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Can the double-slit experiment distinguish between
quantum interpretations?
Ali Ayatollah Rafsanjani 1,2✉, MohammadJavad Kazemi 3, Alireza Bahrampour1,4 & Mehdi Golshani2,4

Despite the astonishing successes of quantum mechanics, due to some fundamental pro-

blems such as the measurement problem and quantum arrival time problem, the predictions

of the theory are in some cases not quite clear and unique. Especially, there are various

predictions for the joint spatiotemporal distribution of particle detection events on a screen,

which are derived from different formulations and interpretations of the quantum theory.

Although the differences are typically small, we show that these predictions can be experi-

mentally distinguished by a proposed unconventional double-slit configuration, which is

realizable using present-day single-atom interferometry. This experiment would enrich our

understanding of the foundations of quantum mechanics.
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In textbook quantum theory, time is a parameter, not a self-
adjoint operator1, hence there is no agreed-upon way to
compute the temporal probability distribution of events from

the first principles (i.e. the Born rule). Nonetheless, since clocks
exist and time measurements are routinely performed in quan-
tum experiments2,3, a complete quantum theory must be able to
predict the temporal statistics of detection events. For example, in
the famous double slit experiment, each particle is detected at a
random time as same as at a random position on the detection
screen4–9. Therefore, one can ask: What is the position-time joint
probability density Pðx; tÞ on the screen? Although this question
is very old10–14, it is still open15–21. In fact, the ambiguity in the
arrival time distribution even prevents a clear prediction of
cumulative arrival position distribution,

R
Pðx; tÞdt, which is

typically measured in a non-time-resolved double-slit experiment.
Note that, the Heisenberg position operator describes position
measurement at a specific time, not position measurements at
random times22,23. In other words, ∣ψt(x)∣2 is just the conditional
position probability density at the specific time PðxjtÞ16,17,24,25,
not the position-time joint probability density9,26,27.

Nonetheless, usual experiments are performed in the far-field
(or scattering) regime, where a semiclassical analysis is often
sufficient15. In this analysis, it is assumed that particles move
along classical trajectories, and the arrival time distribution is
computed using the quantum momentum distribution8,28,29.
However, because of the quantum backflow effect30, even in free
space, the quantum mechanical time evolution of position
probability density is not consistent with the underlying uniform
motion assumption, especially in near-field interference
phenomena31. In fact, due to recent progress in ultra-fast detector
technology32–35, it will soon be possible to investigate the near-
field regime, where the semiclassical approximation breaks down
and a deeper analysis is required15,36.

To remedy this problem, based on various interpretations and
formulations of quantum theory, several attempts have been
made to introduce a suitable arrival time distribution. On the one
hand, according to the (generalized) standard canonical inter-
pretation, the arrival distribution is considered as a generalized
observable, which is described by a positive-operator-valued
measure (POVM), satisfying some required symmetries11,12,37,38.

On the other hand, in the realistic-trajectory-based formulations
of quantum theory, such as the Bohmian mechanics39, Nelson
stochastic mechanics40, and many interacting worlds
interpretation41, the arrival time distribution could be obtained
from particles trajectories7,20,21,42,43. Moreover, in other
approaches, the arrival time distribution is computed via phe-
nomenological modeling of the detection process, such as the
(generalized) path integral formalism in the presence of an
absorbing boundary14,44–46, Schrödinger equation with complex
potential or absorbing boundary47–51, and so on52–58.

In principle, the results of these approaches are different.
However, in most of the experimental situations, the differences
are typically slight, and so far as we know, in the situation where
differences are significant, none of the proposals have been
backed up by experiments in a strict manner8,43. An experiment
that can probe these differences would undoubtedly enrich our
understanding of the foundations of quantum mechanics. The
purpose of the present paper is to make it evident, via numerical
simulations, that the famous two-slit experiment could be utilized
to investigate these differences if we simply use a horizontal
screen instead of a vertical one: see Fig. 1. Using current laser
cooling and magneto-optical trapping technologies, this type of
experiment can be realized by Bose-Einstein condensates, as a
controllable source of coherent matter waves59–61. Moreover, our
numerical study shows that the required space-time resolution in
particle detection is achievable using fast single-atom detectors,
such as the recent delay-line detectors described in ref. 62,63 or the
detector used in ref. 6,64.

Results and discussion
Spatiotemporal arrival distribution. Here we investigate the
spatiotemporal arrival distribution of particles in an unconven-
tional double-slit experiment with a horizontal screen instead of a
vertical one, and contrast the predictions of different interpreta-
tions and formulations of quantum theory. As we have discussed
in Supplementary Note 1, in the vertical screen case, there is no
significant difference between the different methods’ predictions.
As shown in Fig. 1, the setup consists of two identical slits at
y= ±s, and screens are placed at x= Lx and y= Ly correspond to
the vertical and horizontal screens, respectively. To avoid the
mathematical complexity of Fresnel diffraction at the sharp-edge
slits, it is supposed that the slits have soft edges that generate
waves having identical Gaussian profiles in the y-direction. So we
can take the wave function as an uncorrelated two-dimensional
Gaussian wave packet, ψðx; y; tÞ ¼ N½Gσy

uy ðy � s; tÞ þ G
σy
uy ðy þ

s; tÞ�Gσx
ux
ðx; tÞ; where Gσ

uðx; tÞ ¼ ð2πs2t Þ�
1
4 exp½ðx � utÞ2=4σstþ

imuðx � ut
2 Þ=_�, with N the normalization constant, m the particle’s

mass, σ the initial dispersion, u the wave packet’s velocity, and
st= σ(1+ iℏt/(2mσ2)). This form of Gaussian superposition state
is commonly used in the literature7,65–68 and is feasible to
implement by quantum technologies because such a state could
be produced and controlled readily69,70, even without using
slits60. Moreover, one can generalize this wave function by adding
a relative phase between wave packets which is discussed in
Supplementary Note 2. In our proposed setup, we have chosen
the metastable helium atom, with mass m= 6.64 × 10−27 kg, as
the interfering particle, and the parameters as s= 10 μm,
σx= 0.04 μm, σy= 0.5 μm, ux= 3ms−1, and uy= 0. These values
are feasible according to the performed experiments71. Moreover,
the metastable helium atom could be detected with high efficiency
because of its large internal energy63,72.

In this experiment, the most general experimentally measurable
distribution is joint spatiotemporal arrival distribution on the screen
surface S, denoted by Pðx; tjx 2 SÞ, which is also called screen

Fig. 1 Schematic double-slit experiment setup. The center of two slits is
considered as the coordinate origin and the distance between the two slits
is 2s. The vertical and horizontal screens are placed at x= Lx and y= Ly,
respectively. The dashed black line shows a typical Bohmian trajectory—
with recursive movements—that arrives at the horizontal screen. A suitable
single-particle detector, in addition to particle arrival position, can record
the arrival time using a proper clock.
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observable12. From this joint distribution, one can derive other
arrival distributions, such as the marginal arrival time distribution at
the screen, Πðtjx 2 SÞ, the conditional local arrival time distribution
at a specific point x on the screen, Πxðtjx 2 SÞ, and the marginal
cumulative arrival position distribution, Pðxjx 2 SÞ. To calculate P,
we consider the main proposed approaches that are based on various
interpretations and formulations of quantum theory, including the
Semiclassical (SC) approximation, and the Standard (STD),
Quantum Flux (QF), Bohmian Truncated Current (BTC), Absorb-
ing Boundary Rule (ABR), and Path Integral with Absorbing
Boundary (PAB) methods. These approaches are described and
discussed in detail in the Methods section. In brief, these methods
can be divided into two categories. In the first category, it is assumed
that an ideal detector before particle detection does not affect the
evolution of the wave function. This category includes the SC, STD,
QF, and BTC methods, and is referred to as intrinsic or ideal
methods. In the second category, which includes ABR and PAB
methods, the detector back-effect is considered. In the SC method, it
is assumed that particles move classically between the preparation
and measurement. Therefore, the arrival time randomness is
understood as a result of the uncertainty of momentum, and the
arrival time distribution is obtained from momentum distribution as

PSCðx; tjx 2 SÞ ¼ NSC m
3t�4 ψðx; tÞ

�� ��2Z
S
j~ψ0ðmx=tÞj2 x � dS;

ð1Þ
where ~ψ0 is the initial wave function in momentum representation,
and NSC is the normalization constant. The STD method is based on
defining a proper arrival time operator, and the joint arrival
distribution is obtained as

PSTDðx; tjx 2 SÞ ¼ ∑
α¼±

jψα
Sðx; tÞj2: ð2Þ

where ψ ±
S ðx; tÞ is Kijowski’s wave function, which is defined using

eigenstates of the arrival time operator. On the other hand, inspired
by Bohmian and some other formulations, many physicists would
agree that the joint arrival distribution is given by the absolute value
of the perpendicular component of the quantum probability current
to the screen surface as

PQFðx; tjx 2 SÞ ¼ NQFjJðx; tÞ � nj; ð3Þ
where Jðx; tÞ ¼ �_m�1Im½ψ�

t ðxÞ∇ψtðxÞ�, NQF is the normalization
constant, and n is the outward normal to the screen S. In the BTC
method, as another version of QF, instead of the usual quantum
current, the Bohmian truncated current, ~Jðx; tÞ, is used to ensure
that Bohmian particles enter the detector only once, and we have

PBTCðx; tjx 2 SÞ ¼ NBTCj~Jðx; tÞ � nj; ð4Þ
where NBTC is the normalization constant. Note that, the Bohmian
truncated current is defined using Bohmian trajectories and is
computed numerically. Another proposed way to consider the
detector effect is by using a proper boundary condition on the
screen. In this regard, in the ABR method, we have

PABRðx; tjx 2 SÞ ¼ NABRjψABCðx; tÞj2; ð5Þ
where NABR is the normalization constant, and ψABC represent the
solution of the free Schrödinger equation satisfying a Robin
boundary condition, n ⋅ ∇ψABC= iκψABC, where κ is a detector
characterizing constant. Finally, using a generalized version of path
integral formalism in the presence of an absorbing boundary, the
joint arrival distribution is obtained as

PPABðx; tjx 2 SÞ ¼ NPAB
λ_

mπ
jn � ∇ψPABðx; tÞj2

exp � λ_

mπ

Z t

0
dt0

I
S
dSjn � ∇ψPABðx0; t0Þj2

� �
;

ð6Þ

where NPAB is the normalization constant, and ψPAB is the solution
of the Schrödinge equation satisfying the Dirichlet boundary
condition, and λ is a proportionality factor with the dimension of
length. The origins of these equations and the details of their
derivation are brought up in the Methods section.

In Fig. 2, all the mentioned spatiotemporal distributions, PSC,
PSTD, PQF, PBTC, PABR, and PPAB, are plotted for a horizontal
screen located at Ly= 15 μm. These density plots clearly visualize
the differences between the proposals. In this figure, one can see
separated fringes with different shapes, which implies that the
particles arrive at the screen in some detached space-time
regions. In the insets, one can see that the shapes of these regions
are different for each proposal. In the joint density of the
semiclassical approximation (Fig. 2a), fringes are well-separated,
while the standard distribution (Fig. 2b) exhibits more continuity
in its fringes. In addition, in the pattern of the quantum flux
proposal (Fig. 2c) there are grooves between every two fringes
which are due to the changing of the sign of J(x, t) ⋅ n in (3). In all
panels of Fig. 2, the duration of temporal no-arrival windows
between every two typical fringes varies in the range between 0.01
and 0.2 ms, which has a spatial extension of about 0.3–2 mm.
These space-time scales are utterly amenable empirically by
current technologies64,71, which could be used to test these
results. As one can see, the distributions of the ABR and PAB
methods—i.e., Fig. 2d, e—have more compatibility with each
other than the result of the BTC method. However, there are
differences between them which are more obvious in the zoomed
areas. The joint density of the ABR is more uniformly distributed
than that of the PAB method. The empty areas between the
fringes in Fig. 2f are due to the elimination of second and third
arrivals in the recursive trajectories, which we discuss in the
Detection schemes subsection. In the following subsections, we
analyze the predictions of the different approaches and models
about the marginal arrival distributions and discuss more about
the feasibility of our proposed experiment.

Detailed comparison between intrinsic arrival distributions. To
calculate the intrinsic marginal arrival distribution of each
method, one could simply integrate the joint arrival distribution
over the screen surface S as Πðtjx 2 SÞ ¼ R

S Pðx; tjx 2 SÞdS,
with dS= n ⋅ dS the magnitude of the surface element dS which is
directed outward at x 2 S. In this regard, in Fig. 3, the arrival
time distributions at the screen are plotted for the horizontal
screens located at Ly= 30 μm in panel (a), Ly= 25 μm in panel
(b), Ly= 20 μm in panel (c), and Ly= 15 μm in panel (d). In this
figure, solid-black, dashed-green, and dash-dotted-blue curves
represent the distributions ΠSTD, ΠQF and ΠSC, respectively. Also,
the vertical lines show the average time of arrival to the screen, �tS,
associated with these arrival time distributions, which could be
calculated as

�tS ¼
Z 1

0
dt Πðtjx 2 SÞ t: ð7Þ

As one can see in Fig. 3, as the screen’s distance from the center
of the two slits Ly decreases, the difference between distributions
and average arrival times increases. Most of these differences
occur in the early times, which are associated with the particles
that arrive at the S in the near field. Furthermore, we observe that
the ΠSC behaves quite differently from ΠQF and ΠSTD. The
distributions ΠQF and ΠSTD are more or less in agreement for
larger Ly, however, for the screen that is located at Ly= 15 μm, a
significant difference between the standard and quantum flux
distributions occurs around t ≈ 0.2 ms.
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Furthermore, we can compute the average arrival time to each
point on the screen using the joint probability distribution as

�tx ¼
R1
0 dt Pðx; tjx 2 SÞ tR1
0 dt Pðx; tjx 2 SÞ ; ð8Þ

and the cumulative position interference pattern can be calculated
as

Pðxjx 2 SÞ ¼
R1
0 dt Pðx; tjx 2 SÞR1

0 dt
R
SdS Pðx; tjx 2 SÞ : ð9Þ

In panels (a) and (b) of Fig. 4, these two quantities are shown for
the horizontal screen which is placed at y= 15 μm. In contrast to
the vertical screen, the cumulative position distribution of the
semiclassical approximation is entirely separate from the two
other proposals. The cumulative position distribution resulting
from standard and quantum flux approaches have obvious
differences from each other, as well. As one can see in panel (b) of
Fig. 4, the average arrival times are the same for all three methods

at first and begin to deviate from each other around x ≈ 5 mm,
then again, these curves converge to each other around
x ≈ 25 mm, approximately. The maximum deviation between
the standard and quantum flux average arrival time occurs at
x ≈ 19 mm, which is quite in the far-field regime—the width of
the initial wave function is ~O(10−3)mm which is ≪19 mm.
Therefore, one can suggest the average arrival time in the gray
region of the panel (b) of Fig. 4 as a practical target for comparing
these approaches experimentally. To this end, we study arrival
time distributions at some points of this region as local arrival
distributions. The arrival time distribution conditioned at a
specific point x on the screen can be obtained as follows

Πxðtjx 2 SÞ ¼ Pðx; tjx 2 SÞR1
0 dt Pðx; tjx 2 SÞ : ð10Þ

Using the associated joint distribution of each proposal, we
have plotted panels (c–f) of Fig. 4 that show Πxðtjx 2 SÞ at the
positions x= 16.2, 17.4, 18.4, 19.2 mm, on the screen placed at

Fig. 2 Joint spatiotemporal probability distributions on the horizontal screen of the double-slit setup. a–c Represent intrinsic distributions predicted by
the semiclassical approximation, standard method, and quantum flux approach, respectively. Panel d, e are the joint arrival distributions predicted by
methods that take the screen back-effect into account, i.e., absorbing boundary role and path integral with absorbing boundary, respectively. Panel (f) is the
joint arrival distribution obtained by Bohmian truncated current that is calculated numerically by simulating 107 Bohmian trajectories. Insets: Magnified
contour plots of the joint distributions.
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Ly= 15 μm. The broken black curves in these panels, resulting
from the quantum flux proposal, contrast with the smooth curves
of the other two methods, which could be understood as the
result of the changing of the signature of the y-component of the
probability current: Note that, quantum flux distribution is given
by the absolute value of the probability current. The origin of
distinctions between the local average arrival times is more
perceptible from these local arrival distributions. In principle,
these distributions could be probed using fast and high-resolution
single-atom detectors64,72. In particular, the delay-line detector
that is recently developed by Keller et al.62 seems suitable for our
purpose: it has the capability to resolve single-atom detection
events temporally with 220 ps and spatially with 177 μm at rates
of several 106 events per second.

We estimate by a numerical investigation that these local
arrival distributions could be well reconstructed from about 104

number of detection events. As an example, in Fig. 4, the
histograms associated with the probability densities in panel (f)
are plotted in panel (g), using 104 numerical random sampling. It
is easy to estimate that the recording of 104 particle detection
events can determine the local average arrival time with a
statistical error of about 10−2ms, while the differences between
local average arrival times of various proposals are almost
>10−1ms. Using cumulative position distribution, Fig. 4b, one can
estimate that, if the total number of particles that arrived at the
screen is about 108, we have about 104 particles around

x= 19.2 mm, in the spacial interval (19.1, 19.3). Using recent
progress in laser cooling and magneto-optical trapping72, the
preparation of a coherent ensemble of metastable helium atoms
with this number of particles is quite achievable62.

One might be inclined to think that the difference between the
quantum flux and standard average arrival times is just due to
changing the signature of J(x, t) ⋅ n, but in the following, we show
that even without the contribution of the negative part of
J(x, t) ⋅ n, these proposals are significantly distinguishable.

Detection schemes. According to the Bohmian deterministic
point of view, there are several possible schemes to detect arrived
particles, especially for the horizontal screen surface on which we
have recursive motions (see Figs. 1 and 5). One can assume that
the horizontal screen is swept with a point-like detector that
surveys all arrived particles at the screen surface S, which we call
spot-detection scheme. In this scheme, one option is to use a
unilateral detector to detect arrived particles at the top or bottom
of S. In this case, the positive and negative parts of the quantum
probability current correspond respectively to particles that arrive
at the top or bottom of S (as shown in Fig. 5a), and we must use
Eq. (26) to calculate the screen observables. Additionally, we can
choose a bilateral detector (or two unilateral detectors) that
probes all particles that arrive from both sides of S, along the
time with several repeats of the experiment (as shown in Fig. 5b).
In these circumstances (i.e. spot-detection scheme), there is no
barrier—such as the one in Fig. 5c—in front of the particles
before they reach the point of detection and we can use the
quantum flux method to obtain the screen observables as in the
previous subsection.

As we have shown in the methods section, whether the
particles arrive from the top or bottom of S, the absolute value of
the quantum probability current yields the trajectories’ density
and consequently gives the joint distribution of the total arrival at
each point of S. This fact is the case for the standard method, as
well, however, there is a subtle difference between the two
proposals in the spot-detection scheme. When we talk about the
spot-detection in the Bohmian approach, it would be considered
the possibility of multi-crossing and the distribution includes all-
arrivals at S. Although, in the standard method there is an
interpretation for ψþ

S ðx; tÞ and ψ�
S ðx; tÞ in Eq. (21), which relates

them to the particles that arrive at S in a direction which is the
same or opposite with the direction of outward normal of the
screen n, respectively11,73. Nevertheless, it should be noted that,
in contrast to the Bohmian interpretation, since there is no
defined particle trajectory in the standard interpretation, it is
meaningless to ask whether it only counts the first arrivals to each
side of the screen or includes recursive movements of particles. In
standard quantum mechanics, there is only one arrival because
once a measurement has been made the state of the particle is not
causally connected to the initial state74.

Alternatively, along with the spot-detection scheme, it could be
assumed that there is a continuous flat barrier in front of the
particle’s paths as the detection surface or screen surface that does
not allow particles to cross this surface. Depending on the
screen’s length and position, there are several possibilities for the
detection process. In each case, a specific number of particle paths
contribute to the distribution of arrival time. In the simplest case,
the screen blocks all the trajectories that reach the horizontal
surface S, and we only detect the first-arrivals. In such a setup, we
can no longer use the quantum flux method to represent
Bohmian trajectories’ first encounter with the surface; hence, the
screen observables must be obtained by numerical analysis, due to
the definition of truncated current as in Eq. (27) and its
corresponding joint distribution, PBTCðx; tjx 2 SÞ, defined in

Fig. 3 Arrival time distributions at the horizontal screen of the double-slit
setup. a–d Show the arrival distribution, Π(t∣y= Ly), at different screen
distances Ly= 30, 25, 20, 5 μm, respectively. The vertical lines show the
average arrival time. In all panels, the dark cyan dot-dashed lines show the
semiclassical approximation, the green dashed lines show the standard
method, and the black solid lines show the quantum flux approach.
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Eq. (28). By computing the Bohmian trajectories, we can find
positions and times of the first-arrivals to the screen, and
consequently calculate the arrival time distribution which
mathematically could be defined as

ΠBTCðtjx 2 SÞ ¼
Z

S
PBTCðx; tjx 2 SÞdS: ð11Þ

Also, other observable quantities such as the cumulative spatial
distribution and averaged arrival time over the detection surface
could be defined and calculated numerically in a similar way—by
substitutingPBTCðx; tjx 2 SÞ in Eqs. (8) and (9). Furthermore, we
can complete the computations to find the second and third
encounters to the surface (regardless of the barrier).

In Fig. 6, we show our numerical results of Bohmian
trajectories simulation. The background scatter plot is the
position and time of arrivals of 2 × 106 trajectories. In this plot,
the second and third arrivals are shown in blue and green,
respectively. Here, it is more clear why we interpret the grooves of
the quantum flux density plot (Fig. 2c) as a result of the multi-
crossing of Bohmian trajectories. The three middle graphs are the
average time of the first and all-arrivals, which are simulation
results of 108 trajectories, and are compared by the quantum flux
method. As expected, the average time of all-arrivals fits on the
quantum flux curve. However, the average time of first-arrivals
deviates from all-arrivals in the area discussed in the previous
section (between x= 16.2 mm and x= 19.2 mm).

To scrutinize the deviation zone of Fig. 6 (the gray region),
Fig. 7 is drawn to show the arrival time distributions at the screen
positions x= 19.2 mm in panel (a), x= 18.4 mm in panel (b),
x= 17.4 mm in panel (c), and x= 16.2 mm in panel (d). As one
can see, at the first recursive points of quantum flux distribution,

the first-arrival distributions drop down to zero. This implies that
in the presence of a barrier-like screen, there would be a big
temporal gap in the local arrival distribution at these points.
These gaps could be investigated as a result of the non-
intersection property of Bohmian trajectories that causes a
unilateral motion of particles along the direction of the
probability current field.

Screen back-effect. In order to complete the investigations car-
ried out in previous subsections, we are going to study the screen
back-effect in the double-slit experiment with a horizontal screen.
In this regard, we compare the arrival distributions that result
from the absorbing boundary rule (ABR), path-Integral with
absorbing boundary (PAB), and Bohmian truncated current
(BTC).

We continue with the same initial conditions as in previous
subsections. Also, for each method there is a constant
characterizing the type of detector which we explain in method
section. We choose the characterizing constant of ABR method as
κ= 1 μm−1. This value of κ leads to the maximum absorption
probability—which is almost 0.4—for the chosen initial wave
function. In addition, for a more meaningful comparison, we
consider the proportionality factor of PAB method as λ= 1 μm,
which leads to the same absorption probability as ABR. In Fig. 8,
the spatial and temporal marginal distributions are shown in
panels (a) and (b), respectively. In addition, in panel (c), the
associated local average arrival times are compared. The PAB
method leads to significant discrepancies in marginal distribu-
tions; the maximum difference is about 40% that occurs around
x ≈ 0.8 mm, which seems testable clearly. In contrast to the
previous results on intrinsic distributions, in which the difference

Fig. 4 Spatiotemporal arrival statistics for the double-slit experiment with a horizontal screen. a Represents the cumulative arrival position probability
density. The inset of this panel is a zoom-in of the main plot close to the horizontal axis. b Shows the average time of arrival at each point of the screen. The
inset of this panel is a zoom-in of the area marked with the dashed square in the main plot. c–f show the local arrival time probability densities, Πxðtjx 2 SÞ,
at the points x= 16.2, 17.4, 18.4, 19.2 mm on the screen S placed at y= 15 μm, respectively, which are chosen from the gray region in panel (b). The vertical
lines in these panels represent the average arrival times. g Contains the Histograms associated with the probability densities of the (f), which are generated
by 104 numerical random sampling. In all panels, the dark cyan dot-dashed lines show the semiclassical approximation, the green dashed lines show the
standard method, and the black solid lines show the quantum flux approach.
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between average arrival times was significant, there is a good
agreement in this observable for the ABR and PAB methods.
However, there is a significant difference between the average
arrival time in these two methods and BTC around x ≈ 6 mm. In
Fig. 7, the local arrival time distributions at some points on the
screen are plotted, which show similar behavior.

Conclusions
When and where does the wave function collapse? How one can
model a detector in quantum theory? These are the questions that
we investigated in this work. We tried to show that there is no
agreed-upon answer for these questions, even for the double-slit
experiment that has in it the heart of quantum mechanics75. This
is a practical encounter with the measurement problem76. In this
regard, we numerically investigated and compared the main
proposed answers to these questions for a double-slit setup with a
horizontal detection screen. It is shown that these proposals lead
to experimentally distinguishable predictions, thanks to the cur-
rent single-atom detection technology.

In this work, we suggest the metastable helium atom as a
proper coherent source of the matter wave, however, other
sources may lead to some practical improvements. For example,
using heavier condensate atoms can lead to more clear dis-
crepancies. Recently, S. Roncallo and coworkers suggest an
interesting experiment, using the 87Rb Bose-Einstein condensate
trapped in an accelerator ring77, to probe the various arrival time
proposals55. Moreover, pairs of entangled atoms, for example in a
double-double slit setup, may lead to predictions that are more
distinguishable20,21,78.

Finally, it is worth noting that, although the experiment with
photons may have some practical advantages, there are more
complications in its theoretical analysis. This is partially because
of the relativistic localization-causality problem24,79–81. The the-
oretical investigation of the proposed experiment for photons
would be an interesting extension of the present work, which has
been left for future studies.

Methods
Intrinsic arrival distributions. In this subsection, we first review the semiclassical
approximation and then scrutinize two main proposed intrinsic arrival time
distributions18,43 and their associated screen observables. In these approaches, the
effect of the detector’s presence on the wave function evolution, before particle
detection, is not considered. We discuss this effect in the next subsection.

Semiclassical approximation. As mentioned, in the experiments in which the
detectors are placed far away from the support of the initial wave function (i.e. far-
field regime), the semiclassical arrival time distribution is routinely used to the
description of the particle time-of-flight29,82–85. In this approximation, it is
assumed that particles move classically between the preparation and measurement.
In this approach, the arrival time randomness is understood as a result of the
uncertainty of momentum, and so the arrival time distribution is obtained from
momentum distribution15,19,43,86. In the one-dimensional case, the classical arrival
time is given by

t ¼ mðL� x0Þ=p0; ð12Þ
which is applicable for a freely moving particle of mass m that at the initial t= 0
had position x0 and momentum p0 arriving at a distant point L on a line. Hence, for
a particle with the momentum wave fuction ~ψ0ðpÞ, assuming Δx0≪ ∣L− 〈x〉0∣, the
semiclassical arrival time distribution reads86

ΠSCðtjx ¼ LÞ ¼ mL
t2

j~ψ0ðmL=tÞj2: ð13Þ
This analysis could be generalized in three-dimensional space. Then, the

distribution of arrival time at a screen surface S is given by43

ΠSCðtjx 2 SÞ ¼ m3

t4

Z
S
j~ψ0ðmx=tÞj2 x � dS; ð14Þ

where the dS is the surface element directed outward. The other main distribution
that should be demanded is the joint position-time probability distribution on the
screen, which is also called “screen observable”12. Using the conditional probability
definition, the joint probability of finding the particle in dS and in a time interval
[t, t+ dt] could be written as
Pðx; tjx 2 SÞdSdt ¼ ½Πðtjx 2 SÞdt� ´ ½Pðxjx 2 S; tÞdS�:In this regard, one can use
the fact that ψt(x) is the state of the system, conditioned on the time being t in the
Schrödinger picture. This implies that ∣ψt(x)∣2 refers to the position probability
density conditioned at a specific time t16,17,87. Therefore, in the semiclassical
approximation, the joint spatiotemporal probability density reads as

PSCðx; tjx 2 SÞ ¼ NSCΠSCðtjx 2 SÞ ψtðxÞ
�� ��2 ð15Þ

in which NSC � 1=
R
SdS ψtðxÞ

�� ��2 is the normalization constant, and dS= n ⋅ dS,
where n is the outward unit normal vector at x 2 S.

Standard approach. The first attempts to investigate the arrival time problem, based
on the standard rules of quantum theory, were made at the beginning of the 1960s
by Aharonov and Bohm88, and also Paul89. This approach starts with a symmetric
quantization of classical arrival time expression (12), as follows90:

t̂AB ¼ mL p̂�1 �m
2

p̂�1 x̂ þ x̂ p̂�1� �
; ð16Þ

where x̂ and p̂ ¼ �i ∂=∂x are the usual position and momentum operators,
respectively, and t̂AB is called the Aharonov-Bohm time operator. This operator
satisfies the canonical commutation relation with the free Hamiltonian operator,
½̂tAB; p̂2=2m� ¼ i_, which has been used to establish the energy-time uncertainty
relation73,91. However, although t̂AB is Hermitian (or symmetric in mathematics
literature), it is not a self-adjoint operator92—a fact that is in agreement with
Pauli’s theorem. The origin of this non-self-adjointness can be understood as a
result of the singularity at p= 0 in the momentum representation,
t̂AB ! ði_m=2Þðp�2 � 2p�1∂pÞ92. Nevertheless, although the (generalized) eigen-

functions of t̂AB are not orthogonal, they constitute an over-complete set and
provide a POVM, which are used to define the arrival-time distribution as
follows91,92:

ΠSTDðtjx ¼ LÞ ¼ 1
2π_

∑
α¼±

Z 1

�1
dpθðαpÞ

ffiffiffiffiffi
jpj
m

r
~ψtðpÞe

i
_Lp

�����
�����
2

; ð17Þ

where θ(⋅) is Heaviside’s step function and ~ψtðpÞ is the wave function in the
momentum representation which could be obtained from the initial wave function

Fig. 5 Different schemes of particle detection on the screen surface S. In
the Bohmian point of view, particles could have a recursive motion on
surface S and cross it more than once (e.g. see the plotted trajectory in
Fig. 1). Assuming different detector types, one can probe variant possible
observables on the screen. In (a) a conceivable particle trajectory is
depicted, which crosses S three times. In this panel, a movable point-like
detector is placed on S, which can survey the whole screen and detect
particles that arrive only from one side, while in (b) a two-sided point
detector is placed on S, which can move along it and detect particles that
arrive from up and down. In addition, one can assume there is (c) an array
of side-by-side detectors covering the entire screen surface S. The last
configuration blocks the trajectory and does not allow the crossed particle
to return. In this scheme, we only detect first-arrivals from one side.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01315-9 ARTICLE

COMMUNICATIONS PHYSICS |           (2023) 6:195 | https://doi.org/10.1038/s42005-023-01315-9 | www.nature.com/commsphys 7

www.nature.com/commsphys
www.nature.com/commsphys


~ψ0ðpÞ, as ~ψtðpÞ ¼ ~ψ0ðpÞ exp½� itp2=2m_�: The distribution ΠSTD and its general-
ization in the presence of interaction potential have been referred to as the
“standard arrival-time distribution” by some authors18,93–96. In fact, Grot, Rovelli,
and Tate treated the singularity of (16) by symmetric regularization and obtained
eq. (17) via the standard Born rule73. The generalizations of Eqs. (16) and (17) in
the presence of interaction potential have been investigated in various
works18,38,74,76,97–100. Using these developments, it has been shown that the non-
self-adjointness of the free arrival time operator can also be lifted by spatial
confinement98,101, and the above arrival time distribution could be derived from
the limit of the arrival time distribution in a confining box as the length of the box
increases to infinity99. Furthermore, recently, the distribution (17) is derived from a
space-time-symmetric extension of non-relativistic quantum mechanics102.

The three-dimensional generalization of (17) is derived by Kijowski’s11 via an
axiomatic approach. The assumed axioms are implied by the principle of the
probability theory, the mathematical structure of standard quantum mechanics,
and the Galilei invariance26. Based on these axioms, Kijowski constructed the
following arrival time distribution for a free particle that passes through a two-
dimensional plane S as

ΠSTDðtjx 2 SÞ ¼ 1
2π_

∑
α¼ ±

Z
R2

d2pk ´
Z 1

�1
dp?θðαp � nÞ

ffiffiffiffiffiffiffiffiffi
jp?j
m

r
~ψtðpÞe

i
_x�p?

�����
�����
2

;

ð18Þ
where p⊥ ≡ (p ⋅ n)n and p∥ ≡ p− p⊥ are perpendicular and parallel components of
p relative to S respectively, and n is the outward normal of plane S. In fact, he first
proves the above expression for the wave functions whose supports lie in the
positive (or negative) amounts of p⊥. Then Kijowski uniquely derives the following
self-adjoint variant of the (three-dimensional version of) Aharonov-Bohm arrival
time operator, by demanding that the time operator be self-adjoint and leads to
(18) for these special cases via the Born rule11,26:

t̂L ¼ sgnðp̂?Þ mLp̂�1
? �m

2
p̂�1
? x̂? þ x̂?p̂

�1
?

� �h i
; ð19Þ

where x̂? � x̂ � n and L ( ≡ x ⋅ n) represent the distance between the detection
surface and the origin. It is worth noting that, the presence of sgnðp̂?Þ operator
ensures the self-adjointness of this time operator, however, leads to a modified
commutation relation, i.e. ½̂tK ; Ĥ� ¼ i_ sgnðp̂?Þ. Finally, for an arbitrary wave

function, the equation (18) could be derived from this self-adjoint operator.
Moreover, considering this time operator, besides the components of the position
operator in the detection plane, x̂k � x̂ � ðx̂ � nÞn, Kijowski obtains the following
expression as the joint position-time distribution on the detection screen via the
Born rule26:

PSTDðx; tjx 2 SÞ ¼ ∑
α¼ ±

jψα
Sðx; tÞj2; ð20Þ

in which ψ ±
S ðx; tÞ is the wave function on the basics of joint eigenstates of the

operators t̂L and x̂k . Explicitly

ψ ±
S ðx; tÞ ¼

1

ð2π_Þ3=2
Z

d3p θð±p � nÞ
ffiffiffiffiffiffiffiffiffi
jp?j
m

r
~ψtðpÞe

i
_x�p: ð21Þ

Note that, the arrival time distribution (18) could be reproduced by taking the
integral of (20) over the whole of the screen plane. The joint space-time probability
distribution (20), and its generalization for the particles with arbitary spin, have
been also derived by Werner in another axiomatic manner12. Moreover, it is easy to
see that the results (18) and (20) can be obtained from a regularized version of the
(three-dimensional generalization of) Aharonov-Bohm time operator, which is the
same as the procedure used by Grot, Rovelli and Tate in one-dimensional cases73.
However, some paradoxical behaviors have been raised about this distribution
which we discuss in Supplementary Note 3.

Quantum flux and Bohmian approach. Inspiring by classical intuition, another
proper candidate for screen observables is the perpendicular component of the
quantum probability current to the screen surface, J(x, t) ⋅ n, where

Jðx; tÞ ¼ � _

m
Im ψ�

t ðxÞ∇ψtðxÞ
� 	

; ð22Þ

and n is the outward normal to the screen S. This proposal is applicable for a
particle in a generic external potential and a generic screen surface, not necessarily
an infinite plane. There are several attempts to derive this proposal in various
approaches, such as Bohmian mechanics for the scattering case in27, decoherent
histories approach in103 as an approximation, or in ref. 104 as an exact formula
using the concept of extended probabilities, and so on56,57,105. However, even if the
wave function contains only momentum in the same direction as n, the J(x, t) ⋅ n

Fig. 6 Spatiotemporal Bohmian arrival statistics for the double-slit experiment with a horizontal screen. The interior curves in the central figure are the
averaged times of arrival obtained by different detection schemes (see Fig. 5) using 108 simulated Bohmian trajectories. The left and top plots are marginal
arrival time distributions and marginal arrival position distributions, respectively. The scatter plot is generated using 2 × 106 Bohmian trajectories, and the
black, blue, and green points of the scatter plot represent the first, second, and third arrivals of Bohmian particles to the screen, respectively. The inset is a
zoom-in of the dashed rectangle. The red solid lines represent the quantum flux approach, the black solid lines with empty circles markers show the first-
arrivals scheme, and the yellow solid lines with filled circles show the all-arrivals scheme.
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could be negative due to the backflow effect30. This property is incompatible with
the standard notion of probability.

Nevertheless, this problem could be treated from the Bohmian point of view:
Using Bohmian trajectories, it can be shown that the positive and negative values of
J(x, t) ⋅ n correspond to the particles that reach the point x at S in the same
direction of n or the opposite direction of it, respectively106,107. In this regard,
through the Bohmian mechanics in one-dimension, Leavens demonstrates that the
time distribution of arrival to x= L from both sides could be obtained from the
absolute form of probability flux as42,108

ΠQFðtjx ¼ LÞ ¼ jJðL; tÞjR
dt jJðL; tÞj ; ð23Þ

which is free from the aforementioned problem. Furthermore, recently Juric and
Nikolic have treated this problem from a different point of view54. In the Juric-
Nikolic analysis, the negative fluxes are interpreted as zero arrival probability
density, which originates from a physical insight that in this case, the particle
departs, rather than arrives.

The three-dimensional justification of J(x, t) ⋅ n as an operational formulation of
the arrival time model has been made in ref. 105. Also, the generalization of (23) for
arrival to the surface S is given by7,15,18,109

ΠQFðtjx 2 SÞ ¼
R
SdSjJðx; tÞ � njR

dt
R
SdSjJðx; tÞ � nj

; ð24Þ

with dS= n ⋅ dS the magnitude of the surface element dS which is directed outward
at x 2 S. To illustrate (24) and to generalize it to the case of joint arrival
distribution, we can use the Bohmian point of view. In this theory, each particle has
a specific trajectory, depending on the initial position, and so the rate of passing
particles through an area element dS centered at x 2 S, in the time interval
between t and t+ dt, is proportional to ρt(x)∣v(x, t) ⋅ dS∣dt, where v(x, t)= J(x, t)/
∣ψt(x)∣2 is the Bohmian velocity of the particle. Hence, using quantum equilibrium
condition110,111, ρt(x)= ∣ψt(x)∣2, and accomplishing normalization, the joint arrival

distribution could be represented by the absolute value of the current density as

PQFðx; tjx 2 SÞ ¼ jJðx; tÞ � njR
dt
R
SdSjJðx; tÞ � nj

: ð25Þ

Now, by integrating (25) over all x 2 S, we arrive at the three-dimensional
arrival time distribution (24) for the screen surface S. It should be noted that Eq.
(25) is not necessarily followed for an ensemble of classical particles because a
positive or negative current at a space-time point, (x, t), can in general have
contributions from all the particles arriving to x at t from any direction.
Nonetheless, since the Bohmian velocity field is single-valued, the particle
trajectories cannot intersect each other at any point of space-time and so only a
single trajectory contributes to the current density J(x, t) at the particular space-
time point (x, t). Moreover, this fact implies that when v(x, t) ⋅ n > 0 we can say that
the trajectory and consequently the particle has passed through the screen from the
inside and vice versa for v(x, t) ⋅ n < 0. Hence, one can define the joint probability
distribution for the time of arrival to each side of S as

P±
QFðx; tjx 2 SÞ ¼ J± ðx; tÞ � nR

dt
R
SdS J ± ðx; tÞ � n ; ð26Þ

where J±(x, t)= ±θ( ± J ⋅ n)J(x, t). In addition, note that there may be some
trajectories which cross S more than once—and we have multi-crossing trajectories
(see the typical Bohmian trajectory in Fig. 1). The course of the above inference to
Eq. (25) was in such a manner that multi-crossing trajectories could contribute
several times (see Fig. 5a). However, one could assume the detection surface as a
barrier that does not allow the crossed particle to return inside (see Fig. 5c). In this
case, it is suggested to use the truncated current defined as

~Jðx; tÞ :¼ Jðx; tÞ if ðx; tÞ is a first exit through S
0 otherwise

�
ð27Þ

where (x, t) is a first exit event through the boundary surface S, if the trajectory
passing through x at time t leaves inside S at this time, for the first time since
t= 015,27,112. The limiting condition in (27), imposes that the joint probability
distribution based on it should be computed numerically using trajectories:

PBTCðx; tjx 2 SÞ ¼
~Jðx; tÞ � nR

dt
R
SdS

~Jðx; tÞ � n : ð28Þ

Of course, the detection screen is not always a barrier-like surface (see Fig. 5b),
and one could assume that there is a point-like detector that lets the multi-crossing
trajectories to contribute to the distribution and we can use (25) in such cases.

Non-intrinsic arrival distributions. In principle, the presence of the detector
could modify the wave function evolution, before the particle detection, which is
called detector back-effect. To have a more thorough investigation of detection
statistics, we should consider this effect. However, due to the measurement pro-
blem and the quantum Zeno effect10,113,114, a complete investigation of the
detector effects is problematic at the fundamental level, and it is less obvious how
to model an ideal detector—there are some recent interesting papers that deal with
these problems, especially in connection with arrival time problem50,54. None-
theless, some phenomenological non-equivalent models are proposed, such as the
generalized Feynman path integral approach in the presence of absorbing
boundary14,44–46, Schrödinger equation with a complex potential51, Schrödinger
equation with absorbing (or complex Robin) boundary condition47–51, and so on54.
The results of these approaches are not the same, and a detailed study of the
differences is an interesting topic. In this section, we provide a brief review of the
absorbing boundary rule (ABR) and path-Integral with absorbing boundary (PAB)
models, then we compare them in the double-slit setup with the horizontal screen.

Absorbing boundary rule. Among the above-mentioned phenomenological models,
the absorbing boundary condition approach has the most compatibility with
Bohmian mechanics49. The application of absorbing boundary condition (ABC) in
arrival time problem was first proposed by Werner47, and recently it is re-derived
and generalized by Tumulka and others using various methods48–51. Especially, it is
recently shown that in a suitable (non-obvious) limit, the imaginary potential
approach yields the distribution of detection time and position in agreement with
the absorbing boundary rule51. According to this rule, the particle wave function ψ
evolves according to the free Schrödinger equation, while the presence of a
detection screen is modeled by imposing the following boundary conditions on the
detection screen, x 2 S,

n � ∇ψ ¼ iκψ; ð29Þ

where κ > 0 is a constant characterizing the type of detector, in which ℏκ/m
represents the momentum that the detector is most sensitive to. This boundary
condition ensures that waves with wave number κ are completely absorbed while
waves with other wave numbers are partly absorbed and partly reflected48,115. In
the absorbing boundary rule, the joint spatiotemporal distribution of the
detection event is given by quantum flux. Considering (29), this distribution

Fig. 7 Local arrival time distribution at some points of the horizontal
screen in the double-slit setup. a–d Show the local arrival time probability
densities, Πxðtjx 2 SÞ, at the points x= 16.2, 17.4, 18.4, 19.2 mm on the
screen S placed at y= 15 μm, respectively, which are chosen from the gray
region in Fig. 6. The black solid lines with empty circles markers show the
first-arrivals scheme and the yellow solid lines with filled circles show the
all-arrivals scheme. The width of numeric sampling of these two schemes in
each point is about δx= 0.25mm, and 108 Bohmian trajectories are
simulated to obtain these distributions. The red solid lines represent the
quantum flux approach, the green solid lines show the local arrival
distributions obtained by absorbing boundary rule (ABR), and the black
dashed lines show the local arrival distributions obtained by path-integral
with absorbing boundary (PAB).

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01315-9 ARTICLE

COMMUNICATIONS PHYSICS |           (2023) 6:195 | https://doi.org/10.1038/s42005-023-01315-9 | www.nature.com/commsphys 9

www.nature.com/commsphys
www.nature.com/commsphys


reads

PABRðx; tjx 2 SÞ ¼ jψABCj2R
dt
R
SdSjψABCj2

; ð30Þ

where ψABC represent the solution of the free Schrödinger equation satisfying the
aforementioned absorbing boundary condition. This distribution can be
understood in terms of Bohmian trajectories. The Bohmian particle equation of
motion, _X ¼ ð_=mÞIm½∇ψABC=ψABC�, together with the boundary condition (29),
imply that trajectories can cross the boundary S only outwards and so there are
no multi-crossing trajectories. If it is assumed that the detector clicks when and
where the Bohmian particle reaches S, the probability distribution of detection
events is given by (30), because the initial distribution of the Bohmian particle is
∣ψABC(x, 0)∣248.

Path-integral with absorbing boundary. In several papers14,44–46, Marchewka and
Schuss develop an interesting method to calculate the detection effect of
absorbing surface using the Feynman path integral method. They postulate a
separation principle for the wave function in which we could consider the
(bounded wave function) as a sum of two parts, ψ(x, t)= ψ1(x, t)+ ψ2(x, t), such
that ψ1(x, t) corresponds to the survival part of the wave which is orthogonal to
ψ2(x, t) at a time t and evolve independently45. So, we can obtain the probability
of survival of the particle, denoted S(t), which is the probability of the particle
not being absorbed by the time t, as

R
Dd3xjψ1ðx; tÞj2, where the integral is over

the domain D, outside the absorbing region. By discretizing the path integral in
a time interval [0, t] and eliminating the trajectories that, in each time interval
½t0; t0 þ Δt0 � for all t0<t, are reached to the absorbing surface S, the survival and
consequently absorbing probability would be obtained. Based on this analysis,
we could define a unidirectional probability current into the surface as
d
dt ½1� SðtÞ�, which yields a normal component of the multidimensional prob-
ability current density at any point on S as

Jðx; tÞ � n ¼ λ_

mπ
jn � ∇ψðx; tÞj2 ´ exp � λ_

mπ

Z t

0
dt0

I
S
dSjn � ∇ψðx0; t0Þj2

� �
;

ð31Þ
where dS= n ⋅ dS is the magnitude of the surface element dS, n is the unit outer
normal to the absorbing surface S, and λ is a proportionality factor with the
dimension of length44,90. Also, ψ(x, t) is the solution of Schrödinger equation
bounded and normalized in the domain D. Moreover, the normal component
J(x, t) ⋅ n is supposed to be the probability density for observing the particle at
the point x on the screen at time t14,46.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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