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Spin-texture topology in curved circuits driven by
spin-orbit interactions
A. Hijano 1,2,6✉, E. J. Rodríguez 3,6✉, D. Bercioux4,5✉ & D. Frustaglia 3✉

Interferometry is a powerful technique used to extract valuable information about the wave

function of a system. In this work, we study the response of spin carriers to the effective field

textures developed in curved one-dimensional interferometric circuits subject to the joint

action of Rashba and Dresselhaus spin-orbit interactions. By using a quantum network

technique, we establish that the interplay between these two non-Abelian fields and the

circuit’s geometry modify the geometrical characteristics of the spinors, particularly on

square circuits, leading to the localisation of the electronic wave function and the suppression

of the quantum conductance. We propose a topological interpretation by classifying the

corresponding spin textures in terms of winding numbers.
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E lectrons subject to a cyclic motion in mesoscopic loops
reveal a whole series of quantum effects, both of funda-
mental and practical interest. A charge circulating a mag-

netic flux line gathers a quantum phase leading to the Aharonov-
Bohm (AB) effect1, which demonstrates the distinct role played
by electromagnetic potentials in quantum physics. Moreover, the
AB effect is topological, meaning that it does not depend on the
particulars of the loop’s geometry as long as the magnetic flux line
is enclosed. AB phases are nothing but an example of the geo-
metric phases formalized by Berry2, Simon3, and Wilczek & Zee4

in the early 1980s, which have become increasingly influential in
many areas, from condensed-matter physics and optics to high-
energy and particle physics and fluid mechanics to gravity and
cosmology5.

As for the spin degree of freedom, its coupling to magnetic
and/or electric fields can lead to rich dynamics and corresponding
spin quantum phases with significant consequences. One example
relevant to this work is the Aharonov-Casher effect6, the elec-
tromagnetic dual of the AB effect, due to the spin coupling to
electric fields, i.e., spin-orbit interaction (SOI). Here, we focus on
the combined action of Rashba and Dresselhaus SOI in polygonal
and circular circuits. In semiconducting systems, the former is
due to the lack of structural inversion symmetry, whereas the
latter is due to the lack of bulk inversion symmetry7.

To dig into the problem of spin dynamics in curved meso-
scopic circuits, we frame the discussion in terms of field and spin
textures. By field texture, we refer to the geometry displayed by
the magnetic field that couples to the spin carrier in a loop circuit,
the main characteristic of which is to be inhomogeneous in
direction. These fields can be external (e.g., inhomogeneous
magnetic fields interacting through Zeeman coupling) or internal
(e.g., effective magnetic fields emerging from SOI in curved cir-
cuits). By spin texture, we refer to the geometric shape defined by
the local quantization axis of spin eigenstates along the circuit,
represented in the Bloch sphere. Both field and spin textures
coincide in the so-called adiabatic limit, where spin eigenstates
are locally aligned with the driving field. This is the limit in which
Berry geometric phases are formulated2. However, reaching this
limit may be either hard (due to the large fields required) or
impossible (due to discontinuities in the field textures that spins
cannot follow). Aharonov & Anandan8 generalized the concept of
geometric phases to the case of non-adiabatic dynamics. For 1/2
spins, the geometric phase equals the solid angle subtended by the
spin texture (times −1/2).

Several works study the correlation between field and spin
textures in loop circuits. It is well established that for regular
(discontinuity-free) field textures, the spin dynamics is deter-
mined by the relative magnitude of two characteristic frequencies:
the Larmor frequency of spin precession ωs and the orbital fre-
quency of carrier propagation ω0

9–11, where the adiabatic limit
corresponds to ωs/ω0≫ 1. Some works have studied how this
limit is approached12. By assuming fully adiabatic spin dynamics
in circular circuits, Lyanda-Geller demonstrated13 that a topolo-
gical transition in a flat field texture (from a circular field texture
to an oscillating one) would lead to a discontinuity in the spin
Berry phase (a sudden π shift) with observable consequences in
electronic transport. Later works14,15 showed that this topological
effect takes place far from the adiabatic limit.

Moreover, it has been acknowledged that the geometric cur-
vature of a circuit can play a critical role in spin dynamics16–20.
For example, in polygonal Rashba loops where effective field
texture discontinuities at the highly curved vertices force the spin
carriers to respond in a strongly non-adiabatic fashion16,21–24.
This has been proven to have dramatic consequences for the
correlation between field and spin textures: while field and spin
textures are typically well correlated in circular Rashba loops (i.e.,

it usually takes a topological change in the driving field texture to
produce a topological transition in the spin texture). For square
Rashba loops, it has been shown that small perturbations in the
field texture (created by an in-plane Zeeman field) can induce
significant changes in the topological characteristics of the spin
textures23,25,26. Here, we show how similar changes can be
achieved by purely electrical means ∣ without introducing mag-
netic fields.

Our study focuses on square and ring loops suitable for
experimental realization25,27,28. These experiments are realized
on arrays of many interferometric loops where only one single
(quasi-one-dimensional) orbital mode appears to contribute to
quantum interference due to the decoherence experienced by
relatively slow propagating higher modes. This justifies the use of
strictly one-dimensional (1D) model circuits in this work.

In this manuscript, we study the development of spin textures
and their response due to the combined action of Rashba and
Dresselhaus SOI in polygonal circuits. The field textures pro-
duced by Rashba and Dresselhaus SOIs are contained within the
circuit’s plane. Their topology depends on the SOI components’
relative magnitude, which can be controlled electrically in semi-
conducting nanostructures28–32. We find that, for specific circuit
orientations, the spin textures respond with a regular pattern of
topological transitions as a function of the SOIs without requiring
a topological change of the driving field texture. This means that
for any SOI setting, it is always possible to change the topological
characteristics of the corresponding spin texture by shifting to a
different setting in its vicinity. We also show how this manifests
in the conductance of the circuits. There are several possible
approaches to studying quantum transport in mesoscopic sys-
tems, such as the recursive Green’s function approach33 and the
tight-binding method34. In this work, we address the problem by
employing a quantum network (QN) technique16,35–40. We have
recently generalized this QN technique to account for Abelian
and non-Abelian gauge fields, including Rashba SOI and Zeeman
fields23,24. Here, we incorporate Dresselhaus SOI and study its
interplay with the Rashba SOI41.

Results
Model and formalism. We consider a 2DEG in the presence of
Rashba and Dresselhaus SOIs42,43; both these terms are linear in
momentum p (here, we neglect cubic corrections to Dresselhaus
SOI41,43). Within this 2DEG, we realize single-mode 1D quantum
wires along the γ̂ direction with respect to the crystallographic
axes of the 2DEG ∣ see Fig. 1a. The quantum wire Hamiltonian
then reads:

Ĥ ¼ p2

2m� þ
_kR
m� p ðγ̂ ´ ẑÞ � σ þ _kD

m� p γ̂ � σ; ð1Þ

where kR and kD are the Rashba and the Dresselhaus SOI
strengths (in inverse-length units), respectively, γ̂ ¼
ðcos γ; sin γ; 0Þ is the unit vector specifying the direction of the
quantum wire, and γ̂ ¼ ðcos γ;� sin γ; 0Þ is the y-reflected γ̂ (see
Supplementary note 1 https://doi.org/10.1038/s42005-023-01308-
8 for additional details). In Eq. (1), σ is the vector of the Pauli
matrices associated with the electron spin, p is the momentum
along the quantum wire, m* is the effective electron mass of the
2DEG and ℏ the reduced Planck constant.

The Rashba and Dresselhaus SOI terms in Hamiltonian (1) can
be unified as

Ĥ ¼ p2

2m� þ
_κ

m� p θ̂ � σ; ð2Þ
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where

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2R þ k2D þ 2kRkD sinð2γÞ

q
; ð3aÞ

θ ¼ arg ðkR sin γþ kD cos γÞ þ ið�kR cos γ� kD sin γÞ� �
: ð3bÞ

Hamiltonian (2) describes an equivalent system where an electron
moves along a quantum wire subject to an effective SOI with
strength κ. This SOI term can be interpreted as an effective
magnetic field BSO ¼ 2_κp=ðgμm�Þθ̂, where g is the g-factor, μ is
the Bohr magneton and θ̂ ¼ ðcos θ; sin θ; 0Þ. In Fig. 1b, we show
the effective magnetic field texture experienced by spin carriers
following circular trajectories for various values of the Rashba and
Dresselhaus SOIs. The arrows indicate the evolution of BSO when
an electron moves counterclockwise (CCW) in a circular
trajectory. The field texture can be characterized topologically
in terms of the winding number ω around the z axis ∣ see Eq. (5).
The winding number changes depending on the relative strength
between the Rashba and Dresselhaus SOIs; i.e., it is ω= 1 for
kR > kD and ω=− 1 for kR < kD. This change of the winding at
the critical line kR= kD is reflected in the spin texture of the
polygon eigenstates, but as shown in the Section “Topological
characterization”, the spin textures develop out-of-plane compo-
nents that lead to richer winding patterns. In Fig. 1c, d, we
present the SOI field texture for the two different orientations of
the square circuit. In polygonal structures, the effective field
exhibits discontinuities at the vertices, but such sharp changes of
direction are smoothened in realistic setups where the circuits are
realized by lithographic etching of a 2DEG. If the vertices of the
square are treated as slightly rounded arcs24, the evolution of the
field texture on B space is equivalent to that of the ring (see
Fig. 1b).

The QN problem is solved by fixing a wave function for each
1D quantum wire satisfying the Dirichlet boundary conditions.

The overall solution is obtained by imposing the general
boundary condition on the set of wires composing the QN ∣ see
below. The wave function of a quantum wire can be written
as38,39:

ΨðrÞ ¼ e�iκrθ̂�σ

sinðkLÞ ½sin kðL� rÞΨα þ sinðkrÞeiκLθ̂�σΨβ�; ð4Þ

where Ψα and Ψβ are the spinors evaluated at the quantum wire

boundaries α and β, k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�ϵ=_2 þ κ2

q
, r is the coordinate

along the wire, L is the length of the wire and ϵ is the energy. The
exponent in the prefactor of Eq. (4) accounts for the spin
precession due to the effective magnetic field created by the two
SOIs. When the Rashba and Dresselhaus SOI strengths are equal,
and γ= 3π/4, both SOI terms cancel in the Hamiltonian, the
effective magnetic field vanishes, and the energy dispersion turns
spin degenerate44,45. In this case, κ vanishes, so the SU(2) rotation
disappears from the wave function. This means that the spinor
evolves along the wire as a free particle.

The spin-carrier dynamics in a QN can be solved by
considering two general boundary conditions: first, the continuity
of the wave function to each node of the QN, and second by
requiring the conservation of the probability current at the same
points36.

Equation (4) together with the conservation of the current at
the vertices provides the values of the wave function at the
vertices Ψα, and Ψ(r) by extension.

We can evaluate the transport properties by supplementing the
QN with an additional connection to external leads. The
extension of the method is explained in the Methods section.

Conductance pattern. In this section, we study the transport
properties of square and ring loops by applying the QN formal-
ism. Rings are modeled as regular polygons of perimeter P with a
large number of edges (N≫ 1)16 such that the Fermi wavelength
and the spin precession length of the carriers are much larger
than the edges’ length L= P/N. This overcomes the problem of
dealing with approximate solutions for rings subject to Rashba
and Dresselhaus SOI46,47. These restrictions do not apply to
square loops. Moreover, mesoscopic experiments are typically
carried out in the so-called semiclassical regime where the Fermi
wavelength of the carriers is much smaller than the loops’ peri-
meter, such that k≫ 2π/P25–27,48. We calculate the ballistic
conductance of these polygonal structures by using the Landauer
approach (See Supplemental Material at https://doi.org/10.1038/
s42005-023-01308-8 for additional details)49 [see Eq. (9)].

In Fig. 2, we show the conductance maps as a function of the
dimensionless SOI intensities kRP/2π and kDP/2π for different
interferometric loops. Figure 2a, b shows the conductance for the
case of square-shaped loops with different orientations, with η the
rotation angle measured from the “diamond” configuration
depicted in Fig. 2a (corresponding to the square’s sides forming
an angle of π/4 with respect to the crystallographic axes). In
Fig. 2c, instead, we show the conductance corresponding to a
ring-shaped loop. For all configurations, the conductance shows a
symmetric behavior with respect to the critical line kR= kD along
which the Rashba and Dresselhaus SOIs have the same strength.
This can be understood in terms of the Hamiltonian in Eq. (2). If
the strengths of the interactions are interchanged, kR↔ kD, the
value of the equivalent effective SOI strength κ for a given edge
remains unchanged, but the direction of the effective magnetic
field BSO becomes θ0 ¼ 3π=2� θ. This means that the BSO field
texture of the polygon is mirrored with respect to the same r̂� ¼
ðx̂ � ŷÞ= ffiffiffi

2
p

direction for all edges, so the conductance pattern
remains unchanged under the kR↔ kD transformation.

Fig. 1 Effective spin-orbit interaction fields for wire, ring, and square
geometry. a Sketch of a quantum wire along direction γ̂ with its associated
effective magnetic fields due to Rashba BR (red arrow) and Dresselhaus BD
(blue arrow) SOIs. b Evolution of the effective magnetic field BSO= BR+ BD
for an electron moving counterclockwise around a ring for different values
of the Rashba (kR) and Dresselhaus (kD) coupling strengths. Rashba (red)
and Dresselhaus (blue) effective magnetic fields of a counterclockwise
propagating spin carrier due to SOI for the case of the square circuit with
c η= 0 and d η= π/4.
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The most interesting case is presented in the case of Fig. 2a: the
conductance presents a checkerboard pattern. In the absence of
Dresselhaus SOI, the minima of the conductance are presented
every kRP/2π= 2n+ 1 with n 2 N0

16,23,24. A similar behavior is
observed in the absence of Rashba SOI with kR replaced by kD.
The combined presence of the two SOIs adds an overall shift of
the conductance minima by a factor of 2π. The resulting
checkerboard pattern was first reported in ref. 40. In the next
section, we elaborate on this by studying the geometric properties
of spinors in terms of winding numbers.

By rotating the square with respect to the crystallographic axes
(Fig. 2b) we find something remarkable: the checkerboard
conductance pattern disappears. Instead, we find a conductance
map that looks similar to that of a ring-shaped loop (Fig. 2c) except
for a period-doubling due to strongly non-adiabatic processes at
the square vertices hindering spin-phase development16,50.

From Fig. 1c, d, we observe that the SOI field textures present
discontinuities at the vertices of the squares. For η= 0, Fig. 1c, the
discontinuities have an angle π/2 for any relative field strength
(except when Rashba and Dresselhaus SOIs are equal and a
persistent spin helix is set up). As η increases, field discontinuities
are softened, spin scattering is discouraged, and destructive spin
interference is suppressed: optimal π/2 field texture disconti-
nuities at the vertices persist only along the Rashba and
Dresselhaus axes in Fig. 2b, where a definite interference pattern
in the conductance survives as discussed in refs. 23,24,39 for the
Rashba case. In Supplementary Note 2 (See Supplemental
Material at https://doi.org/10.1038/s42005-023-01308-8 for addi-
tional details), we show how the conductance and the winding
number of the propagating spin modes evolve from the checker-
board pattern in Fig. 3a, b to the simpler structure in Fig. 3c, d
upon changing the orientation of the square.

For the case of a ring, Fig. 2c, the conductance presents a
fishbone structure with minima as a function of the Rashba SOI
following the sequence predicted theoretically in ref. 50. Similar
behavior is observed as a function of the Dresselhaus SOI term.
However, in the presence of both SOI terms, the conductance
behavior is more intricate.

Interestingly, the conductance remains constant along the
critical line regardless of the orientation or number of edges of the
polygon [see Supplementary note 3 (See Supplemental Material at
https://doi.org/10.1038/s42005-023-01308-8 for additional
details) for the additional case of a hexagonal and octagonal
loop]. When the Rashba and Dresselhaus SOIs have the same
strength, the effective SOI field decouples from the momentum
and points always in the same direction44,45. Moreover, the spin
precession angle only depends on the distance traveled along the

r̂þ ¼ ðx̂ þ ŷÞ= ffiffiffi
2

p
direction. This effect is known as persistent

spin helix51, and in recent years several experiments claimed to
have achieved this effect32,52–55. Since all paths contributing to
the transmission amplitude begin and end at the same points, the
spin precession along each path is the same, and the resulting
interference is always constructive.

Topological characterization. We can characterize spin and field
textures topologically in terms of (integer) winding numbers
around the z axis. This quantity is defined as

ω ¼ 1
2π

Z P

0
d‘ bn ´ dn̂

d‘

� �
� ẑ ð5Þ

with n̂ð‘Þ a in-plane unit vector and 0 ≤ ℓ ≤ P a linear para-
metrization of the circuit’s perimeter. For the field texture, we
identify n̂ð‘Þ with θ̂ð‘Þ in Eq. (2). This means that ω= 1 for
dominating Rashba SOI and ω=−1 for dominating Dresselhaus
SOI (see Fig. 1b). The transition occurs at the critical line kR= kD.
As for the spin texture, this is given by ŝð‘Þ ¼ hΨð‘ÞjσjΨð‘Þi. In
this case, n̂ is identified with the normalized projection of ŝð‘Þ on
the xy-plane.

Spin textures developed in Rashba and Dresselhaus squares
present a periodic, checkerboard-like pattern alternating positive
and negative windings ∣ see Fig. 3a. This pattern contrasts with
the simplicity of the field texture driving the spin dynamics
discussed in Section “Model and Formalism”, demonstrating the
possibility of producing topological transitions in the spin texture
by slightly tuning the SOI fields. This means that the spin
winding can change from clockwise (CW) to CCW and vice versa
without changing the winding of the field, except for the
particular orientation of η= π/4, Fig. 3c, where the field and
spin textures stay fully correlated. Figure 3b shows that the
winding pattern is fully correlated with the conductance up to a
period-doubling.

In Fig. 4A, we present a series of spin textures undergoing a
topological transition along segment A in Fig. 3a, corresponding
to a square loop. We find that a positive winding texture becomes
negative by collapsing into a flat texture (subtending no solid
angle and no geometric phase) at the critical line24.

In the case of ring loops, Fig. 3e, f, we find that the spin
textures have a dominant tendency to follow the driving field
texture by sharing its topological characteristics. Still, we find a
fishbone pattern of anomalous winding ∣ see insets in Fig. 3e,
where we observe that the winding gets values larger than ±1. To
shed some light on it, it is useful to assume a dominating Rashba
SOI with kR≫ kD and work in the rotating frame where the radial

Fig. 2 Conductance for the square and the ring geometries. Conductance G in units of 2e2/h as a function of the dimensionless Rashba and Dresselhaus
spin-orbit interaction for a square for different orientations a η= 0, b η= π/4 and a c ring with perimeter P. In all the panels, the dashed line corresponds to
the critical line, where kR= kD. The left (right) dot in the sketches of the polygonal structures indicates the position of the input (output) lead.
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Rashba texture is uniform (with an oscillating Dresselhaus
perturbation). We notice that the fishbone pattern meets the
Rashba axis at points kDP ¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4j2 � 1

p
with j integer. This

coincides with the Rabi condition for spin resonance in the
rotating frame. As the magnitude of Dresselhaus perturbation
increases, the resonance condition changes by undergoing a so-
called Bloch-Siegert shift15,56. Something similar happens along
the Dresselhaus axis. Close to the resonance condition, complex
spin textures emerge with anomalous winding. Figure 4B–D
illustrates the winding transitions taking place in these textures.
We notice that, in contrast to the case of square loops, a winding
transition does not require a full collapse of the spin texture with
vanishing geometric phases. Still, in both square and ring
geometries, the spin winding is antisymmetric with respect to
the critical line along which the driving field changes topology.

Conclusions and outlook
We demonstrate how the geometry of SOI circuits can be used to
manipulate the carriers’ spin state. Effective SOI field textures are
built by introducing circuit sections of different curvatures
steering the carriers’ momentum. In this way, highly curved
vertices in polygon circuits act as effective spin-scattering centers
for the carriers. This can be achieved by purely electrical means
(without introducing magnetic fields that break time-reversal
symmetry), in contrast to other proposals23,25.

Fig. 4 Spin texture for the square and the ring geometries. The spin
texture of a propagating mode in the Bloch sphere (up) and its azimuthal
projection (down) for different spin-orbit interaction strengths. The texture
is evaluated for three values of the winding number (ω), covered by the
arrows A–D in Fig. 3, with corresponding strengths of SOI taken from the
back of the arrow to the tip. In each panel, the color indicates the circulation
of the local spin states as the carrier propagates along the perimeter from
red to violet.

Fig. 3 Comparison of the winding number and conductance for the square
and the ring geometries. Winding number ω (left column) and winding
number overlapped with the conductance in units of 2e2/h (right column)
for a square (a, b), a square rotated π/4 from the initial configuration (c, d),
and a ring (e, f) subject to Rashba and Dresselhaus spin-orbit interaction.
The left (right) dot in the sketches of the polygonal structures in b, d, and
f, indicates the position of the input (output) lead. The insets in e represent
zoom in the anomalous winding in the critical line for better visualization of
its structure.
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For square circuits subject to Rashba and Dresselhaus SOI, we
find that the topological characteristics of the spin textures can be
manipulated with relative ease by electric control of the SOIs in
semiconducting nanostructures28–32. This contrasts with the case
of ring circuits where, as a general rule, a topological change in
the field texture is required to induce a corresponding change in
the spin textures. Still, this restraint can be overcome by tuning
the SOI to satisfy the spin resonance conditions where complex
spin textures develop. Moreover, additional possibilities for spin
control appear by in-plane rotation of square circuits with respect
to the crystallographic axes.

Remarkably, these topological features leave an imprint on the
quantum conductance of the circuits, which can be addressed
experimentally. We find a correlation between the spin-
dependent conductance and a winding number associated with
the propagating spin modes. This demonstrates that conventional
conductance measurements can reveal the geometrical properties
of the spin-carrier states.

Methods
Formalism for quantum transport. Here we present the QN formalism used to
study the transport properties of polygonal QNs, Fig. 5. Semi-infinite input and
output leads are attached to the network’s vertices for the transport measurements.
Each lead consists of a quantum wire with two spin channels. The leads are not
subjected to any interaction, so they are characterized at zero temperature by the
Fermi energy and a wave vector k. We assume that the channels behave like
incoherent sources, so there is no phase relationship between the different input
channels57.

In a system with Nin (Nout) input (output) channels, if an electron is injected
through input channel σ with wavenumber k, the wave function alongside the
channels can be written as

Ψin;σ0 ðrÞ ¼ eikrδσ 0σ þ rσ 0σe
�ikr ; ð6aÞ

Ψout;σ 0 ðrÞ ¼ tσ 0σe
ikr ; ð6bÞ

where r is the position measured from the edge, and it is negative for input leads
and positive for output leads. Here rσ 0σ and tσ 0σ are the channel-resolved reflection

and transmission coefficients, respectively, so that ∑N in
σ 0 rσ 0σ

�� ��2 þ∑Nout
σ 0 tσ 0σ

�� ��2 ¼ 1.
The indices σ and σ 0 specify the lead and the spin state of the channel. We define
the total transmission and reflection coefficients of a channel σ as

Tσ ¼ ∑
σ 0

tσσ 0
�� ��2; Rσ ¼ ∑

σ 0
rσσ 0
�� ��2: ð7Þ

where the sum runs over the input channels. The total transmission (reflection) is
given by the sum of the transmission (reflection) coefficients of the output (input)
channels,

T ¼ ∑
σ
Tσ ¼ ∑

σσ 0
tσσ 0
�� ��2 ð8aÞ

R ¼ ∑
σ
Rσ ¼ ∑

σσ 0
rσσ 0
�� ��2 ð8bÞ

The zero temperature conductance G based on the Landauer formula reads33:

G ¼ e2

h
Tr tty

� � ¼ e2

h
T: ð9Þ

Equation (9) sets an upper limit for the conductance, which is bounded by the
number of input channels, such that G ≤Nine2/h.

The wave function of the QN satisfies boundary conditions at the vertices,
which ensure the continuity (uniqueness) of the wave function and the
conservation of the probability current. In an isolated QN, imposing the continuity
of the wave function and conserving the probability current yields a set of linear
homogeneous equations where the variables are the values of the wave function at
the vertices. This allows us to study the spectral properties of the QN. When adding
the external leads, the system’s energy is fixed by the Fermi energy of the leads. Due

to the first term in Eq. (6a), the set of equations becomes inhomogeneous, with a
unique solution for T and R.

In a system with Rashba and Dresselhaus SOIs, the wave function of a wire is
described by the values it takes at the nodes Ψα [see Eq. (4)]. The single-valuedness
of the wave function at the nodes is automatically satisfied by this equation. In
addition, imposing the continuity of the wave function at the vertices connected to
external leads allows writing the reflection and transmission coefficients of the
leads in terms of Ψα. Therefore, the number of unknown variables equals the
number of vertices V. The conservation of probability current at the nodes allows
one to write V equations, which fix the values of Ψα, and consequently the
reflection/transmission coefficients. Notice that the presence of SOI modifies the
definition of probability current58. This is accounted for by the extended derivative:

D ¼ ∂

∂r
þ ikRðγ̂ ´ ẑÞ � σ þ ikDγ̂ � σ ¼ ∂

∂r
þ iκθ̂ � σ: ð10Þ

The conservation of probability current at a node is given by the sum of the
outgoing extended derivatives of the wave function, which must be equal to zero.
For a generic node α, the continuity of probability current reads

∑
hα;βi

DΨα;βðrÞ
���
r¼0

¼ 0; ð11Þ

where the sum ∑〈α, β〉 runs over all nodes β which are connected to α. This
equation can be rewritten in terms of Ψα and Ψβ. For internal nodes, it reads

Mα;αΨα þ ∑
hα;βi

Mα;βΨβ ¼ 0; ð12Þ

where

Mα;α ¼ ∑
hα;βi

kβ;α
tan kβ;αL

ð13aÞ

Mα;β ¼ � kβ;α
sin kβ;αL

eiκβ;αLθ̂β;α �σ : ð13bÞ

Here κβ,α and θ̂β;α indicate the strength and direction of BSO for an electron
traveling from vertex α towards vertex β, see Eq. (3).

Computation of the winding number. The model used to compute the winding
number was built upon the one used in24 where we consider a regular polygon of N
conducting sides of length L= P/N with P being the perimeter, which lies on the
xy-plane. Each side connects the vertices α and β and it is oriented along directions
γ̂β;α (from α to β). The spin-carrier dynamics along each side are determined by
Hamiltonian (2). The SOI terms can be interpreted as an effective in-plane mag-
netic field BSO ¼ 2_κp=ðgμm�Þθ̂ (see Eq. 3) coupled to the itinerant spins.

Fig. 5 Various interferometric geometries. Sketch of the polygonal
structures considered for the quantum transport: a square, b hexagon,
c octagon, d ring.

Fig. 6 Rashba and Dresselhaus spin-orbit interaction fields on a
dodecagon geometry. One-dimensional polygon model with its associated
effective magnetic fields due to Rashba BR (red arrows) and Dresselhaus BD
(blue arrows) SOIs. It shows the effective fields corresponding to
counterclockwise propagating spin carriers.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01308-8

6 COMMUNICATIONS PHYSICS |           (2023) 6:186 | https://doi.org/10.1038/s42005-023-01308-8 | www.nature.com/commsphys

www.nature.com/commsphys


The solutions of the Schrödinger equation are plane waves propagating along
each side from vertex α towards vertex β as

ψðrÞ
�� � ¼ e�ikFre�iκrθ̂β;α �σ ψð0Þ

�� �
; ð14Þ

with kF the Fermi wavenumber. The first prefactor corresponds to the kinetic phase
of the carrier associated with the dynamics of charged particles, while the second
prefactor represents the spin phase due to spin precession. The propagation of a
spin carrier from α to β is then fully determined by the phases kFLþ κLθ̂β;α � σ, and
the spin evolution along one side is determined by the momentum-independent
spin rotation operator:

Rβ;α ¼ exp �iκLθ̂β;α � σ
h i

ð15Þ

with Ry
β;α ¼ Rα;β due to time-reversal symmetry.

The full spin evolution along CCW and CW propagating paths from vertex 1 to
vertex N is then given by the unitary operators

UþðNÞ ¼ R1N ¼R32R21 ð16Þ
and

U�ðNÞ ¼ R12 ¼RN�1;NRN1 ð17Þ
with U�ðNÞ ¼ Uy

þðNÞ, see Fig. 6.
The spin rotation operator allows us to obtain the xy-projection of the spin

texture as ŝx;yðrÞ ¼ χs
	 ��σx;y χs�� �

, then it is possible to compute the angle
accumulated around the z axis by the itinerant spin state as the carrier propagates
along each segment as the phase of the complex number sx(r)+ isy(r).

Completing a CCW round trip, we obtain the accumulated angle around the z
axis and, therefore the winding number.

Data availability
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