
ARTICLE

Controlling electromagnetic surface waves with
conformal transformation optics
Xiaoyu Zhao 1,2, Hong Deng 1,2, Xiaoke Gao 1,2, Xikui Ma1 & Tianyu Dong 1✉

The application of transformation optics to the development of intriguing electromagnetic

devices can produce weakly anisotropic or isotropic media with the assistance of quasi-

conformal and/or conformal mapping, as opposed to the strongly anisotropic media pro-

duced by general mappings; however, it is typically limited to two-dimensional applications.

By addressing the conformal mapping between two manifolds embedded in three-

dimensional space, we demonstrate that electromagnetic surface waves can be controlled

without introducing singularity and anisotropy into the device parameters. Using fruitful

surface conformal parameterization methods, a near-perfect conformal mapping between

smooth manifolds with arbitrary boundaries can be obtained. Illustrations of concealing and

illusions, including surface Luneburg and Eaton lenses and black holes for surface waves, are

provided. Our work brings the manipulation of surface waves at microwave and optical

wavelengths one step closer.
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S ince its inception in the design of electromagnetic cloaks1,2,
transformation optics (TO) has proven to be a powerful tool
to understand and customize the physics in acoustics3,

optics4, mechanics5, and thermodynamics6,7, etc. Following the
groundbreaking work of concealing objects, a number of other
electromagnetic devices have been reported within the theoretical
framework of TO, such as electromagnetic concentrators8,9, field
rotators10, optical lenses11,12, and optical illusion devices13,14, to
name a few. In practice, however, traditional TO often yields
significant anisotropy in a designed medium15. Thus, metama-
terials are often used to infer spatial changes from coordinate
transformation geometry, which is based on the mathematical
equivalence between geometry and material16.

To reduce the anisotropy of the functional medium induced by
TO, various approaches have been developed. By constructing
mapping in non-Euclidean space, for example, it is possible to
remove singular points formed by traditional TO17, hence
minimizing anisotropy. But for wavelengths comparable to the
size of the transform region, non-Euclidean TO may perform
even worse18; thus, several research projects focus on conformal
or quasi-conformal mappings to achieve isotropy19. In R2, the
concept of a carpet cloak that resembles a flat ground plane is
successfully realized with an isotropic medium produced by
minimizing the Modified-Liao functional under sliding boundary
conditions20, or equivalently by constructing the quasi-conformal
mapping by solving the inverse Laplace equations21. Although the
concept of carpet cloak has been extended to R3 by extrusion or
revolution of a two-dimensional refractive index profile to control
the reflection of free-space waves, it is only applicable to surfaces
with translational or rotational symmetry22.

Previous research has focused mainly on controlling propa-
gating waves by TO, while less attention has been paid to the
manipulation of surface waves12,23,24. Perfect surface wave con-
cealing has been proposed by equating the optical path length of a
ray traversing a flat plane with a homogeneous refractive index to
the optical path on a curved surface with an angle-dependent
refractive index for two orthogonal paths25,26, which have been
experimentally validated27. Although an electrically large object
may be hidden by such a concealing device with an inhomoge-
neous isotropic medium, this approach is limited to rotationally
symmetric surfaces. By linking the governing eikonal equations
on a virtual flat plane and on a curved surface by transformation
optics, the projection mapping yields surface wave concealing for
non-rotationally symmetric geometries but with high
anisotropy14,28. Considerable effort has been devoted to reducing
such anisotropy by employing efficient numerical conformal
algorithms such as boundary first flattening (BFF)29, yet only
surfaces with circular boundaries are investigated30.

In this work, we show how to manipulate surface waves on
smooth manifolds embedded in R3 within the framework of
conformal TO, requiring an effective isotropic material under the
regime of geometrical optics. Figure 1 illustrates a conformal
surface mapping between two smooth manifolds in R2 and R3,
i.e., f : M0 ! M. The curved manifold M shown in Fig. 1a has
been uv-parameterized and the mesh grid can be considered as
the mapping result of the Cartesian coordinate system ðx0; y0Þ in
Fig. 1b. When the mapping is conformal or quasi-conformal, the
face element dS remains right-angled, indicating that the elements
are just scaled with little distortion. From the local coordinate
systems on dS and dS0 (see Supplementary Fig. 1a in Supple-
mentary Note 1), one can derive the Jacobian matrix J of the
mapping f with two singular values σJ1= σJ2= σJ that state equal
scaling in two orthogonal directions31. Consequently, an isotropic
concealing medium distribution n ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
detðJÞ

p
¼ 1=σJ can be

obtained based on the conformal TO19, representing the ratio of

the line element dl0 in the virtual space to the scaled element dl in
the physical space to compensate for the length of the optical
path2. As a result, light propagating on curvedM behaves as light
propagating on flat M0. In practice, it is more convenient to
describe mesh vertices in R3 in a Cartesian coordinate system
{x, y, z} and the Jacobian derived from the local coordinate system
forms an asymmetric rank-two matrix J3 × 2. In addition, possible
quasi-conformal mappings can be measured by the conformality,
i.e., the ratio Q ¼ maxðσJ1=σJ2; σJ2=σJ1Þ. A unity ratio Q allows
an effective concealing medium expressed as nconcealment ¼
1= ffiffiffiffiffiffiffiffiffiffiffi

σJ1σJ2
p for all elements of the face20.

Results
Surface electromagnetic wave concealment. Having obtained a
conformal mapping between the manifolds M 2 R3 and
M0 2 R2, we first design an isotropic surface wave concealing
device from the perspective of conformal TO and compare its
performance with the traditional surface wave concealment with
anisotropic medium14. Simulations were carried out on a double-
camelback bump (see Supplementary Note 2 for details) with an
elliptical base profile embedded in R3, as shown in Fig. 2.
Compared to scattering when the surface has no index profile (see
Supplementary Fig. 2a in Supplementary Note 1), one can observe
that the surface wave concealment is successfully achieved by two
distinct approaches: one induced by the projection mapping
proposed in14 (Fig. 2a) and the other originates from the pro-
posed quasi-conformal mapping (Fig. 2b). The corresponding
material characteristics for the two types of concealing devices are
displayed in Fig. 2c, indicating that the former is strongly ani-
sotropic, while the latter is almost isotropic. In addition, the
isotropic refractive index nc,double (the subscript “c” denotes the
concealment, and “double” denotes the double-camelback bump)
ranges from 0.83 to 1, which decreases as the bump height
increases because a longer geometrical distance needs to be
compensated by a smaller refractive index in order to attain equal
optical path length. As references, simulation results of the con-
cealment when the incident waves propagate along the y-axis and

y'x'
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dS
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f : 

Fig. 1 The conformal mapping between manifolds. a A red light beam that
crosses a curved two-dimensional manifold M embedded in R3. b A red
light beam that crosses a flat two-dimensional manifold M0 in R2. The
manifold M is uv-parameterized, and both manifolds are plotted with a
coordinate grid. The manifold M from M0 can be obtained by using a
certain analytic or numerical mapping f : M0 ! M. The blue line element
dl0 and the brown face element dS0 in M0 are scaled to dl and dS in M after
mapping f.
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45∘ from the x-axis (referred to as oblique incidence hereafter) are
shown in Supplementary Fig. 3 in Supplementary Note 1.

The proposed scheme based on conformal TO has achieved
near-perfect surface wave concealing while eliminating the
anisotropy in the transformation medium that the traditional
scheme presents. The distribution of nc,double in Fig. 2c outlines an
asymmetric geometric profile, showing that the effectiveness of
this scheme is independent of any symmetry. Such an achieve-
ment requires mappings with high conformality rather than those
bringing large distortion such as the projection mapping14. The
numerical method we adopt here29 can obtain a quasi-conformal
mapping with Q < 1.03, as shown in Supplementary Fig. 2b (see
Supplementary Note 1), which is sufficient to design an effective
isotropic concealing medium distribution.

Surface electromagnetic wave illusions. As the antithesis of
concealment, optical illusion devices can reproduce the scattering
characteristics of a specific object on other objects through a
transformation medium13,14. Figure 3a depicts the surface elec-
tromagnetic wave scattered by a single-camelback bump M (see
Supplementary Note 2 for details) filled with homogeneous
material. Traditionally, if one wants to reproduce its scattering in
a plane region M0, the quasi-conformal mapping for designing

the illusion device is f 0 : M ! M0 with a Jacobian matrix Λ2 × 3.
Figure 3b shows the accurately recurring scattering characteristics
in the plane region M0

filled with ni;plane ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σΛ1σΛ2

p
(the

subscript ‘i’ denotes the illusion, and ‘plane’ denotes the plane
region), where σΛ1 and σΛ2 are singular values of Λ2 × 3. Fur-
thermore, Fig. 3c illustrates that the double-camelback bump
filled with a carefully designed isotropic medium distribution can
reproduce the same scattering pattern as shown in Fig. 3a. This
illusion is realized by cascading two conformal mappings
described in Supplementary Fig. 4 (see Supplementary Note 1),
i.e., f1 from R3 (virtual space) to R2 (intermediate space), and f2
from R2 to R3 (physical space). Thus, the illusion medium for
the double-camelback bump reads ni,double= ni,plane ⋅ nc,double.
Figure 3d displays the profiles of ni,plane (for Fig. 3b) and ni,double
(for Fig. 3c), respectively, which range from 1 to 1.25 (ni,plane) and
from 0.85 to 1.21 (ni,double). The simulation results of the illusions
for the oblique incidence and normal incidence along the y axis
are provided in the Supplementary Note 1 (see Supplementary
Fig. 5).

The scattering pattern of the single-camelback bump (Fig. 3a)
has been successfully reproduced in the plane region (Fig. 3b) and
on the double-camelback bump (Fig. 3c), which demonstrates
that the proposed scheme is a general solution to illusion design

a

b

Ez
1

-1

12λ0

c μxyμyyμxx nc,double

10.8310.6310.63 0.19-0.19

Fig. 2 The field and medium distribution for concealment. Normalized electric field distribution of surface electromagnetic wave concealing devices
achieved by a anisotropic relative permeability and b isotropic refractive index. c Components of anisotropic relative permeability, μxx, μyy, and μxy and
isotropic refractive index n. Excitation is a z-polarized plane wave with a magnitude of ∣Ez∣= 1 V/m; and the wavelength in free space is λ0= 20mm. The
bump with a height of 1.25λ0 is located in the center of the square waveguide with a width of 12λ0. The white curves in a and b and the black curves in
c depict the elliptical boundaries of double-camelback surfaces. The lengths of the semi-minor and semi-major axes are a= 3.75λ0 and b= 5λ0,
respectively, along with the x- and y axes.
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on smooth two-dimensional manifolds. The cascading method to
construct mappings between manifolds embedded inR3 can even
tackle surfaces with different base profiles, since a conformal
mapping between simply connected regions in R2 exists
according to the Riemann mapping theorem32. Furthermore,
the quasi-conformal ratios Q of the two mappings for the double-
camelback and single-camelback bump are smaller than 1.03 (see
Supplementary Fig. 2b in Supplementary Note 1) and 1.012 (see
Supplementary Fig. 6c in Supplementary Note 1), respectively,
implicating that the cascaded mapping meets the requirement for
high conformality. The range of ni,single (1 to 1.25) (the subscript
“single” denotes the single-camelback bump) is the inverse of that
of the concealing refractive index nc,single (0.8 to 1) shown in
Supplementary Fig. 6b in Supplementary Note 1, because the
illusion can be regarded as the inverse design of concealing such
that the Jacobian matrices of their corresponding mappings are
the Moore-Penrose pseudoinverses of each other31.

Surface wave Luneburg lens, Eaton lens, and black hole. Now
that the wave behavior on the curved manifold can be

manipulated flexibly, it is natural to consider designing various
complicated devices on it, such as surface wave Luneburg lens,
Eaton lens, and black hole for surface waves12,23,33,34. Traditional
designs are usually based on spherical or circular profiles with a
constant radius. For an elliptical profile without a constant radius,
we adopt the distance from the point on the ellipse to the center
or the coordinate origin as the generalized radius, i.e.,
RðθÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða cos θÞ2 þ ðb sin θÞ2

p
, where θ ¼ arctanðy=xÞ with

(x, y) being the coordinates35–37. Thus, the refractive index of the
considered Luneburg lens can be expressed as

nLðr; θÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� r

RðθÞ

� �2
s

; ð1Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. Similar to the traditional circular Luneburg

lens, this distribution retains nL= 1 (the subscript “L” denotes the
Luneburg lens) on the boundary and nL ¼

ffiffiffi
2

p
in the center

r= 038. Next, the medium distribution of a Luneburg lens on the
double-camelback bump can be expressed as nLuneburg=
nc,double ⋅ nL. As illustrated in Fig. 4a, two Gaussian beams with a

a

b

c

Ez
1

-1

d ni,plane ni,double

1.251 1.210.85

15λ0

Fig. 3 Normalized electric field distribution of surface electromagnetic wave scattering. a Scattering on the single-camelback bump when filled with
homogeneous medium. b Illusion of a single-camelback bump appearing in the plane. c Illusion of the single-camelback bump appearing on the double-
camelback bump. d Isotropic refractive indices: ni,plane for the elliptic plane region and ni,double for the double-camelback bump. The bump with a height of
1.25λ0 is located in the center of the square waveguide with a width of 15λ0. The white curves in a–c and black curves in d depict the elliptical boundaries of
the single-camelback surface, the plane region, and the double-camelback surface. The elliptical base profile is the same as that of Fig. 2.
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free-space wavelength λG= 50 mm (the subscript “G” denotes the
Gaussian beam) and waist radius w0= λG are incident along the
x-direction at the position ± 0.8b in the y direction and reflected
by the Luneburg lens to interfere at the focus point. The focal
distance reads 20λG, which is identical to the unit circular
Luneburg lens. For the Eaton lens, the refractive index nE (the
subscript “E” denotes the Eaton lens) reads as

nEðr; θÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2RðθÞ=r � 1

p
; ð2Þ

which can approach infinity when r= 0, leaving a singular point
to be cared for. Figure 4b describes that a Gaussian beam that
goes along the x-direction bends to the inverse x-direction after
passing through the Eaton lens on the double-camelback bump.
The proposed surface wave Luneburg and Eaton lenses may be
deployed in optical imaging, signal acquisition, and novel designs
for surface wave microwave antennas. Another functional device
that can rotate beam propagation is the peripheral of the two-
layer optical black hole, where light is compelled to travel in a
spiral path into the absorbing medium at the core. The piece-wise
refractive index distribution function nB (the subscript “B”

denotes the black hole) can be expressed as

nBðr; θÞ ¼
1; r > RðθÞ
RðθÞ=r; rcore � RðθÞ< r <RðθÞ
1=rcore þ iγ; r < rcore � RðθÞ

8><
>: ð3Þ

where rcore ¼ 0:4 is the scaling factor of the internal ellipse core
compared with the base profile and γ= 0.1 is the loss factor. The
refractive index distribution nBlackhole= nc,double ⋅ nB on the
double-camelback bump is depicted in Fig. 4d. The real part of
the material parameters is matched on the inner boundary, and
the imaginary part for absorbing energy ranging from 0.083 to
0.097 exists only in the core. The same Gaussian beam used for
the Eaton lens is employed, and the result in Fig. 4c shows that
the beam bends around 90∘ before it reaches the inner boundary
and is absorbed by the lossy core without reflection, showing
potential application in interference reduction and energy har-
vesting for electronic devices. As references, simulation results of
the lenses when waves are incident along the y axis direction and
45∘ from x axis direction are illustrated in Supplementary Fig. 7 in
Supplementary Note 1. Note that the overall sizes of the

Fig. 4 Normalized electric field distribution on surface electromagnetic wave devices. Gaussian beam is applied to demonstrate their functions. a The
Luneburg lens, b the Eaton lens, and c the black hole on the double-camelback surface are designed by covering the concealment with a medium of devices.
d Isotropic refractive indices: nLuneburg for the Luneburg lens, the decimal logarithm of nEaton for the Eaton lens, and the real and imaginary parts of nBlackhole
for the black hole. The bump with a height of 5λG is located in the center of the square waveguide with a width of 48λG. The black curves in a–d depict the
boundaries of double-camelback surfaces and the inner core of the black hole. The lengths of the semi-minor and semi-major axes of the elliptical base
profile are a= 15λG and b= 20λG, respectively, along with the x and y axes. The red focal point of the Luneburg lens is located at a distance of 20λG from
the center.
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simulation models are larger than ten times the operating
wavelength, demonstrating that the proposed scheme is capable
of managing surface wave behaviors on electrically large objects.
Moreover, the excellent performance of these functional surface
wave devices demonstrates that, based on the proposed scheme, a
variety of novel devices may be realized on smooth curved
manifolds, which may facilitate the development of miniaturized
and integrated photonic devices.

Discussion
Our theory and method are based on geometrical optics. It
requires small curvature and little variation in wavelength (see
Eqs. (7) and (8) in Methods), which can be expressed as

w ¼ j∇λj ¼ j∇ λ0=n
� �j ¼ λ0j∇nj=n2 � 1; ð4Þ

ρ ¼ jRijjλ2 ¼ jKgijj λ0=n
� �2 ¼ detðgijÞK2λ20=n

2 ¼ K2λ20=n
6 � 1;

ð5Þ
where Rij is the Ricci curvature tensor, K is the Gaussian curvature,
and gij is the metric tensor. Both the wavelength index w and the
curvature index ρ are inversely proportional to the powers of the
refractive index n. To prevent w and ρ from drastically increasing, a
height lower than half of the base radius is favorable, and thereby the
optical path length can be compensated for with a nearly uniform
refractive index. On this basis, requirements Eqs. (4) and (5) demand
a shorter wavelength λ0 and a smoother geometric structure to ease
the change rate ∣ ∇n∣ and the Gaussian curvature K. As a negative
example, a hemisphere surface wave concealment is reviewed and
results are displayed in Supplementary Fig. 8 in Supplementary
Note 1, whose refractive index nc;sphere is between 0.5 and 1 (see
Supplementary Fig. 8d) and the maximum of quasi-conformal ratio
Q is smaller than 1.012 (see Supplementary Fig. 8e). The visible
scattering Ez− Ebz (the subscript “b” denotes the background field)
appearing in the plane in Supplementary Fig. 8c demonstrates the
failure of geometrical optics due to the high curvature index ρ > 20
residing in the right-angle connection between the hemisphere and
the plane, as shown in Supplementary Fig. 8f, and the average cur-
vature index �ρ ¼ 1:57 is also higher than 1. The non-smooth con-
nection causes the phase distortion in the backward scattering (see
Supplementary Note 3 for the details), and the maximum of the
forward scattering jEz � Ebzjmax ¼ 0:75V=m implies a phase dif-
ference arcsinð0:75Þ ¼ 48:6� resulted from the reconstruction of
wave fronts. In comparison, Supplementary Fig. 2c and Supple-
mentary Fig. 6d display the average curvature index �ρ ¼ 0:54 for
double-camelback bump and �ρ ¼ 0:39 for single-camelback bump,
respectively, both satisfying the requirement Eq. (5) and leaving near-
zero ρ on smooth boundaries. It may be noticed that the wavelength
index w for the concealing devices shown in Supplementary Fig. 2d,
Supplementary Fig. 6e, and Supplementary Fig. 8g is smaller than
unity everywhere because it is related to lower powers of λ0 and n;
thus, it is much easier to meet the requirement of Eq. (4) compared
to Eq. (5). These selected curvature and wavelength characteristics
that validate the approximation of geometrical optics are indis-
pensable for the excellent performance of electromagnetic devices.

The isotropic case that determines the expression of requirements
Eqs. (4) and (5) is based on the conformal or quasi-conformal
mappings between two-dimensional manifolds. Benefiting from the
rapid development in conformal parameterization, a series of
mapping methods can be used to design surface wave
concealment29,39,40. The BFF method29 adopted in our study can
establish near-perfect conformal mappings not only between smooth
manifolds but also surfaces with cuspidal points, such as sharp
corners and cone singularities, offering exhilarating promise for
wave manipulation on more complicated surfaces. In addition, there
are algorithms aimed at constructing quasi-conformal mappings

between high-genus manifolds41,42, which can be used to deal with
phase regulation on surfaces with holes. One noteworthy idea is to
map a high-genus surface to a zero-genus plane region by trans-
forming holes into slits43,44 which implies the possibility for the
scheme conducted in simply connected regions to manipulate wave
behaviors on multiple connected surfaces. In addition, it should be
pointed out that high conformality of the mapping always relies on
the surface parameterization algorithms and intrinsic curing degree
of geometries (see Supplementary Note 4 for a detailed discussion).
By reasonably utilizing advanced algorithms for a variety of parti-
cular cases, our method has the potential to be a universal scheme
for controlling surface electromagnetic waves on an arbitrary two-
dimensional manifold.

Conclusions
In summary, we have proposed a general method to manipulate
electromagnetic waves on smooth two-dimensional manifolds
without rotational symmetry by means of a certain isotropic
refractive index distribution derived from the quasi-conformal
mapping. The relationship between medium and mappings is
induced from the wave equation on the manifold under the
geometrical optics approximation. Numerical quasi-conformal
algorithms are introduced to construct mappings between
manifolds, and consequent functional mediums are validated by
concealing surfaces and generating illusions on plane regions. By
cascading mappings between R2 and R3 to obtain a mapping
betweenR3, we succeed in reproducing the scattering of a surface
on another surface. In addition, functional devices such as surface
Luneburg lenses, surface Eaton lenses, and black holes for surface
waves are designed based on carpet cloaks. Finally, the indices
required by geometrical optics are reviewed to demonstrate the
validity of the approximation on simulation models. Our method
paves the way for the regulation of surface electromagnetic waves
on any two-dimensional manifold and can be utilized to control
surface waves in other fields, such as acoustics, mechanics, and
thermodynamics.

Methods
Conformal transformation optics for surface waves
Wave equation on curved manifold. The concept of transformation medium comes
from the equivalence between geometry and media. Within the Einstein summa-
tion convention, Maxwell’s wave equation for the electric field ∇M ´∇M ´E�
μ0ε0∂

2
t E ¼ 0 in free space can be expressed as ref. 16

∇j∇jEi � RijE
j � c�2

0 ∂2t Ei ¼ 0; ð6Þ
where c0 ¼ 1=

ffiffiffiffiffiffiffiffiffi
μ0ε0

p
is the light velocity in free space; Rij is the Ricci tensor of the

considered geometryM. Supposing that electromagnetic waves are confined near a
curved surface M embedded in R3 as surface waves, its local plane wave solution
reads Ei ¼ Ei expðiφÞ with constant complex amplitudes Ei , where the phase reads
φ= k ⋅ r− ωt with the wave vector k ¼ ∇Mφ and angular frequency ω=− ∂tφ.
For surface waves, the wave vector k lies in the tangent space of the curved surface
M, i.e., k 2 T ðMÞ. Thus, Eq. (6) can be simplified and approximated in the
regime of geometrical optics where the wavelength λ= 2π/k varies slowly with
distance, i.e.,

j∇Mλj � 1: ð7Þ
In addition, the effective curvature of the curved surface should be small enough
compared to the wavelength so that the assumption of locally plane waves is valid,
i.e.,

jRijjλ2 � 1: ð8Þ
As a result, inserting Ei ¼ Ei expðiφÞ into Eq. (6) and considering that the (spatial
and temporal) derivatives of Ei vanish, one can obtain the dispersion relation for
the surface wave propagating on M, which reads as

k2 ¼ kjkj ¼ gijkikj ¼ ω2=c20: ð9Þ
Here, gij is the induced metric tensor for the curved surface M, which can be
determined from the transformation of the Jacobian matrix from the manifold M0

in R2 to M31.
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Wave equation on a flat plane. Alternatively, if M is flat (i.e., Rij= 0) and filled
with anisotropic medium denoted by relative permeability tensor μij, Eq. (6)
becomes

∇ ´ ðμ�1 � ∇ ´ EÞ � μ0ε0∂
2
t E ¼ 0: ð10Þ

Suppose that the electromagnetic waves are confined near M and the electric field
E is perpendicularly polarized. In a Cartesian coordinate system, if M can be
placed in the xy plane, we focus on the case that the electric field vector E lies in the
normal space of the flat plane M, i.e., E 2 N ðMÞ, and the global wave solution
may read Ez ¼ Ez expðiφÞ. Thus, the phase φ is independent of z and the wave
vector lies on the plane as k= (kx, ky, 0), because a flat plane coincides with its
tangent space. Since the flat manifold M has a zero curvature tensor, the condition
Eq. (8) holds naturally. Once the other condition Eq. (7) is satisfied that the
wavelength varies slowly, one may disregard the derivatives of the complex
amplitude after inserting Ez ¼ Ez expðiφÞ into Eq. (10) and obtain the dispersion
relation for the surface wave propagating on M, which reads
ðμxxk2x þ 2μxykxky þ μyyk

2
yÞ= detðμÞ ¼ ω2=c20. By excluding consideration of the

particular polarization, the dispersion equation can be recast within the Einstein
summation convention as

1
detðμÞ μ

ijkikj ¼
ω2

c20
: ð11Þ

Transformation medium and geometry. For electromagnetic waves that behave
identically on two manifolds, one can obtain the equivalence between geometry
and material properties by comparing Eqs. (9) and (11), which yields

μij

detðμÞ ¼ gij: ð12Þ

The relative permeability tensor μij actually creates an illusion in the flat plane
because a spatial point filled with medium μ is equivalent to a metric
g ¼ detðμÞμ�1. If the local Cartesian coordinate system at this point is aligned
along the orthogonal eigenvectors of μ, the real and symmetric permeability tensor
reduces to diag(μx, μy, μz) so that the square of the line element in the direction x is
ds2= gxxdx2= μyμzdx2, which is also the square of the optical path length in the
curved free space. Compared to ds2 ¼ n2xdx

2 in the flat manifold, one can derive
n2x ¼ μyμz and similar results in the y and z directions. Consequently, the rela-
tionship between the relative permeability tensor μ and the refractive index tensor
n may be expressed as n2 ¼ detðμÞμ�1 and one may further obtain

n2illusion ¼ g; ð13Þ
by referring to Eq. (12). In a similar manner, the transformation medium can be
obtained for Hz polarization. We stress that the proposed design method is
polarization-independent (see Supplementary Note 5 for details).

Surface transformation and TO medium. The metric tensor in equation Eq. (13) is
induced by the mapping f : M0 ! M and can be constructed by the Jacobian
matrix J3 × 2 as g= JTJ31. Nevertheless, we prefer to associate nillusion with the
Jacobian matrix Λ2 × 3 that represents the transformation from R3 (virtual space)
to R2 (physical space). Actually, the asymmetric Jacobian matrices J3 × 2 and Λ2 × 3

can be denoted as the Moore-Penrose pseudoinverse of each other31, i.e., J=Λ†,
where the superscript ‘†’ denotes the pseudoinverse. Thus, one can rewrite the
equivalence Eq. (13) as

n2illusion ¼ g ¼ JTJ ¼ ΛΛT
� ��1

: ð14Þ
Similar relationship can be obtained for concealing medium nconcealment and cor-
responding Jacobian matrix J3 × 2 from R2 (virtual space) to R3 (physical space) as

n2
concealment ¼ JTJ

� ��1
: ð15Þ

For the mapping between R3 (Supplementary Fig. 4), which is formed by cas-
cading two transformations between R3 and R2, the consequent medium for the
illusion can be recast as the combination of the concealing and illusion refractive
index tensors, i.e.,

n2illusion ¼ Λ1Λ
T
1

� ��1 � JT2 J2
� ��1

; ð16Þ
where Λ1 and J2 are Jacobian matrices for mappings f1 and f2, as illustrated in
Supplementary Fig. 4, respectively. In particular, when the mappings are con-
formal, the refractive index becomes isotropic and the corresponding Jacobian
matrix has two identical singular values. Taking the determinants of Eqs. (14) and
(15), the refractive indices can be denoted by singular values of the Jacobian
matrices as nconcealment= 1/σJ and nillusion= 1/σΛ.

Discrete conformal mapping and transformation medium
Review on discrete conformal mapping. It has been demonstrated that an isotropic
refractive index distribution can be achieved by solving equations for equal optical
path length only on rotationally symmetric surfaces25. Regarding the non-
rotationally symmetric concealing device, high anisotropy is introduced by the
projection mapping that distorts the coordinate grid14. However, numerical

algorithms for surface parameterization provide possible conformal mappings for
arbitrary surfaces. For example, the angle-based flattening method45,46 has been
proposed to construct conformal parameterization by minimizing a punishing
functional to decrease angular distortion, while its non-linearity reduces compu-
tational efficiency. In addition, the so-called least squares method47 and the
spectral method48 have been introduced to achieve higher efficiency, benefiting
from their linearity. Their disadvantages are free target boundaries and non-
bijectivity, whereas we expect a one-to-one mapping that includes every point in
physical and virtual space with controlled boundaries. Further research, such as
disk conformal mapping40, has been reported as a linear and bijective conformal
mapping method but with a fixed disk boundary. Not until BFF29 enabled editing
of the boundary as demand was the drawbacks totally eliminated. To deal with a
certain electromagnetic circumstance, an appropriate algorithm could be chosen
from the preceding techniques49,50.

Triangulation and Jacobian matrices. Supposing that the conformal mapping reads
f 1 : M2 ! M1 (or f 2 : M1 ! M2) between manifolds M1 � R3 and
M2 � R2, as shown in Supplementary Fig. 1a, one can find that a simplex S1 in
meshed M1 and its counterpart in meshed M2 are a pair of similar triangles,
which allows S1 and S2 to share a same barycentric coordinate system. This local
coordinate system, as shown in Supplementary Fig. 1b, can represent any point
inside the simplex as the linear combination of three vertices and helps quickly
induce the Jacobian matrix of numerical mappings based on triangular mesh
parameterization. For example, the location of the point qðx0; y0Þ on S2 can be
expressed as x0 ¼ ∑3

i¼1 λix
0
i and y0 ¼ ∑3

i¼1 λiy
0
i with λ1+ λ2+ λ3= 1, i.e., a linear

combination of vertices q1ðx01; y01Þ, q2ðx02; y02Þ and q3ðx03; y03Þ. For the triangulation
mesh, we can obtain the barycentric coordinates, which read as

λ1 ¼ ðy02 � y03Þðx0 � x03Þ þ ðx03 � x02Þðy0 � y03Þ
� �

= detðMÞ; ð17Þ

λ2 ¼ ðy03 � y01Þðx0 � x03Þ þ ðx01 � x03Þðy0 � y03Þ
� �

= detðMÞ; ð18Þ

λ3 ¼ ðy01 � y02Þðx0 � x02Þ þ ðx02 � x01Þðy0 � y02Þ
� �

= detðMÞ; ð19Þ
where detðMÞ ¼ detð½q1 � q3; q2 � q3�Þ ¼ ðx01 � x03Þðy02 � y03Þ þ ðx03 � x02Þðy01 � y03Þ,
with qiðx0i; y0iÞ being the i-th vertices (i= 1, 2, 3). Here, Eqs. (17), (18), and (19)
show that the barycentric coordinate system (λ1, λ2, λ3) can be expressed by the
Cartesian coordinate system ðx0; y0Þ. Regarding the point p(x, y, z) on S1 � R3,
mapped from the point q in R2, we have x ¼ ∑3

i¼1 λixi , y ¼ ∑3
i¼1 λiyi and z ¼

∑3
i¼1 λizi as the linear combination of p1(x1, y1, z1), p2(x2, y2, z2) and p3(x3, y3, z3),

since S1 and S2 share the same barycentric coordinates λi. As a result, the Jacobian
matrix J3 × 2 of the mapping from S2 � R2 to S1 � R3 can be derived according
to the derivatives of (λ1, λ2, λ3) with respect to ðx0; y0Þ, which reads as

J3 ´ 2 ¼
∂x0x ∂y0x

∂x0y ∂y0 y

∂x0 z ∂y0 z

0
B@

1
CA ¼ 1

detðMÞ

x1 x2 x3
y1 y2 y3
z1 z2 z3

0
B@

1
CA

y02 � y03 x03 � x02
y03 � y01 x01 � x03
y01 � y02 x02 � x01

0
B@

1
CA: ð20Þ

Similarly, one can derive the Jacobian matrix Λ2 × 3 of the numerical mapping from
S1 to S2; alternatively, one can calculate the Moore-Penrose pseudoinverse of J3 × 2

as Λ2 × 3
31. By calculating the Jacobian matrices J3 × 2 or Λ2 × 3 on each simplex, the

information on the mapping f1 or f2 can be fully described.

Simulation methods. The wave behavior of electromagnetic devices is simulated
using the finite element method. The geometric model is an optical thin film
waveguide whose thickness is less than one-fifth of the wavelength. On the outer
surfaces of the waveguide, the perfect electric conductor boundary condition is
applied to emulate the propagation of the surface wave on a two-dimensional
manifold. Thus, the propagation of the plane wave or Gaussian beam is restricted
within the optical thin film. To mimic an open and non-reflecting infinite domain,
perfectly matched layers are applied on the boundary of the propagating plane. The
designed medium is configured to the waveguide as a fitting function interpolated
from the discrete data set calculated on extra-dense meshes.

Data availability
All data needed to evaluate the conclusions in the paper are presented in the paper and/
or the Supplementary Materials. Raw data and corresponding simulation data are
available upon reasonable request.
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