interest. Therefore, with the inclusion of linear
dissipation terms, we obtain the following dynamical system
(Fig. 2)

€q0 þ 2Γ0 _q0 þ ω2
0q0 þ αq21 ¼ F0 cosðωF0

tÞ; ð1Þ

€q1 þ 2Γ1 _q1 þ ω2
1q1 þ 2αq0q1 ¼ F1 cosðωF1

tÞ: ð2Þ
where the Γ1,2 are the modal decay rates.

Eqs. (1)-(2) are similar to the modal equations (see
Supplementary Note 1) of a pair of biased pendulums that
are coupled via stiff torsional spring (Fig. 2), and with the
nonlinearities truncated at the quadratic order. Note that in
the pendulums system, there is an additional term αq20 in
the equation of q0 (see Supplementary Note 1) that has negligible
contribution to the leading order approximation. Therefore,
we conceptually associate the LF mode with the symmetric
mode of the pendulums q0 ¼ ðθL þ θRÞ=

ffiffiffi
2

p
, and the HF mode

with the antisymmetric mode of the pendulums q1 ¼ ðθL �
θRÞ=

ffiffiffi
2

p
(Fig. 2). We note that Eqs. (1)-(2) can be readily

generalized to include multiple LF and HF modes, LF mode
nonlinearities, and noise (Methods).

For weakly nonlinear modal interactions (jαq21=ω2
0q0j � 1,

jαq0=ω2
1j � 1), light damping [j2Γ0 _q=ðω2

0q0Þj � 1, j2Γ1 _q1=ðω2
1q1Þ

j � 1], and weak external drives [jF1=ðω2
1q1Þj � 1, jF0=ðω2

0q0Þj
� 1] that operate at near-resonance conditions (jωF0

� ω0j
=ω0 � 1, jωF1

� ω1j=ω1 � 1), we make the following ansatz
for the modal dynamics

q0ðtÞ ¼ �q0 þ A0ðtÞeiωF0
t þ cc; _q0ðtÞ ¼ iω0A0ðtÞeiωF0

t þ cc;

q1 ¼ A1ðtÞeiωF1
t þ cc; _q1ðtÞ ¼ iωF1

A1ðtÞeiωF1
t þ cc:

ð3Þ
Here cc denotes the complex-conjugate of the preceding term,

�q0 ¼ �αhq21i=ω2
0 is a DC deflection that arises from the time-

Fig. 1 Nonlinear interactions of modes with vastly different eigenfrequencies (VDE). a The VDE modal interactions are associated with a resonant
interaction between the oscillating envelope of the high-frequency mode (blue) and the signal oscillations of the low-frequency mode (red). Examples of
systems that exhibit VDE modal interactions include: b Cavity optomechanics, where the interaction is between optical (eigenfrequency ωopt) and
mechanical (eigenfrequency ωmech) modes. c Plasmomechanical oscillators, where the interaction is between localized-gap plasmon (eigenfrequency ωLGP)
and mechanical modes (eigenfrequency ωmech). d Interactions between nano-mechanical (eigenfrequency ωnano) and micro-mechanical (eigenfrequency
ωmicro) modes. e Aeroelastic instabilities in which the high-speed upstream velocity U∞ generates a high-frequency turbulent vortex mode in the wake
(eigenfrequency ωvortex) that interacts with a low-frequency mode of the mechanical structure (eigenfrequency ωstruct).
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independent component of q21, and A0,1 are the complex-
amplitudes of the LF and HF modes.

Since ωF0
� ωF1

, we can treat q0 as a quasi-static variable in Eq.
(2) and apply the method of averaging, or equivalently, the rotating
wave approximation (RWA) to obtain the following complex-
amplitude equations

_A0 ¼� ðΓ0 þ iΔω0ÞA0 þ
iα
2π

Z tþ 2π
ωF0

t
jA1j2e�iωF0

tdt

� iF0

4ωF0

;

ð4Þ

_A1 ¼� Γ1 þ iΔω1

� �
A1 þ iα

ωF1

ðA0e
iωF0

t þ A�
0e

�iωF0
tÞA1

� iF1

4ωF1

;

ð5Þ

whereΔω0 ¼ ωF0
� ω0 and Δω1 ¼ ωF1

� ω1 � α�q0=ð2ωF1
Þ are the

frequency detunings of the LF and HF modes.
A nonstandard feature of Eq (5) is that certain slowly varying

excitation effects persist after the RWA, with frequency ωF0
.

Specifically, we see that under certain conditions, in particular
where A0 is constant, A1 can oscillate with a frequency ωF0

.
Furthermore, since Eq. (5) is linear in A1, we can formally solve it
in terms of the yet unknown complex amplitude of the LF mode
ðA0 ¼ jA0jeiϕ0 Þ, i.e., A1ðtÞ ¼ e�gðtÞfA10 � ½ðiF1Þ=ð4ωF1

Þ� R egðtÞdtg,
where A10 is determined from the initial condition of A1 and
gðtÞ ¼ ðΓ1 þ iΔω1Þt � iαjA0j sinðωF0

t þ ϕ0Þ=ðωF1
ωF0

Þ. Conse-
quently, for constant A0, we can use the Jacobi-Anger expansion
to write an explicit formula for the evolution of A1, e.g.,
e�iαjA0j sinðωF0

tþϕ0Þ=ðωF1
Δω1Þ ¼ ∑1

n¼�1 JnðuÞe�inðωF0
tþϕ0Þ, where

u ¼ αjA0j=ðωF1
ωF0

Þ, Jn is the nth Bessel function of the first kind,
and integrate the resulting expansion term by term. Moreover,
since the HF modes typically decay faster than the LF modes, we
assume that Γ1≫ Γ0, and therefore, q1 adiabatically tracks q0
when t � Γ�1

1 (for more details about the adiabatic approxima-
tion see3). Thus, in the adiabatic tracking regime of q1, we find

that

jA1j2 � f ðuÞ ¼ F1

4ωF1

 !2

e�2Γ1t
Z

e½Γ1tþiðΔω1t�u sinðωF0
tþϕ0ÞÞ�dt

´
Z

e½Γ1t�iðΔω1t�u sinðωF0
tþϕ0ÞÞ�dt:

ð6Þ

For u⩽ 1, we use a standard Taylor expansion truncated at cubic
order to obtain the approximation jA1j2 � f ð0Þ þ f 0ð0Þuþ
f 00ð0Þu2=2þ f 000ð0Þu3=6, where f ð0Þ ¼ ½F1=ð4ωF1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ21 þ Δω2

1

p
Þ�2 is

used to evaluate the DC deflection �q0 ¼ �αhq21i=ω2
0 �

�2αf ð0Þ=ω0 near the onset of VDE modal interactions. By
substitution of the truncated expansion of ∣A1∣2 into Eq. (4), we
obtain the following Stuart–Landau oscillator67,68 for the LF
mode

_A0 ¼ ðσ � ljA0j2ÞA0 �
iF0

4ωF0

; ð7Þ

where

σ ¼ g1
Δω1

ωF1

2Γ1 þ i
Γ21 þ Δω2

1

ωF0

� ωF0

 !" #
� Γ0 � iΔω0;

‘ ¼ g2
Δω1

ωF1

Γ1ð3Γ21 þ 8ω2
F0
� 5Δω2

1Þ
h

þ i
Γ41 � Δω4

1

ωF0

þ ωF0
ðΓ21 þ 5Δω2

1 � 4ω2
F0
Þ

 !#
;

and g1,2 are non-negative quantities given by

g1 ¼
αF1

4ωF1

 !2 Y1
n¼�1

1

Γ21 þ ðΔω1 þ nωF0
Þ2 ;

g2 ¼
3
2

α2F1

4ω2
F1

 !2 Y2
n¼�2

1

Γ21 þ ðΔω1 þ nωF0
Þ2 :

Therefore, in the adiabatic regime, the HF mode is functionally
dependent on the LF mode. A geometric view of this process is

Fig. 2 The minimalistic nonlinear model for interactions between modes with vastly different eigenfrequencies. A pair of linear modes are nonlinearly
coupled via the interaction Hamiltonian Hint. As described in our analysis, we consider the case in which the high-frequency mode (q1-blue) is driven in its
blue sideband with ωF1

¼ ω1 þ ωF0
, and its relaxation time is significantly shorter than the relaxation time of the low-frequency mode (q0-red) Γ�1

1 � Γ�1
0 .

The nonlinear pendulums system has similar modal equations and offers a simple conceptual view of these nonlinear modal interactions, where the low-
frequency/high-frequency mode corresponds to the symmetric/antisymmetric mode of the pendulums system. The dashed lines of the symmetric/
antisymmetric mode represent a nonzero angle, which biases the system and breaks its symmetry. k and ks are the torsional stiffness of the shafts.
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that the faster-decaying dynamics end up on an invariant
manifold on which the slower dynamics evolve. The retarded
backaction from the HF mode completely modifies the properties
of the LF mode. To be specific, we see that at leading order, the
interaction between the two modes leads to the following changes
in the LF mode: (i) The effective linear damping coefficient
Γ0eff≡−ℜ{σ}= Γ0− 2Γ1g1Δω1 can be markedly different from Γ0.
In particular, we find that Γ0eff > Γ0 for red-detuned drive
frequencies (i.e., negative detuning Δω1 < 0) of the HF mode,
and Γ0eff < Γ0 for blue-detuned drive frequencies (i.e., positive
detuning Δω1 > 0) of the HF mode. Moreover, for sufficiently
large HF mode drive amplitude (F1), Γ0eff becomes negative, and
self-induced oscillatory motion, i.e., lasing, is generated in the LF
mode. (ii) The linear stiffness effect δω0A0≡ (ℑ{σ}+ Δω0)A0,
shifts the eigenfrequency of the LF mode. For δω0/ω0≪ 1, the
shifted eigenfrequency can be approximated by ~ω0 � ω0 þ δω0.
(iii) The (cubic) nonlinear damping effect ℜ{ℓ}∣A0∣2A0 introduces
a new damping mechanism, which dominates at large amplitudes
of the LF mode (jA0j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j<fσg=<f‘gj

p
). And, (iv) the (cubic)

nonlinear spring effect− ℑ{ℓ}∣A0∣2A0 introduces an additional
Duffing nonlinearity69, which yields an amplitude-dependent
frequency in the LF mode.

Eq. (7) reveals that the normal form of VDE modal interactions
is a simple single-mode nonlinear oscillator, specifically the
Stuart–Landau oscillator. Furthermore, Eq. (7) is consistent with
the complex-amplitude equation one obtains from the following
driven van der Pol–Duffing oscillator70

d2v
dτ2

� ϵð1� v2Þ dv
dτ

þ v þ γv3 ¼ F cosðΩFτÞ; ð8Þ

where v ¼ ðq0 � �q0Þ=L is the non-dimensional displacement of
the LF mode from its equilibrium position (�q0), and τ= t/T is the
nondimensional time. All other parameters, including character-
istic time (T) and length (L) scales, are specified in Supplementary
Note 2.

From the foregoing analysis, we deduce that Eq. (8) and Eqs.
(1)-(2) are dynamically equivalent when the adiabatic approx-
imation holds. That is, the self-induced oscillations of the LF
mode are a manifestation of nonlinear interaction with a blue-
detuned HF mode, or alternatively, the leakage of energy from the
blue-detuned HF mode generates negative linear damping in the
LF mode, which results in self-induced oscillations. While Eq. (8)
enables a considerably simpler view of VDE modal interactions, it
still possesses an intricate bifurcation structure71 and can exhibit
a wide range of dynamical responses, including chaotic
attractors72. Consequently, in the remainder of this paper, we
focus on a limited range of dynamical responses corresponding to
injection locking and pulling of the LF mode. As shown below,
injection locking and pulling of the LF mode generate tunable
frequency combs in the HF and LF modes, respectively. These
tunable frequency combs have potential use in a wide range of
applications spanning from frequency metrology73 to molecular
fingerprinting74.

Frequency combs generation. To explore the injection locking
and pulling phenomena of the LF mode, we consider the scenario
in which the drive frequency of the HF mode is blue-detuned
Δω1 ¼ ωF0

and its amplitude (F1) is relatively large, such that
Γ0eff < 0 (i.e., self-induced oscillations of the LF mode occur) and
F0/F1≪ 1 (weak external harmonic injection to the LF mode).
Using polar notation for the complex amplitude of the LF mode
A0 ¼ �ia0e

i½φ0þargð‘Þ�=2, we find from Eq. (7) that to leading order
(Methods), the phase dynamics are governed by the Adler

equation75

dφ0

ds
¼ ΩL � sinφ0; ð9Þ

where s ¼ ½F0j‘j=ð4ωF0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi<fσg<f‘gp Þ�t is the non-dimensional time

of the Adler equation, and ΩL ¼ 4ωF0
=f‘�σg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<fσg=<f‘g

p
=ðF0j‘jÞ

is the non-dimensional one-sided frequency-locking range (i.e.,
the overall locking range of the LF mode is ±ΩL around ~ω0t=s).

Eq. (9) is a reduced-order, simplified, single-dimension
dynamical system. To obtain this Adler equation, we effectively
eliminate the dynamics of the HF mode (via adiabatic approxima-
tion) and then eliminate the amplitude dynamics under the
assumption of weak injection (Methods) to achieve an equation
for only the phase dynamics. We note that the assumption of weak
injection is not mandatory, but it greatly simplifies the analysis.
Without this condition, one needs to consider the generalized
Adler equation76, which makes the analysis more complicated,
especially when considering the amplitude dynamics.

To integrate Eq. (9), we set uðsÞ ¼ eiφ0ðsÞ and obtain the
equation du/ds= (1+ 2iΩLu− u2)/2, which can be readily solved
to yield u(s)= [(u(0)− us)uus− (u(0)− uus)useλs]/[u(0)− us−
(u(0)− uus)eλs], where us,us= iΩL∓ λ and λ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ω2

L

p
. From

Eq. (9) and u(s), we see that ∣ΩL∣ < 1 corresponds to injection
locking of the LF mode, where for s≫ λ−1, sinφ0 ¼ ΩL, u= us,
and q0ðtÞ ¼ �q0 þ a0 sinðωF0

t þ φ0 þff‘Þ. The condition ∣ΩL∣ < 1
can be viewed as a case in which the frequency of the external
drive in Eq. (8) is close enough to the frequency of the
unperturbed limit cycle (i.e., when F= 0) such that synchroniza-
tion/injection-locking is achieved. The injection-locked LF mode,
which has constant amplitude and phase, generates a periodically
modulated complex-amplitude of the HF mode A1ðtÞ ¼ eiφ1ðtÞ

∑na1ne
�inðωF0

tþϕ0Þ, where φ1ðtÞ ¼ iαa0 sinðωF0
t þ φ0 þff‘Þ=

ð2ωF1
ωF0

Þ, a1n ¼ F1Jn½αa0= ð2ωF1
ωF0

Þ�=½4ωF1
ðωF0

ð1� nÞ � iΓ1Þ�,
and Jn is the Bessel function of the first kind. These periodic
modulations of A1 create a frequency comb around ω1, where the
spacing between the spectral lines of the comb is ωF0

(Fig. 3a and b).
Therefore, by tuning the injected frequency ωF0

, we can control the
spacing of the frequency comb of the HF mode. Injection pulling of
the LF mode is associated with ∣ΩL∣ > 1 in which u(s), and therefore,
φ0(s) are periodic functions with a period75 of 2π=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

L � 1
p

.
Alternatively, we can view the condition ∣ΩL∣ > 1 as a case in which
the frequency of the external drive in Eq. (8) is not sufficiently close
to the frequency of the unperturbed limit cycle such that there are
quasi-periodic oscillations of the LF mode. The non-uniform (highly
non-harmonic) periodic modulations of φ0 create a frequency comb
around ~ω0. The spacing between the spectral lines of the comb isffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω2
L � 1

p
ðs=tÞ (Fig. 3c and d). Hence, by tuning ΩL, we can control

the spacing of the comb fingers in the spectrum of the LF mode.

Conclusions
We derived and analyzed a simple generic model for the intricate
dynamics of VDE modal interactions that occur in a wide class of
dynamical systems. We showed that the dynamics of VDE interac-
tions can be mapped onto a single normal form, the Stuart-Landau
oscillator, and can be conceptually viewed as the energy exchange
between the symmetric and antisymmetric modes of a simple pro-
totypical pendulums system. We studied in detail the phenomena of
injection locking and pulling of the LF mode, which corresponds to a
blue-detuned HF mode and a weakly driven LF mode. Our study
reveales that injection locking and pulling can be exploited to gen-
erate tunable frequency combs in both the HF and the LF modes.
Furthermore, these frequency combs are outcomes of the phase
dynamics of the LF mode, which are governed by the well-known
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Adler equation; therefore, injection locking and pulling of the LF
mode can be mapped onto the motion of an overdamped particle in
a tilted washboard potential (Fig. 3, insets). The study of injection
locking and pulling phenomena serves as a showcase for the cap-
abilities of this simple model, which describes generic behavior of
these systems and can be used to explore other phenomena, such as
cooling and heating of several LF modes (with or without drive), in a
straightforward manner.

Methods
A generalized model for VDE modal interactions. To generalize the model of
Eqs. (1)-(2), we consider the Hamiltonian H=Hlf+Hhf+Hint, where Hlf ¼
∑n

i¼1 p
2
Li
=2þ ω2

Li
q2Li=2þ βiq

4
Li
=4� qLi FLi

cosðωFLi
tÞ is the Hamiltonian of n low-

frequency (LF) modes and each of these modes can have a Duffing nonlinearity
(when βi ≠ 0), Hhf ¼ ∑m

i¼1 p
2
Hi
=2þ ω2

Hi
q2Hi

=2� qHi
FHi

cosðωFHi
tÞ is the Hamilto-

nian of m high-frequency (HF) modes, and H int ¼ ∑i;j;j0αijj0qLi qHj
qHj0

is the

interaction Hamiltonian and its coefficients αijj0 are symmetric with respect to j and
j0 , i.e., αijj0 ¼ αij0 j. With the inclusion of linear dissipation and thermal noise terms
(which are connected via the fluctuation-dissipation theorem77), we obtain the
following dynamical system

€qLiþ 2ΓLi _qLi þ ω2
Li
qLi þ βiq

3
Li
þ∑

j;j0
αijj0qHj

qHj0

¼ FLi
cosðωFLi

tÞ þ ξLi ðtÞ;
ð10Þ

€qHi
þ2ΓHi

_qHi
þ ω2

Hi
qHi

þ 2qHi
∑
j
αjiiqLj

þ2 ∑
j;j0≠i

αjij0qLj qHj0
¼ FHi

cosðωFHi
tÞ þ ξHi

ðtÞ; ð11Þ

where the ΓLi and ΓHi
are the modal decay rates, and ξLi and ξHi

are zero-mean
delta-correlated independent noise terms, so that hξLi ðtÞi ¼ hξHi

ðtÞi ¼ 0,
hξLi ðtÞξLj ðt þ τÞi ¼ 2δijδðτÞDξLi

, and hξHi
ðtÞξHj

ðt þ τÞi ¼ 2δijδðτÞDξHi
. The above

idealization of the noises also applies to general non-Gaussian noises, as long as
their correlation times are considerably shorter than the relaxation time of the
modes78.

We make the ansatz

qLi ðtÞ ¼ �qLi þ ALi
ðtÞeiωFLi

t þ cc;

_qLi ðtÞ ¼ iωFLi
ALi

ðtÞeiωFLi
t þ cc;

qHi
ðtÞ ¼AHi

ðtÞeiωFHi
t þ cc;

_qHi
ðtÞ ¼ iωFHi

AHi
ðtÞeiωFHi

t þ cc;

ð12Þ

where �qLi ¼ �h∑j;j0αijj0qHj
qHj0

i=ω2
Li
are the DC deflections of the LF modes that

arise from the time-independent component of qHj
qHj0

, and ALi
ðAHi

Þ are the

complex-amplitudes of the LF (HF) modes. Treating the qLi as quasi-static
variables in Eq. (11) and applying the rotating wave approximation (RWA), we
obtain the following complex-amplitude equations

_ALi
¼� ΓLi þ i ΔωLi

� 3βi
2ωFLi

jALi
j2

 !" #
ALi

þ i
2π

∑
j;j0
αijj0

Z 2π
ωFLi

0
AHj

A�
Hj0

e
iðωFHj

�ωFHj0
Þt
e
�iωFLi

t
dt

� iFLi

4ωFLi

� i
2ωFLi

hξLi e
�iωFLi

ti;

ð13Þ

-0.1

0

0.1

2500 2510 2520

-0.1

0

0.1

-0.1

0

0.1

190 195 200 205 210

-120

-80

-40

-8

0

8

-8

0

8

10000 11500 13000

-8

0

8

0.95 1 1.05

-50

-30

-10

Fig. 3 Injection locking and pulling of the low-frequency mode. a The constant amplitude and phase of the injection-locked low-frequency mode generate
periodic modulations in the complex amplitude of the high-frequency mode, b which correspond to a frequency comb around ω1 with a spacing of ωF0

in the
power spectral density of q1. c The unlocked phase of the injection-pulled low-frequency mode is periodically modulated in a highly non-uniform rate with a
frequency of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

L � 1
q

ðs=tÞ. Consequently, the temporal responses of the LF mode q0 are associated with distinct transitions from long calmer epochs to short
windows of large modulations, d generating a frequency comb around ~ω0 with spacing of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

L � 1
q

ðs=tÞ in the power spectral density of q0. All the shown results
are obtained from the numerical integration of Eqs. (1)-(2), with Γ0 ¼ 0:01; Γ1 ¼ 0:2; ω0 ¼ 1; ω1 ¼ 200; α ¼ 100; F0 ¼ 0:2; F1 ¼ 50; ωF1

¼ ω1 þ ωF0
, and

ωF0
¼0.98 (blue), 1(azure), 1.02 (cyan) in the injection locking regime and ωF0

¼1.021(red), 1.022(burgundy), 1.023(orange) in the injection pulling regime.
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_AHi
¼� ðΓHi

þ iΔωHi
ÞAHi

þ i
2ωFHi

∑
j
αjiiðALj

e
iωFLj

t þ A�
Lj
e
�iωFLj

tÞAHi

þ i
2π

∑
j;j0≠i

αjij0A
�
Lj
AHj0

Z 2π
ωFHi

0
e
iðωFH0

j

�ωFLj
Þt
e
�iωFHi

t
dt

� iFHi

4ωFHi

� i
2ωFHi

hξHi
e
�iωFHi

ti;

ð14Þ

where ΔωLi
¼ ωFLi

� ωLi
and ΔωHi

¼ ωFHi
� ωHi

�∑jαjii�qLj=ð2ωFHi
Þ are the

frequency detunings of the LF and HF modes.
Similar to Eq. (5), Eq (14) contains certain slowly varying excitations after the

RWA, with frequencies ωFLi
. In particular, for constant ALi

’s, the AHi
oscillate with

frequencies ωFLi
. Moreover, from Eq. (14), we see that a pair of HF modes are

coupled when they are separated in frequency by one of the LF mode’s frequencies,
i.e., jωHj

� ωH0
j
j � ωLi

. Refs. 79,80 show experimental observations of this type of

resonant coupling in cavity optomechanical systems. Consequently, Eq. (14)
represents a set of linearly coupled equations in AHi

. We can formally solve Eq.
(14) in terms of the yet unknown complex amplitudes of the LF modes (ALi

). Then,
in the adiabatic tracking regime of AHi

(under the assumption that ΓHi
� ΓLi ), we

can obtain a set coupled Stuart-Landau oscillators for the complex amplitude of the
LF modes. While we leave the details of such an analysis for future study, it is worth
noting that even in the case of a single HF mode (and multiple LF modes), its
backaction leads to linear and nonlinear coupling between the LF modes. This type
of LF modal coupling, which is mediated by the HF modes, has been
experimentally observed in Refs. 12,81 in cavity optomechanics. Therefore, Eqs.
(13)-(14), which account for the important effects of nonlinearity of the LF modes
and noise8,82, can be viewed as a direct extension of the simplified model of Eqs.
(1)-(2), which is clearly relevant to a wider class of systems.

The Adler equation. From Eq. (7), we find that the polar notation A0 ¼
�ia0e

i½φ0þargð‘Þ�=2 yields the following pair of equations

_a0 ¼ <fσg � <f‘g a
2
0

4

� �
a0 �

εf 0
2ωF0

cos θ; ð15Þ

_φ0 ¼ =fσg � =f‘g a
2
0

4
� εf 0

2ωF0
a0

sin θ; ð16Þ

where θ ¼ φ0 þ argð‘Þ, and εf0= F0, which is used to explicitly denote the small-
ness of F0 (ε≪ 1). For ε= 0, the amplitude of the LF mode reaches the steady-state
value a0ss ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<fσg=<f‘g

p
. Thus, in the presence of weak injection, we make the

ansatz a0(t)= a0ss+ εη(t), and obtain the following evolution equation to the
perturbation _η ¼ �2<fσgη� ½f 0=ð2ωF0

Þ� cos θ. We see that the perturbation η is
strongly damped; hence, for t≫ 1/ℜ{σ}, we can set _η ¼ 0 to obtain

a0 ¼ 2

ffiffiffiffiffiffiffiffiffiffi
<fσg
<f‘g

s
� εf 0

4ωF0
<fσg cos θ: ð17Þ

Substitution of Eq. (17) into Eq. (16) yields

_φ0 ¼=fσg � <fσg =f‘g<f‘g �
εf 0j‘j

4ωF0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi<fσg<f‘gp sinφ0

þ Oðε2Þ;
ð18Þ

which is the well-known Adler equation.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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