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Symmetry-protected Bose-Einstein condensation of
interacting hardcore bosons
Reja H. Wilke 1,2✉, Thomas Köhler 3, Felix A. Palm 1,2 & Sebastian Paeckel 1,2

The large practical potential of exotic quantum states is often precluded by their notorious

fragility against external perturbations or temperature. Here, we introduce a mechanism

stabilizing a one-dimensional quantum many-body phase exploiting an emergent Z2-sym-

metry based on a simple geometrical modification, i.e. a site that couples to all lattice sites.

We illustrate this mechanism by constructing the solution of the full quantum many-body

problem of hardcore bosons on a wheel geometry, which are known to form Bose-Einstein

condensates. The robustness of the condensate against interactions is shown numerically by

adding nearest-neighbor interactions, which typically destroy Bose-Einstein condensates. We

discuss further applications such as geometrically inducing finite-momentum condensates.

Since our solution strategy is based on a generic mapping, our findings are applicable in a

broader context, in which a particular state should be protected, by introducing an additional

center site.
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The ability to control and manipulate quantum systems has
seen a remarkable development in the past two decades.
For instance, cold atom experiments have become a ver-

satile platform to realize various exotic quantum phases of
matter1–8. Available experimental setups nowadays allow for the
control of both geometry and interactions of simulated model
systems. It is thus crucial to theoretically identify physical
mechanisms that improve the stability and scaling properties of
exotic quantum phases, which then might be realized and tested
in experiments. In that context, remarkable progress in under-
standing the stability of Bose-Einstein condensates (BEC) has
been made by analyzing spectral properties of a wheel of hardcore
bosons (HCB)9–12 as depicted in Fig. 1a. This model features an
energy scale � ffiffiffi

L
p

that is generated by the extensively scaling
coordination number of a center site, which in this geometry is
given by the number of ring sites L. While large coordination
numbers appeared in several theoretical approaches13–18, the
underlying mechanism as well as its stability against perturba-
tions remained an open question.

Here we show that the observed stability of the BEC phase on
the wheel lattice is no physical oddity, but a consequence of the
geometry of the wheel lattice itself, hosting a hidden Z2-sym-
metry. For that purpose, we present a mapping that allows us to
construct the solution of a family of quantum many-body pro-
blems with arbitrary k0-modulated ring-to-center hoppings
sj ¼ seik0j, and to analyze the formation of a BEC phase with
momentum k0. In the context of central spin models19–24 a
solution strategy to a similar problem is based on the Bethe ansatz
and has been applied to describe for instance Rydberg impurities
in ultracold atomic quantum gases25. In contrast, we derive an
analytical expression by introducing a mapping to a ladder system
of spinless fermions (SF) which becomes exact both in the ther-
modynamic limit and at low densities. We emphasize that this
mapping can be applied in various other setups to analytically
tackle problems with an extensively scaling coordination number.
In the context of hardcore bosons, our approach reveals that the
stabilizing mechanism for the BEC is the extensively scaling
coordination number of the center site, introducing a robust

discrete Z2-symmetry that protects the ordered quantum many-
body phase against local perturbations on the outer ring. Fur-
thermore, we trace back the protection to odd-parity k= k0
single-particle states that are gapped out � s

ffiffiffi
L

p � ~s. This prop-
erty implies that in the thermodynamic limit the system imme-
diately transitions into a BEC, as long as there is a finite ring-to-
center hopping rate s > 0, which remarkably also holds when
adding local interactions to the outer ring. We demonstrate,
beyond previous work, the robust protection of the BEC
numerically, using density-matrix renormalization group
(DMRG)26–29 simulations to calculate the k0-condensate fraction
when adding nearest-neighbor interactions, for a wide parameter
range and various particle number densities. As a consequence,
the Z2-symmetry in principle allows to experimentally tune the
transition temperature of a gas of interacting HCB by modifying
the wheel’s coordination number. Here, we show that the central
quantity is the ratio V

~s between the interaction strength V and the
renormalized ring-to-center hopping, as we demonstrate by fur-
ther numerical results. Finally, our analysis implies that the
emergent Z2-symmetry is generically induced by the model’s
geometry. Therefore, general k0-modulated hoppings give rise to
corresponding protected k0 modes and the respective single-
particle states are gapped out � s

ffiffiffi
L

p
. This paves the way to a

generic mechanism that can be exploited in various contexts, for
instance, to stabilize exotic quantum many-body phases such as
k0 ≠ 0, i.e. finite momentum BEC30–33.

Results
In order to demonstrate our mapping and its implications, we
consider HCB on a L-sited ring with an additional center site10,12

(see Fig. 1a). The model exhibits k0-modulated ring-to-center
hopping sj ¼ seik0j while the homogeneous hopping on the ring is
tuned by a parameter t. The corresponding Hamiltonian reads

Ĥ � �t ∑
L�1

j¼0
ĥ
y
j ĥjþ1 þ h.c.

� �
� ∑

L�1

j¼0
sjĥ

y
j ĥ� þ h.c.

� �
; ð1Þ

where ĥ
ðyÞ
j is the HCB ladder operator on the j-th site of the ring

and ĥ
ðyÞ
� on the center site, spanning the overall Hilbert space

H�Lþ1
2 . In the limit st ! 0 (ring geometry) the model exhibits off-

diagonal quasi long-range order, indicated by the algebraic decay
of the single-particle density matrix (SPDM) ρij � jxi � xjj�

1
234,35.

This leads to the formation of a quasi-BEC, i.e. the ground state is
a bosonic condensate whose occupation scales as

ffiffiffiffi
N

p
36,37, where

N denotes the number of HCB.
The opposite limit, s

t ! 1 (star geometry), has been shown
recently to feature a real BEC where the occupation in the ground
state scales as Lρ(1− ρ+ 1/L) with ρ=N/L11.

Analytical solution via wheel-to-ladder mapping. The property
of Eq. (1) to interpolate between two superficially disconnected
physical situations, one exhibiting no stable long-range order
(st ¼ 0) and one featuring true long-range order (st ! 1), calls for
a deeper understanding of the underlying physics. For that pur-
pose, we demonstrate how to construct an analytical solution of
Eq. (1) and, thereby, learn about the origin of the emergence of
true long-range order. From a theoretical point of view, finding
the eigenstates is hindered by the fact that under a Fourier
transformation, HCB loose their hardcore property. Typically,
this is accounted for by mapping the HCB to spinless fermions
via a Jordan-Wigner transformation (JWT) which, however,
requires to introduce a normal ordering, for instance via a chain
mapping. Here, the additional center site complicates the situa-
tion, since it couples to any other lattice site in the chain map-
ping, generating arbitrarily long-ranged interactions. We

Fig. 1 Wheel geometry, ladder geometry and the single-particle
dispersion. The main plot illustrates the single-particle dispersion relation
(middle, red curve) of the wheel geometry (a), emerging from projecting
down the dispersion from the ladder geometry (b) (upper orange and lower
blue curve). Note the appearance of two single-particle states at k0= 0
(red crosses). This is because the Hilbert space of the wheel is obtained by
projecting out all modes on the inner ring, except for the zero momentum
states

��N�;k¼0

�
�. Momentum conservation then couples this central mode

to the particular mode on the outer ring respecting the k0-modulated ring-
to-center hopping, which generates an extensively scaling level splitting
(red circle and crosses).
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introduce a mapping from the wheel Eq. (1) to a ladder geometry
of HCB with periodic boundary conditions (see Fig. 1b) to resolve
this issue. Physically, the coupling to an inner ring allows to
disentangle the complications arising from arbitrary long-ranged
hoppings of particles on the outer ring that are generated by
second order processes. The overall solution strategy is sketched
schematically in Fig. 2. The crucial step is to identify the central
Hilbert space of the HCB wheel with the subspace of the single-
particle momentum states

��N�;k¼0

�
� on the inner ring of the

ladder (enforcing occupations N⊙,k=0≡N⊙ ≤ 1). The projector
Π̂� to this subspace allows us to construct a solution on the
expanded Hilbert space of the ladder geometry and eventually
project down. In Supplementary Note 3, we observe that the JWT
of the projector becomes asymptotically diagonal in both the
thermodynamic limit and at low densities. Therefore, the long-
range coupled wheel Hamiltonian can be mapped to an only
next-nearest-neighbor (NNN) coupled ladder Hamiltonian Ĥlad:

Ĥ ¼ Π̂�ĤladΠ̂�: ð2Þ
While the full details of the mapping can be found in Supple-
mentary Note 1, the most important observation is that a JWT of
Ĥlad introduces only local parity operators eiπn̂�;j :

Π̂�ĤladΠ̂� ¼ t∑
j
Π̂� ĉyj e

iπn̂�;j ĉjþ1 þ h.c.
� �

Π̂�

�~s∑
j
Π̂� eik0jĉyj ĉ�;j þ h.c.

� �
Π̂�;

ð3Þ

wherein ĉðyÞj ð̂cðyÞ�;jÞ denotes the fermionic ladder operator on the j-
th site of the outer (inner) ring and the single-site number
operator on the inner ring is given by n̂�;j ¼ ĉy�;jĉ�;j. We
emphasize the appearance of a rescaled ring-to-center hopping
amplitude ~s ¼ s

ffiffiffi
L

p
, which allows to connect to the known

solutions when taking the thermodynamic limit L→∞. In fact, in
the thermodynamic limit, the wheel immediately collapses to the
star geometry whenever there is a fixed, finite ratio s

t, and the
ground state is a true BEC. However, the question remains what
happens for fixed ratios ~s

t. This matters for finite system sizes, as
for example in mesoscopic systems, and ultracold atomic gas
experiments, in particular Rydberg atoms. In particular, we are
interested in the impact of the extensive energy scale set by ~s on
the formation and stability of the BEC, which requires a more in-
depth analysis of the ground state of Eq. (3). Note that for now
and in the following, we refer to the scaling of the ring-to-center
hopping ~s ¼ s

ffiffiffi
L

p
as extensive in the system size.

As we show in Supplementary Note 2, it is instructive to first
solve Eq. (3) for the single-particle eigenstates k; ±j i, fulfilling
heiπn̂�;j i � 1:

k; ±j i ¼
cyk +j i if k≠k0;

ψ ± ĉyk þ Δ± ĉ
y
�;k¼0

� �
+j i if k ¼ k0:

8<
: ð4Þ

Here, ĉyð�Þ;k ¼ 1ffiffi
L

p ∑L�1
j¼0 e�ikjĉyð�Þ;j with ψ(k),± being a normalization

constant and +j i denotes the vacuum state. As shown in Fig. 1,
the corresponding single-particle spectrum is identical to that of a
tight-binding chain (i.e., εk ¼ 2t cos k) except for the k= k0 states
whose single-particle energies are characterized by the splitting

Δ± ¼ ε0
2~s ±

ffiffiffiffiffiffiffiffiffiffi
ε20þ4~s2

p
j2~sj :

ε± ¼ 1
2

ε0 ± sgnð~sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε20 þ 4~s2

q� �
¼ ~sΔ± : ð5Þ

These k= k0 single-particle eigenstates Eq. (4) separate / j~sj /ffiffiffi
L

p
from the remaining spectrum giving rise to a single-particle

gap. Referring to Eq. (3), in the limit ~st ! 1, the hopping on the
outer ring can be neglected, and the same holds for the impact of
the JWT on the overall eigenstate. Consequently, the single-
particle gap can be expected to control the many-body spectrum,

in this limit. Additionally, from Δ± �!~s=t!1
± 1 we find that the

corresponding wavefunction is characterized by maximally
mixing the distinguished mode k0

�� �
on the outer ring with the

state N� ¼ 1
�� �

� on the inner ring. This highly non-local
wavefunction, generated from the extensive scaling of Eq. (5),
already suggests the stability of the BEC under local perturbations
on the outer ring.

In order to further elaborate on the extensive scaling property,
we now return to the solution of Eq. (1) with the complete
derivation detailed in the Supplementary Note 4. Here, the key
observation is that Slater determinants FSN

�� � ¼ k1; ¼ ; kN
�� �

constructed from a set of N single-particle states Eq. (4) with
k ≠ k0 are also eigenstates of Ĥ ¼ Π̂�ĤladΠ̂�:

Π̂�ĤladΠ̂� FSN
�� � ¼ ∑

N

l¼1
εkl

� �
Π̂� FSN

�� �
: ð6Þ

This observation can be understood by noting that the projected
parity operator in Eq. (3) can be written in terms of the zero
momentum density N⊙ on the inner ring

Π̂�e
iπn̂�;jΠ̂� ¼ 1̂�;j �

2
L
ĉy�;k¼0ĉ�;k¼0; ð7Þ

and thus Π̂�e
iπn̂�;jΠ̂� FSN

�� � ¼ FSN
�� �

. Particle-number conserva-
tion of the wheel Hamiltonian then motivates to construct an
ansatz for the N-particle eigenstates, superimposing all possible
occupations of the k0 mode that belong to the same overall
particle number sector

ψN

�� � ¼ α0 FSN
�� �þ α1þ ψ̂

y
þ þ α1� ψ̂

y
�

� �
FSN�1

�� �
þ α2ψ̂

y
þψ̂

y
� FSN�2

�� �
;

ð8Þ

with complex coefficients α0;1± ;2
. These states describe a super-

position of either empty (∝ α0) or doubly occupied (∝ α2) k0
states and highly non-local states / α1±

in which the k0 mode on

the outer ring is coupled to the N� ¼ 1
�� �

� mode on the
inner ring.

Using the orthogonality of different Slater determinants, it is a
straightforward calculation to find that the general solution of the
eigenvalue problem Π̂�ĤladΠ̂� FSN

�� � ¼ EΠ̂� FSN
�� �

is reduced to
the diagonalization of a 4 × 4 matrix. Fixing a Slater determinant

Fig. 2 Solution strategy for Eq. (1). The hardcore boson (HCB) wheel⊙ is
transformed to a ladder⊚ , which is then mapped to a ladder of spinless
fermions (SF) via a Jordan-Wigner transform (JWT). From the ladder of SF,
the single-particle spectrum k; ±j i and therefrom projected Slater
determinants

��nk0 ; FSN�nk0
bigi are constructed, utilizing the projector to the

N⊙ ≤ 1 subspace, Π̂�. The constructed many-particle Slater determinants
finally allow for the analytic solution of the HCB wheel diagonalizing a 4 × 4
matrix M. Note that no closed solution of the SF ladder Hamiltonian is
required (only its projected counterpart).
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FSN
�� �

and two modes k0; k00≠k0 so that ĉk0 FSN
�� � ¼ FSN�1

�� �
as

well as ĉk00 ĉk0 FSN
�� � ¼ FSN�2

�� �
, and labeling the 4 basis states by

their possible occupations of the k= k0 mode nk0 ¼ 0; 1± ; 2, the
resulting eigenvalue problem is of the form

ð9Þ

with h0 ¼ h0jĤladj0i, h1 ¼ h1μjĤladj1μ0 i for μ; μ0 2 fþ;�g, and
h2 ¼ h2jĤladj2i. Note the block-diagonal structure that reflects
the different k= k0 parities, i.e.

eiπn̂k0 nk0

��� E
¼

nk0

��� E
; if nk0 ¼ 0; 2;

� nk0

��� E
; if nk0 ¼ 1þ; 1�:

8><
>: ð10Þ

We emphasize the existence of a hidden Z2-symmetry of the
many-body eigenstates. This symmetry is an immediate con-
sequence of the modulation of the hopping to the center site, i.e. it
characterizes the k0-occupation. Furthermore, condensation
requires a breaking of particle number conservation on the outer
ring, which is possible only in the nk0 ¼ 1± subspace. Thus, an
odd Z2-symmetry of the ground state signals the formation
of a BEC.

Upon solving Eq. (9), a special structure of the many-body
spectrum appears that is characterized by a clustering of
eigenstates belonging to the same k0-parity sector, which is
exemplified in Fig. 3. Therefrom, for a given filling fraction
ρ=N/L we can extract the scaling of two critical parameters
separating the low-lying odd-parity cluster (blue in Fig. 3), which
hosts the BEC ground state, from the remaining eigenstates. In
what follows we set t≡ 1 as unit of energy. The first
critical hopping ~sc;1 and gap Δ1 arise once the clustered odd-
parity eigenstates constitute the overall ground state,
indicating the condensation of bosons into the k0 mode

(abbreviating Xρ ¼ sinðπρÞ
π ):

~sc;1 ¼
ffiffiffiffiffiffiffiffi
8Xρ

q
; ð11Þ

Δ1 ¼ � 1þ 2Xρ

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2Xρ

� �2
þ~s2

r
: ð12Þ

The second critical hopping is defined by the complete separation
of the odd-parity cluster from the even-parity many-particle
eigenstates:

~sc;2 ¼ 4L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
ρ þOðL�1Þ

q
; ð13Þ

Δ2 ¼ �4LXρ � 1� 2Xρ

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Xρ

� �2
þ~s2

r
: ð14Þ

Note that ~s>~sc;2 implies that scattering between states with even
and odd k0 parity, caused by external perturbations, can only
occur if the energy barrier Δ2 can be overcome.

Discussion
The analytical solution and, in particular, the property of BEC
ground states exhibiting odd k= k0 parity allows to draw some
striking conclusions on the stability of the BEC in the presence of
local perturbations on the outer ring. Adding interactions acting
on a finite subset of outer ring sites only, we note that in general
the single-particle description breaks down in favor of a more
complicated many-body state. Therefore, interactions generically
couple the two parity sectors in the k0 subspace and one might
expect a breaking of the Z2-symmetry. However, mixing of the k0
parity sectors caused by local interactions connecting d neigh-
boring sites on the outer ring is of the order of � Vd

~s where V is
the largest interaction strength. The consequence is that
increasing the number of lattice sites, i.e. the center site’s coor-
dination number, the Z2 symmetry of the k0 modes is approxi-
mately restored, thus stabilizing BEC in the presence of
interactions on the outer ring.

We numerically checked the robustness of the BEC in the
thermodynamic limit for k0= 0 and finite values of the ring-to-
center hopping. To this end, we calculated the ground-state
occupation nk0 ðs; LÞ of the k0= 0 mode1,38 using DMRG. Nor-
malizing with respect to the upper bound on the condensate
occupation nmaxðLÞ ¼ Lρð1� ρþ 1=LÞ11, we extrapolated the
condensate fraction into the thermodynamic limit
nk0 ðsÞ=nmax ¼ limL!1

nk0 ðs;LÞ
nmaxðLÞ, see Supplementary Note 5. The

resulting extrapolations are shown in Fig. 4a for interaction
strengths between V= 0 and V= 1 and particle densities between
ρ= 1/16 and 1/2. Note that even though there is a renormaliza-
tion of the overall condensate fraction, we always observe a finite
condensate density in the thermodynamic limit, even for strong
interactions and high particle densities. To further demonstrate
the asymptotic robustness of the Z2-symmetry protection, in
Fig. 4b the dependency of the condensate fraction at finite system
sizes and as a function of V=~s is shown. We also observe the
behavior expected from our previous analysis, namely that the
condensate occupation dominantly depends on the system size
and the ratio between the interaction and the extensively scaling
renormalized ring-to-center hopping ~s ¼ s

ffiffiffi
L

p
. In accordance to

the scaling of Δ2, the maximally possible condensation is reached
if ~s � L. We emphasize that these relations can be translated to
experimental realizations to determine the necessary coordination
number, i.e. number of sites on the ring, to detect BEC in the
presence of interactions.

Fig. 3 Clustering of the many-particle eigenstates for a wheel composed
of 10 lattice sites in the N= 4 particle number sector as a function of the
ring-to-center hopping s. Different colors correspond to the eigenenergies
E0, E1,±, E2 of Ĥlad in the k0-subspace Eq. (9), generating a clustering in the
many-body spectrum. For each energy, we show all possible k≠ k0 Slater
determinants. Indicated are also the gaps defining the two critical ring-to-
center hoppings, sc,1 and sc,2, describing the starting and complete
separation of even and odd parity sectors, respectively.
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Conclusion
Our findings imply important consequences for both experi-
mental and theoretical realizations of wheel geometries in general.
First of all, a particular single-particle mode can be gapped out by
a proper modulation of the ring-to-center hopping, allowing the
general protection of ordered phases that are characterized by a
certain wave vector. We believe that such a modulation of the
ring-to-center hopping provides an experimentally feasible
approach to realize exotic, finite-momentum BEC in the frame-
work of ultracold or Rydberg atoms30–33,39–41. Second, there is a
many-body gap separating the BEC-carrying states from the
remaining spectrum � s

ffiffiffi
L

p
, i.e. large gaps can be realized by

increasing the coordination number of the center site. The
resulting robustness against interactions on the ring can be
exploited to increase critical temperatures for phase transitions
into otherwise highly fragile quantum phases. Possible applica-
tions are mesoscopic setups where a conducting center site may
be contacted to one-dimensional ring geometries via tunnel
contacts, allowing the stabilization of ordered states on the ring
against perturbations. Such a scaling could also be exploited to
achieve exceptionally stable logical qubits by coupling a set of
noisy qubits to a central qubit. Experimental platforms providing

the required all-to-one couplings are for example NV centers42,43

or superconducting qubits in circuit QED settings44. Moreover,
we believe that the wheel-to-ladder mapping could prove useful
in the analysis of hidden fermions45. Further interesting questions
are the incorporation of disorder on both the ring and center site,
as well as the effect of (artificial) gauge fields and a rescaled ring-
to-center hopping s ! sffiffi

L
p with regard to the crossover from one

to an infinite number of dimensions.

Methods
Wheel-to-ladder mapping. One of our methodical key findings is a mapping that
allows to utilize a JWT to construct the solution to the many-body problem. Closed
analytic expressions for models exhibiting a true BEC are rare, in particular for the
case of HCBs, which can be obtained, for instance, in the Bose-Hubbard model in
the limit of infinitely strong on-site repulsion. We therefore elaborate on the
mapping in more detail.

To solve the many-particle problem of the wheel Hamiltonian Ĥ, we introduce
a mapping between the long-range coupled wheel Hamiltonian and the NNN
coupled ladder Hamiltonian Ĥlad with periodic boundary conditions depicted in
Fig. 1. Since they exhibit the same matrix elements, we identify the subspace of the
center site with the single-particle momentum states k ¼ 0;N� ¼ 0; 1

�� �
� in the

inner ring of the ladder, where N⊙ is the occupation of the inner ring of the
periodic ladder. Utilizing the projector to this subspace Π̂� , we can relate both
Hamiltonians:

Ĥ ¼ Π̂�ĤladΠ̂�: ð15Þ
A JWT allows to express the hardcore bosonic ladder operators in terms of
fermionic ones

ĉðyÞj ¼
Y
k<j

eiπn̂k ĥ
ðyÞ
j ;with j ¼ 0; ¼ ; 2L� 1: ð16Þ

Fig. 5 Chosen projection of the wheel geometry (top) onto a chain
(bottom). This reduces the long-range interaction from the first to the last
site that is replaced by multiple NNN interactions compared to a straight
forward periodic boundary implementation. The center site (star) of the
wheel is placed in the middle of this chain—again in order to reduce the
long-range interaction to a minimum.

Fig. 4 Numerical analysis of the robustness of the Bose-Einstein
condensate (BEC). a Ground-state condensate fraction nk0 normalized to
the maximally possible value nmax

11 and extrapolated to the thermodynamic
limit. b Asymptotically the normalized condensate fraction for a fixed
number of lattice sites L is a function of the ratio of nearest-neighbor
interaction strength and rescaled hopping amplitude V=~s, only. Results are
shown for different V and densities on the ring ρ. Note that for very small
fillings ρ= 1/16 (inset), there are significant deviations of the observed
connection between the condensate fraction and the ratio V=~s. This
originates from the flat single-particle dispersion around k= π (see Fig. 1).
Thereby, the complete separation of the odd-parity states (controlled by
the energy gap Δ2) occurs already for small ring-to-center hoppings, mainly
independent on the number of lattice sites.
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When transforming the hardcore bosonic Hamiltonian, the JWT leads to cancellations
of arbitrarily long-ranged interactions and only a single phase-factor eiπn̂�;j remains in

the hopping terms on the outer ring Π̂�ĥ
y
j ĥjþ1Π̂� ¼ Π̂� ĉ

y
j e

iπn̂�;j ĉyjþ1Π̂� . At this
point, the projected ladder Hamiltonian can be solved analytically.

Numerical methods. All numerical results were obtained using DMRG in its
matrix-product state representation27 implemented in the SYMMPS toolkit46. More
precisely, the calculations were performed with a bond dimension up to 1200,
which allowed the discarded weight to always stay below 2 ⋅ 10−8 and usually below
10−10. Since DMRG works best in one-dimensional systems, the wheel is projected
onto a chain in a way that reduces the long-range interaction to a (rather large)
minimum, see Fig. 5.

Observables. The observable of interest, as shown in Fig. 4, is the normalized
condensate fraction of the distinguished k0 mode extrapolated to the thermo-
dynamic limit. Note that in our calculations we chose k0= 0. In order to obtain this
quantity, we need to get the SPDM of the ground state,

ρj;j0 ¼ ĥcyj ĉj0 i ð17Þ
for multiple system sizes. The condensate fraction is then obtained by Fourier
transforming the SPDM:

nk ¼
1
L
∑
j;j0
e�2ikðj�j0 Þ=Lρj;j0 : ð18Þ

In order to be able to compare the condensate fractions for different system sizes, it
is necessary to normalize them w.r.t. the maximally possible value. This is given
by11

nmaxðLÞ ¼ ðL� N þ 1Þ � N=L: ð19Þ
We chose four different sizes of the outer ring (32, 64, 128, 256) and extrapolated
these normalized results via a 1/L fit.

Data availability
The data that support the findings of the current study are available from the authors
upon reasonable request.

Code availability
The software package SYMMPS46 is available via www.symmps.eu. The source code is
available from the authors upon reasonable request.
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