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Active laminated-plate model for spontaneous
bending of Hydra tissue fragments driven by
supracellular actomyosin bundles
Jian Su 1,2,3, Haiqin Wang 1,2,3, Zhongyu Yan 1,2 & Xinpeng Xu 1,2✉

The outstanding regeneration of Hydra’s excised tissue fragments occurs via initial sponta-

neous bending to some quasi-stable shape in several minutes. However, the underlying

mechanism and dynamics of such initial spontaneous bending are still debated. Here, we

propose that the spontaneous bending is driven mechanically by supracellular actomyosin

bundles inherited from parent Hydra. Our active laminated-plate (ALP) model predicts that

the equilibrium fragment shape is determined by anisotropy in contractility and elasticity. We

construct a minimal dynamic ALP model including three dissipation mechanisms. By varia-

tional analysis and bead-spring simulations, we find that the bending process starts diffu-

sively from the edges and relaxes exponentially to the equilibrium shape. The different

dissipation mechanisms take place at distinct timescales: the viscous drag occurs in 0.001

seconds, while the interlayer frictional sliding and cellular dissipation take place in minutes.

The ALP model could be adapted to study multi-layered viscoelastic tissues with nematic

cytoskeletal structures and provides a useful framework for tissue morphogenesis and

regeneration.
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H ydra is a multicellular fresh-water polyp, which
exhibits remarkable regeneration capabilities, making it
an excellent model system for studying tissue

morphogenesis1–6. The Hydra body consists of a single-axis
hollow-cylindrical tube (about 5−10mm long)1, which has a
triple-layer structure composed of two epithelial cell layers
(endoderm and ectoderm) that are adhered together by an
intermediate soft layer of extracellular matrix (called mesoglea) as
shown in Fig. 1a. Hydra body shape is maintained by a contractile
actomyosin cytoskeleton4–7, which shows a highly-aligned
orientation over supracellular scales (see Fig. 1a): the actomyo-
sin bundles takes longitudinal orientation (along the tube axis) in
the ectoderm and circumferential orientation in the endoderm.
Regenerating Hydras use their cytoskeleton to regulate their cells
and to guide the regeneration process4–7. When fragments are
excised from the adult Hydra body, the supracellular pattern of
cytoskeletal bundles is inherited, survives, and finally becomes a
part of the new daughter Hydra. These supracellular cytoskeletal
bundles provide structural “memory” of the alignment along the
body axis4–7. They generate mechanical forces and direct the
alignment of the cytoskeleton in regions where the supracellular
order is lacking in the early stage of regeneration.

At the initial stage of the regeneration of Hydra tissue frag-
ments that are excised freshly from adult Hydra body7,8,
the fragments bend spontaneously to some quasi-stable (or
mechanical-equilibrium) shape in several minutes (see Fig. 1b).
Subsequently, the cytoskeleton of the fragment remodels to find a
balance between maintaining its pre-existing organization and
adapting to the new curved conditions4–7. After about one hour
of the bending-remodeling loop, the excised fragments fold into
small hollow spheroids4–8.

In this work, we focus on the modeling and analysis of the initial
spontaneous bending of Hydra fragments that happens in the first
several minutes after their excision from parent Hydra (see Fig. 1a,
b). We propose that such spontaneous tissue bending is an active
process driven mechanically by the contractions of the two sets of
aligned, supracellular actomyosin bundles. We assume that the
short bending process is accompanied by changes only in cell shape
and structure, but not in cell division and apoptosis9. The equili-
brium bent shape of Hydra tissue fragments is then determined by
the balance between the actomyosin contractile forces and the
elastic restoring forces due to cell-shape deformation9. The bending
dynamics are driven by the active and elastic forces that are
balanced by some dissipative forces. In the context of Hydra tissue,
we identify three types of dissipation mechanisms: (i) the fragment
motion relative to surrounding viscous fluids, (ii) the relative fric-
tional slide between adjacent tissue layers10, and (iii) the cellular
dissipation associated with sub-cellular-scale remodeling and
cellular-scale rearrangements9,11,12.

Based on the above assumptions, we construct an active
laminated-plate (ALP) model that connects the triple-layer
structure and the contractile supracellular actomyosin bundles
of Hydra fragments with the equilibrium shape and dynamics of
their spontaneous bending (see Fig. 1a). We predict that the bent
shape of plate-like Hydra fragments characterized by the spon-
taneous curvature tensor is mostly determined by their anisotropy
in both the supracellular actomyosin contractility and the elastic
properties of each lamina layer, as summarized in Fig. 2a, b. For
the bending dynamics of rod-like tissue fragments, we present a
minimal model based on the static ALP model and carry out
analysis using an approximate variational method (based on
Onsager’s variational principle13,14) and bead-spring simulations.
We find that the tissue bending propagates diffusively from the
edges into the center (with the bent length being proportional to
the square root of time). Whereas, when the bending is close to its
final equilibrium shape, the end-to-end (ETE) distance decays
exponentially with time toward its equilibrium value. Moreover,
we suggest that the interlayer frictional sliding and cellular dis-
sipation set the dominant timescale (of minutes) observed in
experiments during the initial spontaneous bending of Hydra
fragments4–7.

Results
Spontaneous curvature of Hydra tissue fragments driven by
uniform supracellular contraction. To construct a continuum
model for Hydra tissue fragments, we first note a structural
analogy between Hydra fragments (with triple-layer structure)
and composite laminated plates in material science15,16. More-
over, we find that in typical regeneration experiments4–7, the
lateral lengths of Hydra fragments are usually ~100 μm much
larger than their thickness h ~ 10 μm. We then formulate an
active (thin) laminated-plate (ALP) model17 (see Sec. A of Sup-
plementary Note 1) for Hydra fragments by following the classical
(thin) laminated-plate theory16 that extends the classical (thin)
plate (CP) theory15 of mono-layer isotropic materials to multi-
layer orthotropic materials. In our ALP model, the Hydra frag-
ment is modeled as a triple-layer laminated plate (see Fig. 1a).
The equilibrium bent shape of a Hydra fragment at small
deformation is characterized by spontaneous curvature tensor
and determined by minimizing the deformation energy of the
laminate fragment upon internal uniform active contractions
applied by two sets of perpendicular supracellular actomyosin
bundles. Note that, mathematically, such an ALP model is very
similar to the model for elastic lamellae with assorted pre-stresses
that are set by deformation of “active” thermo- or photo-sensitive
elements in composite materials18, non-uniform in-plane
growth19, or absorbing/expelling water20 in plant sheets, etc.

Fig. 1 Schematic illustration of the triple-layer structure of Hydra fragments and experimental observation of the initial spontaneous bending.
a Schematic illustration of the Hydra body plan and the triple-layer structure of Hydra fragments: ectoderm cell layer (yellow), endoderm cell layer (light
yellow), and intermediate soft matrix (mesoglea). Two sets of perpendicular supracellular actomyosin bundles (red arrows) are formed on the basal sides
of each epithelial layer. Interlayer slides are characterized by the misfit strains ϵð1Þs and ϵð2Þs of the two cell layers relative to the mesoglea layer, respectively.
b Experimental observations: spontaneous bending of freshly excised Hydra (plate- and rod-like) tissue fragments to quasi-stable (equilibrium) bent shape
in several minutes. Reproduced from ref. 7 with permission from Elsevier.
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Firstly, for Hydra fragments consisting of isotropic lamina
layers, the total bending energy density (per area) is found to be17

(see Sec. A of Supplementary Note 1)

Fb ¼
1
2
Dpðc2x þ 2νcxcy þ c2yÞ � ðMð1Þ

p cx þMð2Þ
p cyÞ: ð1Þ

Here Dp is the effective flexural stiffness. The Poisson ratio ν is
assumed to be constant. cx and cy are the two principal curvatures
of the neutral surface located at z= z0. Mð1Þ

p � τð1Þp z0,

Mð2Þ
p � τð2Þp ðz0 � hmÞ, and τð1Þp ; τð2Þp < 0 are the active torques

and contractile forces generated by the two sets of supracellular
actomyosin bundles, respectively. The position of the neutral
surface is given by (see Sec. B of Supplementary Note 1)

z0 ¼
Eð2Þ
� ðh2 þ hmÞ2 � h2m
� �þ EðmÞ

� h2m � Eð1Þ
� h21

2 Eð1Þ
� h1 þ EðmÞ

� hm þ Eð2Þ
� h2

� � : ð2Þ

with EðkÞ
� � EðkÞ=ð1� ν2Þ; E(k) and hk (k= 1, m, 2) being Young’s

modulus and thickness of the ectoderm, mesoglea, and
endoderm, respectively. Note that in comparison to the bending
energy with a quadratic form of principal curvatures in CP
theory15, terms coupling active actomyosin torques linearly with
curvatures21,22 also appear in Eq. (1), resulting in non-zero
spontaneous curvatures.

Minimizing F b ¼
R
dxdyFb gives the spontaneous curvatures:

cx0 ¼
c1 � νc2
1� ν2

; cy0 ¼
c2 � νc1
1� ν2

; ð3Þ

with ci ¼ MðiÞ
p =Dp (i= 1, 2) characterizing the contractility of the

two sets of supracellular actomyosin bundles, respectively. From
Eq. (3), we see that the spontaneous bending (with non-zero cx0
and/or cy0) of Hydra fragments is driven by the supracellular
actomyosin contraction (represented by non-zero τðiÞp ) that occurs
away from the neutral surface at z= z0. Moreover, we find from
Eq. (3) that the principal curvatures (and the equilibrium bent
shape) are mainly determined by the contractility anisotropy
measured by c2/c1. If ν < c2/c1 < ν−1, the Hydra fragments will
bend spontaneously to an elliptical cap shape; otherwise, they will
bend to a saddle shape as summarized in Fig. 2b.

Secondly, for tissue fragments consisting of strongly aniso-
tropic lamina layers (for example, due to the presence of aligned
thick actomyosin bundles in the two epithelial layers), we find
that the spontaneous bending in the two principal directions is
almost independent (see Sec. A of Supplementary Note 1), and
the neutral surfaces of the spontaneous bending lie in different

layers for bending along different directions: in ectoderm for
bending along the x̂-direction and in endoderm for bending along
the ŷ-direction, respectively. In this case, the two principal
spontaneous curvatures are given by cx0 ≈ c1 > 0, cy0 ≈ c2 < 0, that
is, the fragments bend spontaneously to be saddle shape (see
Fig. 2b).

Next, based on the above results, we can connect the triple-layer
structure and elastic/geometric properties of Hydra fragments
with their equilibrium bent shapes observed in experiments7 (see
Fig. 1b). Hydra fragments bend spontaneously to a spherical cap
shape toward the inner endoderm side, that is, cx0 ≈ cy0 > 0, from
which we draw the following conclusions. (i) The cap-like shape
corresponds to the case of more-or-less isotropy in both
contractility (of the two contractile bundles) and elasticity (of
each lamina layer), as shown in Fig. 2b. (ii) The inward bending
corresponds to c1, c2 > 0 (using Eq. (3)) and the case where the
neutral surface lies in the ectoderm layer, i.e., z0 < 0, as obtained
using c1 � τð1Þp z0=Dp > 0 and c2 � τð2Þp ðz0 � hmÞ=Dp > 0. Further-
more, from z0 < 0 and Eq. (2), we obtain that the inward cap-
bending needs to satisfy an inequality Eð2Þ

p;eff ðh2 þ hmÞ2 <Eð1Þ
� h21

with Eð2Þ
p;eff � Eð2Þ

� � ðEð2Þ
� � EðmÞ

� Þh2m=ðh2 þ hmÞ2. Therefore, at
given geometries (given thicknesses, hk), the presence of a soft
mesoglea layer with EðmÞ

� <Eð2Þ
� makes the inequality and z0 < 0

easier to satisfy, thus facilitating inward tissue bending toward the
endoderm side. Such a mesoglea-softening mechanism is similar
to that of connecting a stiff spring to a soft spring in series.
However, when Eð1Þ

� h21 <Eð2Þ
� ½ðh2 þ hmÞ2 � h2m�, such a mesoglea-

softening mechanism is impossible to ensure inward bending.
Before closing this section, we would like to present a simple

way of finding the bending direction driven by each set of
supracellular actomyosin bundles in a laminated tissue: compar-
ing the position of contracting bundles to the location of the
neutral surface, z0, given in Eq. (2). For example, in Hydra
fragments (see Fig. 1a), the actomyosin bundle at the basal side of
the ectoderm layer near z= 0 drives the bending toward the
endoderm side if z0 < 0, and toward the ectoderm side if z0 > 0.
Similarly, the actomyosin bundle at the basal side of the
endoderm layer near z= hm drives the bending toward the
endoderm side if z0 < hm, and toward the ectoderm side if z0 > hm.
Therefore, in the Hydra tissue, an inward bending (toward the
endoderm side) to an elliptical or spherical cap shape requires
z0 < 0, a condition that has already been obtained previously from
c1, c2 > 0 and Eq. (3).

Fig. 2 Schematic illustration of the spontaneous bent shape of Hydra fragments. a Schematic illustration for the spontaneous bent shape of Hydra
fragments driven by uniformly contracting supracellular actomyosin bundles. The contour length, width, and total thickness of the fragments are denoted
by ℓc, b, and h, respectively. b A schematic bent-shape diagram of Hydra plates with different anisotropy in actomyosin contractility (measured by c2/c1)
and in elasticity (measured by EðkÞ2 =EðkÞ1 in each k= 1, m, 2 lamina layer). Here ci characterizes the contractility of the two sets of perpendicular supracellular
bundles; EðkÞ1 and EðkÞ2 are the two principal Young’s moduli of each (k= 1, m, 2) orthotropic lamina layer.
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Spontaneous bending and interlayer slide of rod-like Hydra
fragments. If instead of a Hydra plate, one cuts a rod-like Hydra
fragment, the total bending energy density (per length) in Eq. (1)
reduces to (see Sec. B of Supplementary Note 1):

Fb ¼
1
2
Drc

2 �Mrc: ð4Þ

Here Dr is the effective flexural stiffness. c is the curvature of the
neutral line at z= z0. Mr ≈ τrz0 and τr < 0 are the active torque
and contractile force generated by the actomyosin bundle in the
ectoderm layer, respectively. The neutral line position z0 is given
by the same form as Eq. (2) but EðkÞ

� should be replaced by E(k)b
with b being the width of the Hydra rod.

Minimization of F b ¼
R
dxFb gives the spontaneous curvature

(see Sec. B of Supplementary Note 1): c0=Mr/Dr ≈ τrz0/Dr.
Then using Dr ~ Eh3b, z0 ~ h, and noting that in typical cell
experiments9: τr/hb ~ 0.1 kPa, h ~ 10 μm, E ~ 1 kPa, we estimate
the spontaneous curvature c0 ~ 1/100 μm−1. Interestingly, for
Hydra regenerating from cell aggregates3, the curvature cs0 of the
hollow Hydra spheroids formed from an aggregate of a minimal
number of Nc ~ 1000 cells2,3 can be estimated to be the same scale
cs0 ~ 1/100 μm−1 by calculating the surface area of the spheroid,
4πc�2

s0 � NcR
2
c , and using the cell size Rc ~ 10 μm. Moreover, such

cell-scale curvature is also known to appear very often in many
natural in vivo microenvironment21, e.g., cylindrical-shaped
glands and blood vessels23.

Note that the supracellular contraction and the elastic/
geometric properties are generally non-uniform, hence the
spontaneous curvature c0 can be different at different positions
through the fragments. In this case, for a freely suspending Hydra
fragment, the equilibrium bent shape corresponds to the
equilibrium state with bending energy minimized locally, that
is, the local curvature equal to local c0. In contrast, the bent shape
of a constrained Hydra rod is more complex. Some non-trivial
periodic bent shapes have been obtained, as shown in Fig. S2 of
Supplementary Note 1. The mechanistic perspective of the
spontaneous bending of tissue fragments during morphogenesis
conveyed in this work has been proposed before8,24–26, and
several classical theories have been developed. Among the earliest
theories of this kind, W.H. Lewis proposed (1947)24 a mechanical
model of epithelial sheets, consisting of brass bars, tubes, and
rubber bands (see Fig. S2 in Sec. C of Supplementary Note 1) for a
schematic figure of the model). We discuss this model in Sec. C of
Supplementary Note 1 and show the equivalence (the mapping)
between Lewis’ model and our ALP model in predicting the
spontaneous bending shape of Hydra tissue.

In addition, during the tissue bending, the interlayer slide may
occur between each cell layer and the intermediate mesoglea
matrix10, as shown in Fig. 1a, and the fragment becomes
incoherent27. In this case, we neglect the in-plane contraction,
and the total energy F t takes the following phenomenological
form22,27

F t ¼
Z ‘c=2

�‘c=2
ds

Y s

2
ϵ2s � χϵscþ

Dr

2
c� ~c0
� �2� �

: ð5Þ

Here ℓc is the rod contour length, ~c0 being the spontaneous
curvature of coherent fragments. ϵs denotes the interlayer slide or
the misfit strain discontinuity at the cell-mesoglea interfaces, Ys is
the stiffness for the interlayer slide, and in the thin rod limit, the
misfit interlayer displacement is simply given by ϵsh/2 with h
being the rod thickness. χ is the linear coupling coefficient
between bending and interfacial slide. Note that in a complete
triple-layer model (as shown in Fig. 1a and discussed in Sec. D of
Supplementary Note 1 for the bending of Hydra tissue, we should
introduce two slide strains or displacements at the two interfaces:

ectoderm-mesoglea interface and endoderm-mesoglea interface,
respectively. However, for simplicity, we assume in a coarse-
grained manner that one strain ϵs is enough to characterize the
interlayer slide. The equilibrium bent state of the rod is then
characterized by the spontaneous curvature c0 � ~c0Dr=~Dr and the
equilibrium slide ϵs0= χc0/Ys with ~Dr � Dr � χ2=Y s being the
normalized flexural stiffness of the rod. Particularly, in the limit
of Ys→∞, we recover the case of coherent fragments with c0 ¼ ~c0
and ϵs0= 0 where the strain is continuous through the thickness.

Bending dynamics of Hydra tissue rods: effects of different
dissipation mechanisms. We now consider the dynamic process
of the spontaneous bending of Hydra tissue rods in surrounding
viscous fluids starting from the initial state to the final equili-
brium shape as shown in experiments (see Fig. 1b). The initial
state of the Hydra fragment is assumed to be flattened to mimic
the state when it is excised from the parent Hydra. The bending
dynamics of long soft rods with non-zero spontaneous curvature
c0 and contour length ℓc≫ 2πR0 (with R0 ¼ c�1

0 ) have been
explored intensively in both theory and experiments28,29. How-
ever, in typical Hydra regeneration experiments7, Hydra rods are
usually short with ℓc ~ 2πR0. In this case, the total energy F t of
the laminated Hydra rod is given by Eq. (5), and the bending
dynamics is driven by the relaxation of stored elastic energy at the
initial flattened state. Furthermore, the three types of dissipation
mechanisms (arising from viscous drag by the surrounding fluids,
the interlayer frictional sliding, and cellular remodeling/rearran-
gement inside the fragments) during the bending are taken into
account by the dissipation function (see Sec. A of Supplementary
Note 2)

Φ ¼
Z ‘c=2

�‘c=2
ds

1
2
ξv _r

2 þ 1
2
ξs _ϵ

2
s þ

1
2
ηcellbhðh_cÞ2

� �
: ð6Þ

Here r(s) is the position vector of points (parameterized by arc
length s) on the rod, the local curvature c is given by its second
derivatives30, and the upper dot hereafter denotes the time
derivative. ξv and ξs are the viscous drag coefficient per rod length
and friction coefficient for interlayer sliding, respectively. Inter-
estingly, interlayer frictional sliding has recently been found to be
able to facilitate long-range force propagation in tissues that
usually have multi-layer structures10. ηcell is an effective viscosity
characterizing the additional cellular dissipation at sub-cellular
and cellular scales.

We then use Onsager’s variational principle13,14 and minimize
Rayleighian R½_r; _ϵs� ¼ _F t þΦ, yielding a set of highly nonlinear
partial differential equation (e.g., Kirchhoff equations)29. How-
ever, here we will not solve these nonlinear equations but carry
out direct-variational analysis13,14 for the very initial bending
stage near the flattened state and the final bending stage close to
the equilibrium bent shape (see Sec. B of Supplementary Note 2).

Initially, near the flattened state (see Fig. 3a), we neglect the
effects of the interlayer slide as well as cellular dissipation, and
take the simplest continuous trial profile of local curvature c(s, t)
(see Fig. 3b):

c ¼ 0; 0 ≤ s < ‘c=2� a;

c0ðs� ‘c=2Þ=aþ c0; ‘c=2� a ≤ s ≤ ‘c=2;

�
ð7Þ

in which case the bending dynamic process is characterized by
only one time-dependent parameter: the bent length a(t) of the
rod. Substituting the trial profile into Eqs. (5) and (6), we obtain
the Rayleighian R and its minimization with respect to _a gives
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(see Sec. B of Supplementary Note 2)

a � 2~Drc
2
0

3ξv

	 
1=2

t1=2; ð8Þ

that is, the bending starts from the edges and propagates
diffusively into the center. Moreover, from Eq. (8) we calculate
the normalized ETE distance ~‘ � ð‘� ‘eqÞ=ð‘c � ‘eqÞ scaling as

1� ~‘ � a3 � t3=2, where ℓ is the ETE distance with ℓeq being its
equilibrium value. Interestingly, although the linear trial curva-
ture profile assumed in Eq. (7) has some visible deviation from
the simulated profile (as shown in Fig. 3b), the scaling law
predicted above for ETE distance agrees well with simulation
results in Fig. 4a and is not sensitive to the form of trial curvature
profile; the same scaling is obtained by using a simpler trial step-
function profile of curvature. However, we note that the initial
diffusive bending process happens only in a very short period, as
shown in Fig. 4a. The bending dynamics slow down quickly from
the diffusive regime to a subdiffusive regime with 1� ~‘ � t0:9.

In the final stage of the bending dynamics close to the
equilibrium bent state (see Fig. 3a), we take the same strategy as
above and also choose a linear trial profile of the curvature c(s, t)
(see Fig. 3b) and the interlayer slide ϵs(s, t) as

c ¼ cm þ ð2s=‘cÞðc0 � cmÞ;
ϵs ¼ ϵs;m þ ð2s=‘cÞðϵs0 � ϵs;mÞ;

ð9Þ

for 0 ≤ s ≤ ℓc/2, in which case the bending dynamic process is
described by the two time-dependent parameters: the curvature
cm(t) and interlayer slide ϵs,m(t) in the rod center at s= 0.
Substituting the trial profile into Eqs. (5) and (6), we obtain the
Rayleighian R and its minimization yields (see Sec. D of

Supplementary Note 2)

ðτ þ τcellÞ_~cm ¼ 1� ð1þ BÞ~cm þ B~ϵs;m;
τs _~ϵs;m ¼ ~cm � ~ϵs;m;

ð10Þ

with ~cm ¼ cm=c0 and ~ϵs;m ¼ ϵs;m=ϵs0. Here B ¼ Y sϵ
2
s0=c

2
0
~Dr

characterizes the relative stiffness of interlayer slide and out-
plane bending and it is order unity since all energy terms in
Eq. (5) are comparable. The three characteristic timescales
τ ¼ 6ξvL=~Drc

4
0, τcell ¼ ηcellbh

3=~Dr, and τs= ξs/Ys are associated
with viscous drag, sub-cellular or cellular dissipation, and
interlayer frictional sliding, respectively. L is a nonlinear function
of rod contour length ℓc (changing from 0 to order one; see its
expression in Eq. (S79) of Supplementary Note 2).

We consider the following two limits of the dynamic equation
(10) that are particularly interesting and may be relevant to the
bending dynamics during tissue morphogenesis and regeneration.
Firstly, in the limits of either coherent Hydra rods or incoherent
Hydra rods with small friction, we have τs/(τ+ τcell)≪ 1, and the
viscous drag from the surrounding fluids or the cellular
dissipation is the dominant dissipation mechanism. In this limit,
we find from Eq. (10) the normalized ETE distance ~‘ðtÞ follows

~‘ � exp �t=ðτ þ τcellÞ
� �

; ð11Þ
which has been justified for rods with various contour lengths by
our numerical simulations using the bead-spring model and
shown in Fig. 4(b). Note that the relaxational time τ ¼ 6ξvL=~Drc

4
0

shows a nonlinear dependence on the rod contour length ℓc (due
to the nonlinear function L): τ is small for short rods ℓc < πR0, but
increases very fast with increasing ℓc when ℓc > πR0. For example,
the time τ � ξv=~Drc

4
0 for ℓc= 2πR0 is about ten times larger than

Fig. 3 Bead-spring simulations of the dynamic bending process of a Hydra rod. Simulation snapshots of the dynamic bending process of a Hydra rod (of
contour length ℓc= 2πR0) in viscous fluids on a supporting surface: a the rod shape and b the curvature profile. In b, the linear trial profiles of curvature for
variational analysis are plotted (dashed lines), which are parameterized by the bent length ~a ¼ a=R0 for the initial stage (red dashed line) and the center
curvature ~cm ¼ cm=c0 for the final stage (blue dashed line), respectively.

1.5

0.9

(a) 

−1

(b) 

Fig. 4 Temporal evolution of the end-to-end (ETE) distance ~‘ for Hydra rods. a The initial bending starting diffusively from the edges and b the final
bending relaxing exponentially to the equilibrium shape. Universal scaling relations are found for rods of different contour lengths π=2 � ~‘c � 3π.
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that for ℓc= πR0. In addition, we have used the bead-spring
model to numerically examine the bending dynamics of Hydra
rods under some different boundary conditions (see Figs. S5–S7
in Sec. C of Supplementary Note 2). We find that the bending
dynamics predicted above are very robust: the same scaling laws
(including the nonlinear contour-length dependence of relaxa-
tional time τ due to L) are found for most different boundary
conditions, including both the initial diffusive bending and the
final relaxational bending processes.

Secondly, in the limit of incoherent Hydra rods with large
friction, we have τs/(τ+ τcell)≫ 1, we obtain from Eq. (10) the
ETE distance ~‘ðtÞ following the same exponential form:

~‘ � exp �t=τs
� �

: ð12Þ
That is, in either limit, the characteristic time for the spontaneous
bending of the tissue rod is controlled by the slowest dissipative
dynamics and the longest timescale. Particularly for Hydra tissue
rods, we can estimate the magnitude of the three timescales as
follows. Using ~Dr � Eh3b, ξv ~ ηenv, b ~ 10h, Ys ~ Ehb, and
ξs= ξh2b, we obtain τ � ηenv=Eh

3bc40; τcell � ηcell=E, and
τs ~ ξh/E with ηenv being the viscosity of surrounding fluids
and ξ being the interlayer friction coefficient10. We can then
substitute typical parameter values and obtain

τ � 10�3 s; τcell � τs � 1 min; ð13Þ
where the parameter values are taken from cell experiments9,10: h
~10 μm, c0 ~1/100 μm−1, E ~1 kPa, ηenv ~10−3 Pa ⋅ s, and ξ
~1010 Pa ⋅ s ⋅m−1. Particularly, we have taken ηcell ~105 Pa ⋅ s, a
magnitude measured in the study of mouth opening dynamics of
Hydra9, and for spherical cellular aggregates11 and zebrafish
embryonic tissues31. Therefore, the spontaneous bending of
Hydra rods is controlled by the dissipation due to interlayer
frictional sliding and/or the sub-cellular/cellular dissipation that
sets the longest characteristic timescales τcell � τs � 1 min
consistent with the time duration of initial spontaneous bending
observed in Hydra regeneration experiments (see Fig. 1b)7. In this
case, with τcell ~ τs≫ τ, the approximate bending dynamics is
described by Eq. (10) with τ set to be zero.

Discussions
The active laminated-plate (ALP) model constructed here for
Hydra tissue fragments connects the triple-layer tissue structure
and the contractile supracellular actomyosin bundles of fragments
with the equilibrium shape and dynamics of their spontaneous
bending. In this model, the equilibrium bent shape of a Hydra
fragment is characterized by spontaneous curvature tensor and
determined by minimizing the deformation energy of the lami-
nate fragment upon internal uniform active contractions applied
by two sets of perpendicular supracellular actomyosin bundles.
The concept of spontaneous curvature has been used a long time
ago to represent the tendency of lipids to curve in lipid
membranes30 and to describe the spontaneous bending of
uniformly-heated bimetal plates32, in which the driving forces are
chemical heterogeneity and asymmetric thermal expansion,
respectively. In contrast, the spontaneous bending of tissue
fragments proposed in this work is driven by completely different
forces due to contractile supracellular actomyosin bundles.

From the ALP model, we predict that the equilibrium shape of
a Hydra fragment is determined by its anisotropy in contractility
and elasticity, as shown in Fig. 2. A spherical cap shape observed
in Hydra regeneration experiments7 is generated only for the case
of more-or-less isotropy in both contractility (of the two con-
tractile bundles) and elasticity (of each lamina layer). The pre-
sence of a soft mesoglea (the intermediate extracellular matrix) at
given geometries (layer thicknesses) facilitates inward tissue

bending toward the endoderm side. Such proper inward bending
is essential for the formation of hollow Hydra spheroid and the
whole Hydra regeneration process7. Interestingly, the critical roles
of the changes in mesoglea during Hydra regeneration have
already been examined in experiments since the 1990s33. How-
ever, we would like to point out that such a mesoglea-softening
mechanism is very limited in ensuring inward tissue bending; we,
therefore, propose to include other mechanisms, such as differ-
ential interfacial tension, as having been used to explain cell
sorting during the regeneration of Hydra from cell aggregates34.

For the bending dynamics of tissue fragments, we consider
three specific dissipation mechanisms in the framework of the
triple-layer ALP model: viscous drag due to the fragment motion
relative to surrounding fluids, the relative frictional slide between
adjacent tissue layers, and the cellular dissipation associated with
sub-cellular-scale remodeling and cellular-scale rearrangements.
Particularly, for rod-like fragments, we present a minimal
dynamic model. The model suggests that tissue “viscosity” (spe-
cifically, the interlayer frictional sliding and cellular dissipation
associated with remodeling/rearrangement at sub-cellular and
cellular scales) sets the longest timescales and controls the
spontaneous bending dynamics of Hydra fragments in the first
several minutes after their excision from parent Hydra. In most
one-layer viscoelastic models of tissue9 (see an example of such a
model in Sec. D of Supplementary Note 2), tissue “viscosity” is
simply employed as a coarse-grained concept and a “lumped”
parameter to represent the underlying dissipation mechanisms. In
comparison, our ALP model includes the specific tissue structure
and gives predictions on the specific dissipation mechanisms. The
characteristic timescale (of minutes) for the initial bending
dynamics of Hydra fragments is obtained from parameter values
measured in other independent experiments. We think this
provides indirect evidence for the specific dissipation mechanisms
proposed in this work. We suggest that further quantitative
experiments should be done in the future to measure the
elastic moduli of each tissue layer and identify the dissipation
mechanisms underlying the Hydra regeneration process4–7,12.

The proposal here on the spontaneous bending of Hydra tissue
fragments driven by contractile supracellular actomyosin bundles
should be generically present in a broad range of cell assemblies
and tissue fragments during tissue regeneration or morphogenesis
during embryo development4–6. For example, the bending of
epithelial monolayers induced by actomyosin contraction35,36,
out-turning of the inside of the Volvox embryo37, etc. Our ALP
model provides a useful framework for the study of tissue
regeneration and morphogenesis. It connects the specific struc-
ture of the tissues with complex, emergent tissue behaviors, which
is contrasted with other theoretical models for active surfaces
with internal forces and torques resulting from differential
stresses assumed a priori and acting along the cross-section of
thin tissue sheets38,39. Moreover, our ALP model can be further
extended by following active gel theory40,41 and active nematic
elastomer theory18,42 to be an active laminated-nematic-gel-plate
(ALNGP) model to study the morphogenesis of other multi-
layered tissues with supracellular nematic cytoskeletal orientation
and to include the couplings between the organization of the
cytoskeleton and the deformation/curvature of the tissue4–6. In
the ALNGP model, the topological defects can be considered by
following the Landau-de Gennes theory of nematic liquid
crystals42. The effects of the permeation of water or other small
molecules on the dynamics of tissue bending can also be
explored41,43. Additional aspects of cell biology, such as cell
division/apoptosis and cell morphological changes25,26, or active
behaviors such as migration and oscillations, could be incorpo-
rated as well24,44. The potential of the ALP model or the
extended ALNGP model can be further illustrated by numerical
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simulations using the finite element method8,26. For example, one
can consider the spontaneous bending of circumferential Hydra
fragments (open ring geometry)7 where topological defects play
a role4–6,45, resulting in defective morphology. One can also
investigate the bending instability of tissue fragments at large
deformations and study the coupling between deformation and
nematic order, as well as the dynamics of topological defects
during tissue morphogenesis and regeneration4–6.

Methods
Active laminated-plate model (ALP) of Hydra tissue fragments. Here we briefly
explain the ALP model of the triple-layer fragments of Hydra tissue. In the ALP
model, the tissue fragments are treated as thin orthotropic laminated plates with
internal active contraction, as shown in Fig. 1a. Following the classical laminated-
plate (CLP) theory for thin orthotropic laminated plates16, the deformation of the
Hydra tissue fragment is due entirely to the in-plane displacement uðx; yÞx̂ and
vðx; yÞŷ and the out-plane deflection (bending) ω(x, y) of the neutral surface. The
components of the displacement vector are given by uz ≈ ω and

ux � u� ðz � zx0Þ∂xω; uy � v � ðz � zy0Þ∂yω: ð14Þ
Note that in contrast with the traditional CLP theory, we here assume more
generally that the positions of the neutral surfaces of the thin Hydra-laminated
plate are different for the deformation in the x and y directions, and we denote
them as zx0 and zy0, respectively. Such a form of the displacement field allows the
reduction of the 3D problem to one of studying the deformation of the reference
neutral surfaces. Once the neutral-surface displacements (u, v, ω) are known, the
displacements of any arbitrary point (x, y, z) in the 3D continuum can be
determined.

Particularly, for a Hydra-plate suspended by its center with ω(0, 0)= 0, we take
the trial solution of the form

u ¼ ϵxx; v ¼ ϵyy; ω ¼ 1
2

cxx
2 þ cyy

2
� �

; ð15Þ

and in this case, the bending energy is given (after integrating over the thickness z-
direction) by14,17

F b ¼
Z

dxdy
1
2
Dp;11c

2
x þ Dp;12cxcy þ

1
2
Dp;22c

2
y

	 
�

� Mð1Þ
p cx þMð2Þ

p cy
� �i

:

ð16Þ

Here we have used the fact that the two supracellular bundles inside Hydra fragments
lie on the two sides of the intermediate mesoglea layer and align along the x- and y-
directions in the ectoderm and endoderm layers (see Fig. 1a), respectively. Dp,ij are

the bending stiffnesses, defined by Dp;11 �
R h2
�h1

dz�Q11ðz � zx0Þ2, Dp;12 �
R h2
�h1

dz�Q12

ðz � zx0Þðz � zy0Þ, and Dp;22 �
R h2
�h1

dz�Q22ðz � zy0Þ2 with �Q11, �Q12, and �Q22 being

the orthotropic elastic constants (being different in different lamina layers, see Eq. (S5)
in Supplementary Information). MðiÞ

p are the active torques (per length), generated by
the asymmetric internal contraction and given in the two lamina layers, respectively,
by Mð1Þ

p � τð1Þp zx0 and Mð2Þ
p � τð2Þp ðzy0 � hmÞ with τðiÞp < 0 being the active contractile

forces (per length).

Onsager’s principle as an approximation method for Hydra tissue bending
dynamics. In this work, our major purpose is not to uncover the mechanisms for
the interlayer slide in Hydra tissue fragments, but to study the effects of interlayer
slide accompanying spontaneous bending on their dynamics. Therefore, for a
Hydra rod with differential slide and spontaneous curvature along the arc length,
we neglect the in-plane contraction ϵ and simply write the total energy F t in the
simple phenomenological form of Eq. (5). Minimizing F t with respect to c and ϵs
give the spontaneous curvature and the equilibrium slide c0 and ϵs0, respectively.
Using them, the total energy in Eq. (5) can be rewritten into an alternative form as

F t ¼
Z ‘c=2

�‘c=2
ds

Y s

2
ðϵs � ϵs0c=c0Þ2 þ

~Dr

2
ðc� c0Þ2

� �
; ð17Þ

with ~Dr � Dr � χ2=Y s being the normalized flexural stiffness of the rod.
To investigate the bending dynamics of Hydra rods, we don’t study this highly

nonlinear equation that has been solved numerically extensively (particularly for
very long thin rods)29, but instead, we carry out approximate variational analysis by
assuming some trial shape dynamics of the elastic curve13,14. We assume that,
during the bending of the Hydra rod, the interlayer slide ϵs(s, t) and the local
curvature c(s, t) take some trial forms (see Fig. 3b in the main text) that are
parameterized by a set of time-dependent variables a(t) with −ℓc/2 ≤ s ≤ ℓc/2 being
the arc length. From the trial local curvature c(s; a(t)), we can calculate the local
tangential orientation angle θ(s) (defined relative to the horizontal x-direction) by

θðs; tÞ ¼
Z s

0
cð̂s; tÞdŝþ θð0; tÞ; ð18aÞ

from which we further calculate the tangential unit vector t̂ðs; tÞ and position vector
r(s, t), respectively, by

t̂ðs; tÞ ¼ ∂rðs; tÞ=∂s
∂rðs; tÞ=∂s
  ¼ ðcos θðs; tÞ; sin θðs; tÞÞ; ð18bÞ

rðs; tÞ ¼
Z s

0
dŝ cos θð̂s; tÞ; sin θð̂s; tÞð Þ þ rð0; tÞ: ð18cÞ

Then using the obtained rod profile r(s, t), Eqs. (6) and (17), we can calculate the
Rayleighian R½_r; _ϵs� ¼ _F t þΦ as a function of _aðtÞ. Minimizing R with respect to
_aðtÞ gives the ordinary differential equation for a(t), from which we solve the
bending dynamics approximately.

Bead-spring model for the bending dynamics of Hydra tissue fragments in
viscous fluids. In the discrete bead-spring model, we consider the dynamics of
Hydra rods determined by the competition between the bending energy and the
viscous dissipation due to the motion of the rod relative to the surrounding sta-
tionary viscous fluids. We do not consider the energy and dissipation associated
with interlayer slides. Moreover, we assume the rod to inextensible. In this case, the
total energy of the Hydra rods includes two parts: F tðriðtÞÞ ¼ F c þ F b, which are
given, respectively, by

F c ¼ ∑
N�1

i¼1

Y r

2‘0
ri;iþ1 � ‘0

� �2
;

F b ¼ ∑
N�2

i¼1

Dr

2‘0
t̂iþ1 � t̂i
� �� ϕ0n̂i

� �2
;

ð19Þ

with ϕ0≡ ℓ0c0= ℓ0/R0 being the equilibrium bending angle. Here ri,i+1= ∣ri,i+1∣ is
the distance between neighboring beads with ri,i+1= ri+1− ri(1 ≤ i ≤ N− 1) and
ri= (xi, yi)(1 ≤ i ≤N) being the position vector of the i-th bead. The local tangential
unit vector and normal unit vector are given, respectively, by

t̂i �
ri;iþ1

ri;iþ1
¼ ðcos θi; sin θiÞ; n̂i ¼ ð� sin θi; cos θiÞ; ð20Þ

in which θi (with −π ≤ θi ≤ π) is the local tangential angle of each spring. In our
simulations, we take a very large Yr to keep the rod inextensible.

From the total energy F tðriðtÞÞ we can obtain the rate of energy change _F t as a
function of _riðtÞ � dri=dt. The viscous dissipation function is given by

Φð_riÞ ¼ ∑
N

i¼1

1
2
ξb _riðtÞ2; ð21Þ

with ξb≡ ξvℓ0 being the effective drag coefficient of the chain segments in
the surrounding viscous fluids. Then minimizing Rayleighian Rð_riÞ ¼ Φð_riÞ þ
_F tð_riÞ with respect to _ri gives the dynamic equations of the bead-spring chain as

ξb
dri
dt

¼ Fsi þ Fbi ; i ¼ 1; 2; ¼N; ð22Þ

where Fsi � �∂F c=∂ri and Fbi � �∂F b=∂ri are the spring force and the bending
force, respectively (see the Sec. A of Supplementary Note 2 for their expressions).

Data availability
The data that support the findings of this study are available from the authors upon
request.
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