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Our society’s appetite for ultra-high bandwidth communication networks and high-power

optical sources, together with recent breakthroughs in mode multiplexing/demultiplexing

schemes, forced the photonics community to reconsider the deployment of nonlinear mul-

timode systems. These developments pose fundamental challenges stemming from the

complexity of nonlinear mode-mode mixing by which they exchange energy in the process

towards an equilibrium Rayleigh-Jeans (RJ) distribution. Here we develop a universal one-

parameter scaling theory for the relaxation rates of out-of-equilibrium excitations towards

their RJ thermal state. The theory predicts an exponential suppression of the rates with

increasing disorder due to the formation of stable localization clusters resisting the nonlinear

mode-mode interactions that tend to separate them. For low optical temperatures, the rates

experience a crossover from linear to nonlinear temperature dependence which reflects a

disorder-induced reorganization of the low frequency eigenmodes. Our theory will guide the

design of nonlinear multimode photonic networks with tailored relaxation-scales.
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In recent years, the effort to understand in a comprehensive
manner the physics and intricate dynamics of many-body and
many-state (multimode) interacting systems has increased.

This interest is driven by the realization that complex many-state
configurations can lead to unparalleled opportunities ranging
from biology and life sciences to chemistry, physics, and quantum
information1–6. In photonics, similar prospects can also be pur-
sued in connection with complex multimode nonlinear (MMN)
photonic setups. For instance, multimode fibers are nowadays
intensely investigated as a means for developing high -power
optical sources and ultra-high bandwidth communication net-
works, an approach that was largely abandoned in the late
eighties because of its inherent complexity (see ref. 7 and refer-
ences therein for a concise review). While these emerging tech-
nologies could prove revolutionary, they inevitably pose a number
of fundamental challenges that need to be addressed. These issues
primarily stem from the extreme complexity of multimode sys-
tems that, in most cases, is further exacerbated by nonlinearities.
This, in turn, leads to multi-wave mixing processes that induce
nonlinear photon-photon collisions by which the many modes
can exchange energy through a multitude of possible pathways,
often numbering in the trillions even in the presence of one
hundred modes or so7–10.

This microscopic complexity, introduced by either many-body
or many-mode energy exchange processes, acts as the binding
link among the photonics testbed and the other seemingly dif-
ferent platforms that host many-body/multimode interacting
systems. As opposed to these other frameworks, complex non-
linear multimode photonic arrangements provide versatile
experimental platforms; some of which are directly related to
recent developments in multiplexing/demultiplexing
schemes11–19. These allowed us to experimentally probe the
whole modal occupation statistics in perfect (i.e. ordered) MMN
fibers20 and demonstrate the convergence of an initial excitation
towards a thermal Rayleigh-Jeans (RJ) distribution as predicted
by the theory19–26. In fact, the controllable nature of photonic
platforms has been successfully utilized during the last thirty
years to investigate and demonstrate a plethora of phenomena,
ranging from non-Hermitian systems with dynamical
symmetries27,28, topological phases29,30, phase transitions31,32,
linear and non-linear Anderson localization effects33–39

and more.
Motivated by these new experimental opportunities in pho-

tonics, we develop here a theory of thermalization of out-of-
equilibrium optical states towards their thermal Rayleigh-Jeans
(RJ) distribution, see Fig. 1. We show that disorder and non-
linear mode-mode interactions can lead to unconventional
thermalization scenarios. For excitations with high optical
temperatures T > T*, the relaxation rates Γ obey a universal one-
parameter scaling theory that is independent of the microscopic
details (statistical properties of the disorder) of the underlying
system. The scaling parameter reflects the number of inde-
pendent segments N eff , each being of the size of the localization
length that describes the spatial extension of the linear super-
modes in the presence of disorder. As N eff increases due to
increasing randomness, the relaxation rate goes to zero, hin-
dering the thermalization process. At T < T*, we discovered a
crossover from linear to quadratic temperature dependence of Γ
as the system transitions to a strong disorder regime. The origin
of this crossover is traced to a re-organization of the low energy
modes due to the formation of Urbach tails in the density of
states. We expect that the predictions presented below will be
soon tested in experimental photonic platforms like nonlinear
mesh photonic lattices40 and further utilized for the design of
MMN fibers with potential applications to communication
networks.

Results
Theoretical framework. We consider MMN arrays of coupled
waveguides (Fig. 1a) or coupled nonlinear resonators (Fig. 1b).
Their beam dynamics is described using a time-dependent cou-
pled mode theory41–44

i
dψl

dt
¼ �∑

j≠l
J ljψj þ ωlψl þ χjψlj2ψl; l ¼ 1; ¼ ;N; ð1Þ

where ψl is the complex field amplitude at site l (e.g. waveguide or
resonator) of the network, and Jlj ¼ J�jl ¼ Jδj;l ± 1 describes the
evanescent coupling coefficient between sites l and j= l ± 1. The
optical on-site potential (e.g. propagation constant or resonant
frequency) at site l is randomly chosen from a uniform dis-
tribution of width W, i.e. ωl 2 ½�W

2 ;
W
2 �. Finally, the last term

describes nonlinear effects, e.g. associated with a Kerr-type non-
linearity with coefficient χ. In the case of coupled resonators
arrays, t describes time, while in the case of single-mode multi-
core (or multimode) fibers or waveguides t describes the paraxial
propagation distance z.

Equation (1) can be represented in the eigenmodes
f αðlÞ; α ¼ 1; ¼ ;N
� �

of the corresponding linear problem
(supermode basis) as

i
dCα

dt
¼ εαCα þ χ ∑

βγδ
QαβγδC

�
βCγCδ: ð2Þ

Here, Cα(t)’s are the field expansion coefficients, i.e., ψl(t)=∑α

Cα(t)fα(l) and ε1 < ε2 <⋯ < εN are the eigenfrequencies associated
with the supermodes fα, α= 1,⋯ ,N. The mixing coefficient
Qαβγδ ¼ ∑l f

�
αðlÞf �βðlÞf γðlÞf δðlÞ describes the interactions associated

with the nonlinear mixing between supermodes.
Equations ((1),(2)) conserve the internal energy H fψlðtÞg

� � ¼
HNL þHL ¼ 0:5χ∑ljψlj4 þ

�
∑ljψlj2ωl �∑ljJ ljψ

�
l ψj

� � E. In

realistic cases χ is small, and therefore H fψlðtÞg
� � �

Fig. 1 Relaxation to an equilibrium state. Schematic array of coupled (a)
waveguides; (b) microresonators. The initial mode distribution nα (blue)
evolves toward a Rayleigh-Jeans (RJ) thermalized state (red). c The relative
target-mode power �Iα, indicated with a black (red) line, describes an
exponential relaxation of an out-of-equilibrium state towards a RJ
distribution in case of random waveguide/resonator arrays with disorder
strength W= 0.5 (W= 2) (see Eq. (9) in Methods). Parameters:
a= 1, T= 100, χ= 0.01,N= 500.
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HL ¼ ∑αεαIα, where Iα � Cα

�� ��2 is the optical power of a
supermode α. In addition to E, the total optical power of the
beam N fψlðtÞg

� � ¼ ∑ljψlðtÞj2 ¼ ∑αIα � A is also a constant of
motion. Since both A and E are extensive quantities, we also
define the modal energy density h= E/N and the modal power
density a= A/N.

Assuming thermal equilibrium and weak nonlinearity, the
thermal state is described by the Rayleigh-Jeans (RJ)
distribution23–25 nα � IαðtÞ

� � ¼ T
εα�μ, where 〈⋯ 〉 indicates

thermal averaging and nα is the optical power of the supermode
α. The optical temperature T and chemical potential μ, are
determined by the initial beam’s total internal energy and optical
power.

Relaxation rates. Under the assumption of weak nonlinearities,
phase randomization of the field amplitudes and amplitude
randomization8–10, the slowly varying mode intensities follow the
kinetic equation (KE) (for details in the derivation of the KE, see
the Supplementary Note 1, which cites refs. 8,9,45,46)

dIα
dt

¼ χ2 ∑
0

βγδ
VαβγδIαIβIγIδ

1
Iα

þ 1
Iβ

� 1
Iγ
� 1

Iδ

 !
; ð3Þ

where the summation ∑0 excludes the secular terms and
Vαβγδ= 4π∣Qαβγδ∣2δ(εα+ εβ− εγ− εδ) reflects four-wave mixing
processes. When the ωl’s are random, the supermodes are expo-
nentially localized leading to a suppression of the coupling Vαβγδ

between them10. Nevertheless, Eq. (3) is still valid when the
localization length of the supermodes is larger than the lattice
spacing46.

Next, we consider a small variation Iα→ Iα+ δIα of the modal
power of the mode α from its RJ steady state solution, while all
other modes remain at equilibrium, i.e., δIβ,γ,δ= 0. After a
substitution into Eq. (3) and a subsequent approximate
linearization, we arrive at a rate equation47

dδIα
dt

� � δIα
τα

;
1
τα

� Γα ¼
χ2

nα
∑
0

βγδ
Vαβγδnβnγnδ; ð4Þ

which describes an exponential relaxation process of the α− th
mode towards its RJ thermal state. We point out that, according
to the KE predictions, there are families of initial preparations
which do not relax to the initial RJ distribution48. Their
identification and the more general problem of the applicability
of the KE approach to describe their thermalization process
generated by the CMT Eq. (1) is a subject that deserves a separate
study. The current study focuses on beam preparations as
described in the Methods section.

The above rate equation, Eq. (4), has been derived using the
following approximations: (a) We have excluded off-diagonal
contributions in the relaxation process which are associated with
variations δIβ, δIγ and δIδ where β, γ, δ ≠ α. Such exclusion is
equivalent to the assumption that only the α− th mode has been
perturbed away from its RJ thermal state, while all other modes
remain at their steady-state i.e. δIβ= δIγ= δIδ= 0. In the
thermodynamic limit N→∞, this constraint can be further
relaxed to δIβ≠α ≠ 0 with δIα≫ δIβ≠α. Notice that the neglected
off-diagonal terms prevent the conservation of the power and the
energy (A, E), as opposed to the Eq. (1) of the main text. (b) We
have also excluded diagonal terms of the KE associated with
(α, β)= (γ, δ) or (α, β)= (δ, γ) which appear rarely in the
summation and their contribution is negligible with respect to
the remaining term appearing in Eq. (4). These approximations
allowed us to come up with a relatively simple rate equation
Eq. (4) which has been used for the theoretical analysis of the
relaxation rates Γα. Using this equation, we have calculated Γα by

computing the supermodes of the linear Hamiltonian HL (see
Methods). We have further confirmed Eq. (4) by evaluating the
relaxation rates of the modal power Iα(t) towards its equilibrium
value nα via a direct numerical evaluation of the beam dynamics
generated by Eq. (1). The simulations utilize an ensemble of
initial conditions that maintain the (T, μ) values constant (see
Methods). A representative example of a relaxation dynamics is
shown in Fig. 1c.

Relaxation rates for periodic MMN circuits. First, we investigate
the relaxation rates Γð0Þα for W= 0 (see Supplementary Note 2,
which cites refs. 46,47). In the limit N→∞, the sums in Eq. (4) can
turn into integrals over the wavenumbers after substituting εα ¼
2J cosðkαÞ where the wavevector kα∈ [− π, π]. From Eq. (4)

Γð0Þα � χ2
a
J

a; T ! 1
T
J ; T ! 0;

(
ð5Þ

for a typical mode near the center of the band46,47.
Equation (5) captures all qualitative features of our dynamical

simulations from low up to moderate temperatures (light blue
and brown stars in Fig. 2(a)). The transition temperature T* ~ J
from a linear T-dependent Γð0Þα to a temperature-independent
domain can be evaluated by extrapolating the linear relation in
Eq. (5) up to moderate temperatures T and identifying the
intersection point with the high-T relaxation rate in Eq. (5) (for
alternative derivation see Supplementary Note 2).

Fig. 2 Temperature dependence of the relaxation rates. a Relaxation rates
Γ, rescaled with Γ(T→∞), versus T/T*. The filled symbols result from the
kinetic equation (KE), Eq. (4), and the open symbols from dynamical
simulations. Various symbols correspond to different disorder strengths
W= 0, 0.01, 0.1, 0.25, 0.5, 0.75 (blue) and W= 1, 1.5, 2, 3 (red), for two
representative modes with ε≈ 0, J. The results of dynamical simulations for
W= 0 and ε≈ 0(J) are indicated with cyan (brown) stars. The black
dashed (solid) line indicates a quadratic (linear) temperature dependence.
The high-temperature regime is T-independent (dashed-dotted line). The
extraction of Γ’s from the dynamical simulations have utilized the beam
dynamics generated by Eq. (1) using an ensemble of initial preparations that
maintain the (T, μ)-values constant (see Methods). b Relaxation rates Γ
versus temperature evaluated from the KE approach (lines) and dynamical
simulations (symbols) for two different disorder strengths W= 0.01 (blue
line and circles) and W= 2 (red line and triangles). The black solid
(dashed) line has slope 1 (2) and is drawn to guide the eye. c Transition
temperature T* versus W (rescaled with the coupling constant J). We
evaluate T* from dynamical simulations for two different frequencies εα= 0
(filled circles) and εα= J (open circles) and from the KE. The dashed-dotted
line indicates a linear behavior of T* with W. Parameters: a= 1, χ= 0.01. In
dynamical simulations: system size N= 500.
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Relaxation rates for disordered networks. Next we investigate
the effects of disorder W ≠ 0 on the relaxation rates Γα. We first
calculate Γα versus T (for fixed a) by evaluating numerically
Eq. (4). Two representative cases, corresponding to weak
(W= 0.01) and moderate (W= 2) disorder strengths are shown
in Fig. 2b. These results are compared with the Γα’s extracted
from dynamical simulations. For high temperatures, the relaxa-
tion rates are insensitive to temperature changes, while for
moderate/low temperatures, their value depends on T. Although
this behavior is reminiscent of the W= 0 case, the disorder
introduces some distinct features: (a) for T > T* the value of Γα
depends on the disorder strength W; (b) the same applies also for
the transition temperature T* (see Fig. 2c for various disorder
strengths); and (c) in the low/moderate-temperature domain, we
find a crossover from a linear to a quadratic temperature
dependence of Γ(T) when disorder exceeds a critical value W* ≈ J.

While the linear relation with T (occurring for W < J) can be
understood from the analysis of the W= 0 case, the quadratic
dependence of Γα on the temperature (for W ≥ J) is different. It
turns out that, in the moderate disordered range W ≈W*, it can
be captured by the evaluation of the KE, see Eq. (4) which gives
that

Γ � ΓðT ! 1Þ ; T>T� � aW

T2 ; T<T� � aW

	
ð6Þ

in agreement with the dynamical simulations.
The following qualitative explanation sheds some light on the

T2 behavior. In the low-temperature regime, the power is mainly
concentrated on the lower modes. In this domain, the density of
states (DoS) develops exponentially decaying tails (Urbach tails)
(see Supplementary Notes 5 and 6, which cites refs. 47,49), i.e.,

ρðεÞ � exp �C=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε� εb
�� ��q� �

where C is a dimensional constant

and εb=− (W/2+ 2J) is the true band-edge49–52. The exponen-
tial decay of the DoS in the low frequency domain εb ≤ εα≲− 2J
allows us to ignore the contribution of these εα-modes in Eq. (4)
when the sums are turned into frequency integrals and consider
only the bulk modes near the center of the band. The occupation
number for the latter is nα ¼ T

εα�μ ¼ T
εα�ε1

þOðε1 � μÞ where
(ε1− μ) ~ T→ 0 (see Supplementary Note 5). Substitution of this
expression into Eq. (4), leads to Γα ~ T2 in the low temperature
and strong disorder domain.

At the high-temperature regime, the modal power is uniformly
distributed among the various modes, i.e., nα ≈− T/μ ≈ a. A
substitution of the nα’s into Eq. (4) leads to a temperature-
independent Γα, see Eq. (6). Of course, the asymptotic value
Γ(T→∞) depends onW, which affects the localization properties
of the eigenmodes f αðlÞ � 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξαðWÞ

p
exp �jl0 � lj=ξαðWÞ� �

and
subsequently the value of the coefficients Qαβγδ. The so-called
localization length ξα(W) of the α-th supermode describes its
exponential decay away from a localization center l0 due to the
presence of the disorder W.

Finally, the dependence of the transition temperature T* on
disorder is understood using similar arguments like the ones that
have been used in the case of periodic structures (see
Supplementary Note 2). The main observation is that for
moderate/strong disorder and low-temperatures jμj � jε1j �
W þOðT=AÞ which applies up to T≤T*. On the other hand,
approaching T* from the high-temperature regime allows us to
approximate nα ≈− T*/μ= a. From this expression, we find that
T* ~− aμ, and by substituting the value of μ ~−W, we
eventually recover the expression in Eq. (6). A summary of the
extracted T* for both weak (W <W*= J) and strong (W >W*)
disorder is shown in Fig. 2c. In the former limit we observe that
indeed T* ≈ J while in the latter T* ~W.

One-parameter scaling of the relaxation rates for high energy
states. We will postulate a one-parameter scaling theory that
allows us to predict the relaxation rates Γα as a function of the
parameters (A, E, χ,W,N) that control the thermalization process
in 1D photonic networks. Inspired by previous studies on (linear)
Anderson localization24,53–57, we postulate the scaling ansatz

p � Γα
Γð0Þα

¼ f ðλÞ; λ ¼
ffiffiffiffiffiffiffi
χ=J

q
ξαðWÞa ð7Þ

where � � � denotes an averaging over disorder realizations and
over states within a small frequency window and Γð0Þα is the
relaxation rate of an underlying periodic system (i.e.,W= 0). The
specific microscopic characteristics of the disorder (statistical
properties, etc.) are captured by the localization length. For box-
distribution of ωn∈ [−W/2,W/2] (and W ≤ 3), the localization
length is approximated as33ξαðWÞ � 24ð4J2 � ε2αÞ=W2.

The results from our dynamical simulations (Fig. 3) for various
N,W,A, E, χ-values, confirm the validity of Eq. (7). An inter-
polating law is

f ðλÞ ¼ expð�C=
ffiffiffi
λ

p
Þ ¼ 0; λ ! 0

1; λ ! 1

	
ð8Þ

where C ≈ 3 is a best fitting constant. In Fig. 3, we also show the
results of the KE, Eq. (3), which reproduce nicely the numerical
results for λ > 10−1. For smaller λ-values (e.g., strong disorder
W≥3), the KE is not applicable, resulting in deviations from the
exact numerics. The failure of Eq. (3) (and subsequently of
Eq. (4)) in this λ-range is associated with the requirement that
Vαβγδ must couple many modes. This is possible only when the
localization lengths of the various modes participating in the
summation are much larger than the lattice spacing, otherwise
Vαβγδ is exponentially suppressed due to strong Anderson
localization effects (see Supplementary Note 3).

Fig. 3 One-parameter scaling of the relaxation rates. The relaxation rates
are extracted from dynamical simulations and normalized to their
asymptotic value Γð0Þα ¼ ΓðW ! 0Þ for two representative eigenmodes with
ε≈ 0 (filled symbols) and ε≈ J (open symbols). The scaling parameter is
λ ¼

ffiffiffiffiffiffiffi
χ=J

p
ξðWÞa, see Eq. (7). The black dashed line indicates the scaling

function Eq. (8). The KE, Eq. (4), (black stars) describes accurately the
relaxation rates extracted from the dynamical simulations failing only for
strong disorder W ≥ 3 (λ ≤ 10−1). We also test our scaling theory for
multiple nonlinearity (MNL) strengths χ= 0.005, 0.01, 0.015, 0.02 for
J= 0.5, 1, 2, 3 (orange stars). (Inset) The unscaled relaxation rates versus
disorder W for different values of J, χ, a, and system sizes
N= 64, 120, 250, 500 (various symbols). The extraction of Γ’s from the
dynamical simulations have utilized the beam dynamics generated by
Eq. (1) using an ensemble of initial preparations that maintain the (T, μ)-
values constant (see Methods).
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The two limiting cases in Eq. (8) reflect the prevailing physical
mechanism that controls the relaxation process. The first limit,

λ �
ffiffi
χ

p
W2 ! 0, corresponds to strong disorder (W≫ J), where the

Anderson localization effects dominate. In this case, the effective
coupling coefficient that controls the coupling between the
various sites is weak, J/W≪ 1. Thus, the appropriate basis is the
Wannier basis10, and one can apply the optical thermodynamics
methodology focusing on the individual resonator39. For weak
nonlinearities, the RJ is the zero-th order term with corrections39

� O Tχ=ðεα � μÞ� �
. For the W values that we have used, these

corrections are negligible and the thermal state is described nicely
by the RJ distribution (see Supplementary Note 4).

In the extreme case of zero effective coupling, the supermodes
are confined to a single site (Wannier states), and the system of
Eq. (1) develops Deff= 2 ×N local integrals of motion Hn ¼
ðϵn þ χ

2 jψnj2Þjψnj2 ¼ En and N n ¼ jψnj2 ¼ An that form a
complete set, preventing the system from thermalizing, i.e.,
Γα= 0, α= 1,⋯ ,N as indicated by Eqs. (7),(8)). As the effective
coupling increases (W decreases leading to an increasing ξ ~ 1/
W2), the modes are segregated into Neff ¼ N=minfξ;Ng clusters,
which are weakly coupled to one another. Thus, the system can be
treated as a Neff-collection of quasi -isolated clusters with
Deff= 2 ×Neff emergent local (quasi-)integrals of motion corre-
sponding to an equal number of local (quasi-)conservation laws,
which slow down the relaxation process. Further decrease of W,
leads to an increase of the effective coupling until eventually, at
W= 0, the modes of the system fuse into one supercluster, i.e.,
Neff= 1 while Deff= 2. The latter limit corresponds to λ→∞,
where the scaling function becomes unity, see Eq. (8). It is
interesting to point out that Neff resembles the scaling parameter
that controls the conductance in the standard theory of Anderson
localization. It also appears explicitly in Eq. (7) when the power
density is expressed as a= A/N. Specifically, we get that
λ ¼

ffiffiffiffiffiffiffi
χ=J

p
A=Neff .

The transition to a disorder-hindered thermalization regime
at λ* ≈ 1 (see Fig. 3) can also be understood using an energetic
argument, which provides an alternative insight for the
emergence of the scaling parameter λ. First, we realize that
the formation of localization boxes involve clusters of ξ
interacting modes, which are apart by a frequency spacing
Δξ ~ J/ξ. The nonlinear interactions between the modes is
energetically costly for the system (see Supplementary Note 3),
which increases its total energy by an amount Eξ ~ h ⋅ ξ= χa2ξ.
As long as Eξ ≤ Δξ, the modes will resist the interaction pressure
and the mode-segregation will persist. Conversely, the localiza-
tion boxes will be destroyed and each mode will be able to
interact with a sea of N other modes. The critical condition in
terms of the scaling parameter is λ2 ≡ Eξ/Δξ= 1, which high-
lights the importance of λ and allows us to identify the
transition point as λ* ~ 1.

Discussion
It is important to distinguish our study with some of the existing
literature58–60 on thermalization processes in the presence of
dynamical disorder. In these cases the randomness (either in the
coupling between the modes or in the propagation constants)
varies along the paraxial propagation in MMN fibers and the
internal energy (Hamiltonian H) is not conserved during the
beam dynamics (as opposed to our case). Such dynamical dis-
order has been used, for example, in the mesoscopic physics
framework for modeling the effects of noise and the associated
dephasing mechanism61. In our case, however, the disorder is
static (i.e., remains constant along the paraxial propagation). In
this respect, our framework aligns with some mean-field studies

that are addressing the interplay of disorder and thermalization in
bosonic gases (see, for example, the review62 and references
therein). These works are mainly focusing on the consequences of
nonlinear interactions in the weak localization phenomena (e.g.
coherent back/ forward-scattering) occurring when a beam of
well-defined direction propagates in a two-dimensional random
potential with speckle statistics. They have concluded (opposite to
us!) that long-time thermalization always occurs irrespective of
the disorder strength, albeit the transient dynamics leading to the
thermal state can be non-trivial62. The same conclusion about
thermalization was recently reached for an array of coupled
nonlinear oscillators with random masses63. These systems have
one conserved quantity (the total energy), and therefore reach
equipartition (not RJ as in our case), the strength of disorder is
finite, and all modes form a connected network. In contrast, in
our case, the coupling between modes can be exponentially
suppressed in the strong disorder limit, where thermalization is
inhibited. In the opposite limit of weak disorder, our proposed
scaling law Eqs. (7),(8) agrees (as expected) with the results of
ref. 63and predicts a relaxation rate Γ ~ 1/χ2.

The localization-hindered thermalization that is predicted from
our study in case of strong disorder, aligns with the ones derived
in the framework of quantum many-body interacting systems
where the phenomenon of Many-Body Localization (MBL) in one
-dimensional disordered systems has been recently established as
a distinct dynamical phase of matter6,64. This phenomenon
constitutes a paradigm of a broad family of systems that do not
abide to ergodicity (thus resisting the conventional thermalization
scenarios64,65 offering an alternative mechanism for protecting
types of order that are forbidden in equilibrium) and has impli-
cations for the design of quantum computing protocols. If indeed
our results constitute a classical re-incarnation of the quantum
MBL then our study represents a paradigm shift to the case of
classical many-mode interacting systems. In this case, the scaling
theory developed here, together with the transition from linear to
nonlinear temperature dependence, of the relaxation rates at low
optical temperatures, will be bringing a new light to the chal-
lenging quantum counterpart problem. This is a subject of further
investigation that goes beyond the scope of the current
contribution.

Conclusion
We have addressed the thermalization process of photonic MMN
circuits in the presence of static disorder. At low/moderate optical
temperatures, the relaxation rates Γα demonstrate a crossover
from a linear to a quadratic temperature dependence when the
disorder increases beyond a critical value that describes the eva-
nescent coupling between the resonators (waveguides). At high-
temperatures, Γα is temperature-independent and follows a uni-
versal one-parameter scaling law, which describes the exponential
slow-down of relaxation as the disorder (and optical power
density) is increasing (decreasing).

These predictions can be tested experimentally using fiber
optics platforms where transverse Anderson localization was
observed66,67, or nonlinear mesh photonic lattices40. Our theory
can guide further the understanding of the thermalization pro-
cesses of many-body/multimode (bosonic) systems. It will be
interesting to extend the analysis of relaxation rates beyond their
mean/typical value and analyze the properties of the whole
distribution.

Methods
Evaluation of the relaxation rates using Eq. (4). We have directly evaluated
Eq. (4) by a diagonalization of the Hamiltonian matrices J that describe the con-
nectivity of the network, see Eq. (1) of the main text. In these calculations, we have
used system sizes of N= 500 and power density a= 1, and we have considered
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various disorder strengths W. The δ function appearing in Eq. (4) is numerically
implemented by considering modes α, β, γ, δ such that ∣εα+ εβ− εγ− εδ∣≤w with a
tolerance w. This procedure is analogous to a frequency δ function given by a box
of width 2w and height 1/(2w). We have checked that a value of w= 0.01 guar-
antees a convergence of the calculation of the relaxation rates for W ≤ 3.

Our analysis involved the processing of more than 2000 relaxation rates that have
been collected by considering a number M ≈ 100 of different disordered realizations.
For a better statistical analysis, we have also considered the relaxation rates within a
small frequency window [− 0.1J+ εα, 0.1J+ εα]. Due to the strong fluctuations in the
evaluated Γα, we have calculated the statistical mode of their logarithm and then
reverted to the processed relaxation rates. Finally, we have confirmed that finite size
effects in the evaluated Γα’s for N= 500 are negligible by comparing them in some
selected cases with the results extracted from systems of size N= 1000.

Evaluation of relaxation rates from beam dynamics. We have simulated the
beam dynamics that is generated by Eq. (1) of the main text using an 8-th order
three-part split symplectic integrator algorithm which ensures the conservation of
the total norm A and energy E24,47,68,69. Typically, in our simulations, we have
propagated an initial excitation for times t≳ 104 of inverse coupling constants.
During the propagation, we have monitored the accuracy of our simulations by
making sure that both ðE;N Þ are conserved up to Oð10�8Þ.

We have generated an ensemble of initial preparations with supermode
occupations Iβ= T/(εβ− μ) given by a RJ distribution. The ensemble was
characterized by the values of the optical temperature T and chemical potential μ
that were used to define the RJ distribution. Then, the modal power Iα of a targeted
α-eigenmode was perturbed by an amount δIα. In all our simulations, we have
omitted the analysis of the relaxation rate for supermodes that are close to the
band-edge. Such supermodes have an anomalously small localization length and
the applicability of the KE is questionable.

In order to maintain the ensemble (T, μ) values (up to Oð1=NÞ), we have also
perturbed by a random amount δβ≪ ΔIα the modal power of nearby β-
eigenmodes. Both the targeted eigenmode and the nearby eigemodes were chosen
to be inside a small frequency window ∣εβ− ε∣/J≤0.1 around a targeted frequency ε
in order to guarantee a statistically similar relaxation process. For a better statistical
processing, the perturbed α−mode was swept among the modes inside the small
frequency window. The ensemble of total preparations was typically involving
M ≈ 5000 initial conditions, which were created by randomizing the phases of the
complex amplitudes Cβ, thus keeping fixed both E and N . The evolution of these
out-of-equilibrium states was monitored in time and the modal power Iα(t) was
computed and used to extract the relaxation rates Γα towards the thermal
equilibrium value nα. To this end, we have evaluated the relative target-mode
power Iα(t) which takes the form

IαðtÞ �
1
M

∑
M

i¼1
IiðtÞ � nα / expð�ΓαtÞ: ð9Þ

In Fig. 1c, we show two characteristic examples of the modal-power dynamics IαðtÞ
of a mode near the band-center for two disorder photonic circuits with the same
nonlinearity strength χ, modal power density a and optical temperature T= 100
and two different disordered strengths corresponding to W= 0.5 (black) and
W= 2 (red). While in both cases the relaxation process is exponential, in the latter
case the thermalization process is slower.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
All relevant codes or algorithms are available from the corresponding author upon
reasonable request.

Received: 30 March 2023; Accepted: 18 July 2023;

References
1. Winfree, A. T., The Geometry of Biological Time (Springer, 1980).
2. Oates, A. C., Morelli, L. G. & Ares, S. Patterning embryos with oscillations:

structure, function and dynamics of the vertebrate segmentation clock.
Development 139, 625–639 (2012).

3. He, L., Wang, X., Tang, H. L. & Montell, D. J. Tissue elongation requires
oscillating contractions of a basal actomyosin network. Nat. Cell Biol. 12,
1133–1142 (2010).

4. Herzog, E. D. Neurons and networks in daily rhythms. Nat. Rev. Neurosci. 8,
790–802 (2007).

5. Geschwind, D. H. & Levitt, P. Autism spectrum disorders: developmental
disconnection syndromes. Curr. Opin. Neurobiol. 17, 103 (2007).

6. Abanin, D. A., Altman, E., Bloch, I. & Serbyn, M. Many-body localization,
thermalization, and entanglement. Rev. Mod. Phys. 91, 021001 (2019).

7. Wright, L. G., Wu, F. O., Christodoulides, D. N. & Wise, F. W. Physics
of highly multimode nonlinear optical systems. Nature Phys. 18, 1018
(2022).

8. Picozzi, A. et al. Optical wave turbulence: Towards a unified nonequilibrium
thermodynamic formulation of statistical nonlinear optics. Phys. Rep. 542, 1
(2014).

9. Nazarenko, S., Wave Turbulence, Lecture Notes in Physics Vol. 825 (Springer-
Verlag, Berlin, 2011).

10. Nazarenko, S., Soffer, A. & Tran, M.-B. On the Wave Turbolence Theory for
the Nonlinear Schr’´odinger Equation with Random Potentials. Entropy 21,
823 (2019).

11. Cao, H., Mosk, A. P. & Rotter, S. Shaping the propagation of light in complex
media. Nat. Phys. 18, 994 (2022).

12. Bertolotti, J. & Katz, O. Imaging in complex media. Nat. Phys. 18, 1008 (2022).
13. Dorrer, C. Spatiotemporal metrology of broadband optical pulses. IEEE J. Sel.

Top. Quantum Electron. 25, 3100216 (2019).
14. Jolly, S. W., Gobert, O. & Quere, F. Spatio-temporal characterization of

ultrashort laser beams: a tutorial. J. Opt. 22, 103501 (2020).
15. Leventoux, Y. et al. 3D time-domain beam mapping for studying nonlinear

dynamics in multimode optical fibers. Opt. Lett. 46, 66 (2021).
16. Guo, Y. et al. Real-time multispeckle spectral-temporal measurement unveils

the complexity of spatiotemporal solitons. Nat. Commun. 12, 67 (2021).
17. Dacha, S. K. & Murphy, andT. E. Spatiotemporal characterization of nonlinear

intermodal interference between selectively excited modes of a few-mode fiber.
Optica 7, 1796 (2020).

18. Zhu, P., Jafari, R., Jones, T. & Trebino, R. Complete measurement of
spatiotemporally complex multi-spatial-mode ultrashort pulses from
multimode optical fibers using delay-scanned wavelength. Opt. Express 25,
24015 (2017).

19. Krupa, K. et al. Spatial beam self-cleaning in multimode fibres. Nat. Photonics
11, 237 (2017).

20. Pourbeyram, H. et al. Direct observations of thermalization to a Rayleigh-
Jeans distribution in multimode optical fibres. Nature Phys. 18, 685 (2022).

21. Connaughton, C., Josserand, C., Picozzi, A., Pomeau, Y. & Rica, S.
Condensation of Classical Nonlinear Waves. Phys. Rev. Lett. 95, 263901
(2005).

22. Aschieri, P., Garnier, J., Michel, C., Doya, V. & Picozzi, A. Condensation and
thermalization of classsical optical waves in a waveguide. Phys. Rev. A 83,
033838 (2011).

23. Wu, F., Hassan, A. & Christodoulides, D. Thermodynamic Theory of Highly
Multimoded Nonlinear Optical System. Nat. Photonics 13, 776 (2019).

24. Ramos, A., Fernandez-Alcazar, L., Kottos, T. & Shapiro, B. Optical Phase
Transitions in Photonic Networks: A Spin-System Formulation. Phys. Rev. X
10, 031024 (2020).

25. Makris, K. G., Wu, F. O., Jung, P. S. & Christodoulides, D. N. Statistical
mechanics of weakly nonlinear optical multimode gases. Opt. Lett. 45, 1651
(2020).

26. Baudin, K. et al. Classical Rayleigh-Jeans Condensation of Light Waves:
Observation and Thermodynamic Characterization. Phys. Rev. Lett. 125,
244101 (2020).

27. El-Ganainy, R. et al. Non-Hermitian physics and PT-symmetry. Nat. Phys. 14,
11 (2018).

28. Ozdemir, S. K., Rotter, S., Nori, F. & Yang, L. Parity-time symmetry and
exceptional points in photonics. Nature Mater. 18, 783 (2019).

29. Khanikaev, A. B. & Shvets, G. Two-dimensional topological photonics. Nature
Phys. 11, 763 (2017).

30. Ozawa, T. et al. Topological Photonics. Rev. Mod. Phys. 91, 015006 (2019).
31. Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299

(2013).
32. Situ, G. & Fleischer, J. W. Dynamics of the Berezinskii-Kosterlitz-Thouless

transition in a photon fluid. Nat. Photonics 14, 517 (2020).
33. Green’s Functions in Quantum Physics, Eleftherios N Economou. (Springer,

1990)
34. Yılmaz, H., Hsu, C. W., Yamilov, A. & Cao, H. Transverse localization of

transmission eigenchannels. Nature Photonics 13, 352 (2019).
35. Wiersma, D. S., Bartolini, P., Lagendijk, A. & Righini, R. Localization of light

in a disordered medium. Nature 390, 671 (1997).
36. Schwartz, T., Bartal, G., Fishman, S. & Segev, M. Transport and Anderson

Localization in disordered two-dimensional Photonic Lattices. Nature 446, 52
(2007).

37. Lahini, Y. et al. Anderson localization and nonlinearity in one dimensional
disordered photonic lattices. Phys. Rev. Lett. 100, 013906 (2008).

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01309-7

6 COMMUNICATIONS PHYSICS |           (2023) 6:189 | https://doi.org/10.1038/s42005-023-01309-7 | www.nature.com/commsphys

www.nature.com/commsphys


38. Eliezer, Y., Mahler, S., Friesem, A. A., Cao, H. & Davidson, N. Controlling
nonlinear interaction in a many-mode laser by tuning disorder. Phys. Rev.
Lett. 128, 143901 (2022).

39. Kottos, T. & Shapiro, B. Thermalization of strongly disordered nonlinear
chains. Phys. Rev. E 83, 062103 (2011).

40. Marques Muniz, A. L. et al. Observation of photon-photon thermodynamic
processes under negative optical temperature conditions. Science 379, 1019
(2023).

41. Christodoulides, D. N., Lederer, F. & Silberberg, Y. Discretizing light
behaviour in linear and nonlinear waveguide lattices. Nature 424, 817
(2003).

42. Lederer, F. et al. Discrete solitons in optics. Phys. Rep. 463, 1 (2008).
43. Yariv, A., Xu, Y., Lee, R. K. & Scherer, A. Coupled-resonator optical

waveguide: a proposal and analysis. Opt. Lett. 24, 711 (1999).
44. Christodoulides, D. N. & Efremidis, N. K. Discrete temporal solitons along a

chain of nonlinear coupled microcavities embedded in photonic crystals. Opt.
Lett. 27, 568 (2002).

45. Zakharov, V. E., L’vov, V. S., and Falkovich, G. E., Kolmogorov Spectra of
Turbulence I: Wave Turbulence (Springer-Verlag, Berlin, 1992).

46. Basko, D. M. Kinetic theory of nonlinear diffusion in a weakly disordered
nonlinear Schrödinger chain in the regime of homogeneous chaos. Phys. Rev.
E 89, 022921 (2014).

47. Shi, C., Kottos, T. & Shapiro, B. Controlling optical beam thermalization via
band-gap engineering. Phys. Rev. Research 3, 033219 (2021).

48. Zakharov, V. E., L’vov, V. S., Falkovich, G. E., Kolmogorov Spectra of
Turbolence I (Springer-Verlag, Berlin, 1992).

49. Johri, S. & Bhatt, R. N. Singular Behaviour of Eigenstates in Anderson’s Model
of Localization. Phys. Rev. Lett. 109, 076402 (2012).

50. Halperin, B. I. & Lax, M. Impurity-Band Tails in the High-Density Limit. I.
Minimum Counting Methods. Phys. Rev. 148, 722 (1966).

51. Halperin, B. I. & Lax, M. Impurity-Band Tails in the High-Density Limit. II.
Higher Order Corrections. Phys. Rev. 153, 802 (1967).

52. Soukoulis, C. M., Cohen, M. H. & Economou, E. N. Exponential Band Tails in
Random Systems. Phys. Rev. Lett. 53, 686 (1984).

53. Casati, G., Guarneri, I., Izrailev, F., Fishman, S. & Molinari, L. Scaling of the
information length in 1D tight-binding models. J. Phys.: Condens. Matter 4,
149 (1992).

54. Izrailev, F. M., Kottos, T. & Tsironis, G. P. Scaling properties of the
localization length in one-dimensional paired correlated binary alloys of finite
size. J. Phys.: Cond. Matt. 8, 2823 (1996).

55. Mendez-Bermudez, J. A. & Kottos, T. Probing the eigenfunction fractality
using Wigner delay times. Phys. Rev. B 72, 064108 (2005).

56. Kottos, T. & Weiss, M. Statistics of resonances and delay times: A criterion for
metal-insulator transitions. Phys. Rev. Lett. 89, 056401 (2002).

57. Bodyfelt, J. D., Kottos, T. & Shapiro, B. One-parameter scaling theory for
stationary states of disodrered nonlinear Systems. Phys. Rev. Lett. 104, 164102
(2010).

58. Berti, N. et al. Interplay of Thermalization and Strong Disorder: Wave
Turbulence Theory, Numerical Simulations, and Experiments in Multimode
Optical Fibers. Phys. Rev. Lett. 129, 063901 (2022).

59. Fusaro, A., Garnier, J., Krupa, K., Millot, G. & Picozzi, A. Dramatic
Acceleration of Wave Condensation Mediated by Disorder in Multimode
Fibers. Phys. Rev. Lett. 122, 123902 (2019).

60. Sidelnikov, O. S., Podivilov, E. V., Fedoruk, M. P. & Wabnitz, S. Random
mode coupling assists Kerr beam self-cleaning in a graded-index multimode
optical fiber. Optical fiber Technology 53, 101994 (2019).

61. Fernández-Alcázar, L. J. & Pastawski, H. M. Decoherent time-dependent
transport beyond the Landauer-Büttiker formulation: A quantum-drift
alternative to quantum jumps. Phys. Rev. A 91, 022117 (2015).

62. Cherroret, N., Scoquart, T. & Delande, D. Coherent multiple scattering of out-
of-equilibrium interacting Bose gases. Ann. Phys. 435, 168543 (2021).

63. Wang, Z., Fu, W., Zhang, Y. & Zhao, H. Wave-Turbulence Origin of the
Instability of Anderson Localization against Many-Body Interactions. Phys.
Rev. Lett. 124, 186401 (2020).

64. Nandkishore, R. & Huse, D. A. Many-Body Localization and Thermalization
in Quantum Statistical Mechanics. Annu. Rev. Condens. Matter Phys. 6, 15
(2015).

65. Smith, J. et al. Many-body localization in a quantum simulator with
programmable random disorder. Nat. Phys. 12, 907 (2016).

66. Ruocco, G., Abaie, B., Schirmacher, W., Mafi, A. & Leonetti, M. Disorder-
induced single-mode transmission. Nature Commun. 8, 14571 (2017).

67. Mafi, A. & Ballato, J. Review of a Decade of Research on Disordered Anderson
Localizing Optical Fibers. Front. Phys. 9, 736774 (2021).

68. Gerlach, E., Meichsner, J. & Skokos, C. On the Symplectic Integration of the
Discrete Nonlinear Schr¨odinger Equation with Disorder. Eur. Phys J. Special
Topics 225, 1103 (2016).

69. Channell, P. J. & Neri, F. R. An Introduction to Symplectic Integrators. Field
Inst. Commun. 10, 45 (1996).

Acknowledgements
We acknowledge fruitful discussions with Prof. Denis Basko and Prof. Boris Shapiro.
(A.Y.R.) acknowledges the hospitality of Wesleyan University were this work was initi-
ated. A.Y.R. and L.J.F.-A. acknowledge CONICET (PIP2021 11220200100170CO),
SGCyT-UNNE (PI 20T001), and the high-performance computing cluster of IMIT
(CONICET-UNNE). We acknowledge partial support from MPS Simons Collaboration
via grants No. 733698 (C.S. and T.K.) and No. 733682 (D.N.C.).

Author contributions
A.Y.R. and L.J.F.-A. performed the time-domain simulations and scaling theory with
inputs from C.S. and T.K. C.S. and T.K. derived the KE theory with input from D.N.C.
All authors participated in analyzing the data, discussing the results, and writing the
paper. T.K. supervised the research.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42005-023-01309-7.

Correspondence and requests for materials should be addressed to Tsampikos Kottos.

Peer review information : Communications Physics thanks the anonymous reviewers for
their contribution to the peer review of this work. A peer review file is available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01309-7 ARTICLE

COMMUNICATIONS PHYSICS |           (2023) 6:189 | https://doi.org/10.1038/s42005-023-01309-7 | www.nature.com/commsphys 7

https://doi.org/10.1038/s42005-023-01309-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsphys
www.nature.com/commsphys

	Theory of localization-hindered thermalization in nonlinear multimode photonics
	Results
	Theoretical framework
	Relaxation rates
	Relaxation rates for periodic MMN circuits
	Relaxation rates for disordered networks
	One-parameter scaling of the relaxation rates for high energy states

	Discussion
	Conclusion
	Methods
	Evaluation of the relaxation rates using Eq. (4)
	Evaluation of relaxation rates from beam dynamics

	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




