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Complete tunneling of acoustic waves between
piezoelectric crystals
Zhuoran Geng 1✉ & Ilari J. Maasilta 1✉

The mechanical displacements in piezoelectric materials carry along macroscopic electric

fields, allowing tunneling of acoustic waves across a vacuum gap beyond the charge-charge

interaction distance. However, no rigorous proof of complete acoustic wave tunneling has

been presented, and the conditions to achieve complete tunneling have not been identified.

Here, we demonstrate analytically the condition for such phenomenon for arbitrary aniso-

tropic crystal symmetries and orientations, and that complete transmission of the incoming

wave occurs at the excitation frequency of leaky surface waves. We also show that the

complete transmission condition can be related to the surface electric impedance and

the effective surface permittivity of the piezoelectric material, relevant to realize the complete

tunneling experimentally. We support our findings with numerical results for the maximum

power transmittance of a slow transverse wave tunneling between identical ZnO crystals.

The results show that complete tunneling can be achieved for a large range of orientations.
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Acoustic waves (acoustic phonons) are deformations or
vibrations propagating through a material medium. As
such, they do not exist in vacuum, leading to the initial

conclusion that it is impossible for the vacuum to transmit the
energy of an acoustic wave between two separated media. How-
ever, at the atomic scale the vibrations of the nuclei can propagate
via their electrical interactions through vacuum. Thus, a question
can be raised, whether acoustic phonons can also be transmitted
across larger than atomic scale vacuum gaps through some
electromagnetic mechanism. This is a relevant question, as with
the advances in experimental techniques, nanometer to sub-
nanometer scale vacuum gaps can be achieved1–4. The possibility
of such acoustic phonon tunneling, as it is often called in the
literature, has attracted a considerable amount of theoretical work
in recent years to investigate possible mechanisms of the effect
such as Casimir and van der Waals forces, particularly in the
context of near-field heat transfer5–18.

One possible mechanism for acoustic wave tunneling is pie-
zoelectricity, as in piezoelectric materials mechanical displace-
ments carry along macroscopic electric fields. When an acoustic
wave in a piezoelectric solid impinges on a free surface, it extends
a decaying, evanescent electric field into the vacuum19. The length
scale of this decay is determined by the wavelength of the acoustic
wave, so by bringing another piezoelectric solid within a wave-
length, acoustic power can be transmitted into the second pie-
zoelectric solid across the vacuum gap. What makes this
piezoelectrically mediated acoustic wave tunneling particularly
attractive is its length scale: it is not fixed to be in the nanoscale,
but operates on the typically much larger wavelength scale
defined by the frequency (1 GHz would correspond to ~5 μm).
The effect was introduced20,21 and observed22 long ago (for more
detailed background, see Geng and Maasilta23), but developed
further more recently5,23,24. In particular, a general formalism
was introduced23 that is applicable to any incident bulk wave
mode for any anisotropic crystallographic orientation. One of
the most interesting suggestions5,21,24 is the possibility of unity
transmission for some particular conditions, meaning that
the incident wave could perhaps be completely transmitted
into the adjacent solid. However, the discussions in previous
literature5,21,24 are limited either by the simplified models used,
or only show numerical results for the highest symmetry crystal
orientations. Until now, no rigorous proof of complete acoustic
wave tunneling has been presented, nor have generally valid
complete tunneling conditions been put forward.

In this work, we focus on the power transmittance of acoustic
wave tunneling. We use the general formalism developed for
piezoelectric acoustic wave tunneling23 to analytically prove the
existence of the complete tunneling phenomenon between two
vacuum separated identical solids. In addition, a resonant tun-
neling condition is also derived, corresponding to the excitation
of leaky surface waves. We also propose that this condition could
be checked experimentally. Further discussion of the results are
presented with a few numerical examples for ZnO crystals. In
particular, we find our results differ from those obtained before5.

Results and discussion
Tunneling of acoustic waves. We study a system of two aniso-
tropic, semi-infinite piezoelectric solids separated by a vacuum
gap of width d, as shown in Fig. 1. Two coordinate systems
describe the relation between the crystal intrinsic orientation,
denoted by XYZ, and the external laboratory space, denoted by
xyz. The surfaces of the solids are assumed to be mechanically
and electrically free23, with surface normals aligned with the
z-axis. We consider an incoming homogeneous acoustic plane
(bulk) wave � expð�ik � rþ iωtÞ, where k and ω are the wave

vector and angular frequency, propagating inside the xz-plane
(sagittal plane) from the positive z-axis direction toward the
surface at z= 0, with a positive x-component of wave vector
(kx > 0). In addition, we only consider low frequency acoustic
waves with linear dispersion and assume the usual quasistatic
approximation for piezoelectric acoustic waves19 satisfying
E=−∇Φ, where E and Φ are the electric field and the electric
potential, respectively.

An incident bulk wave scatters into a linear combination of
partial waves at an interface. These partial waves are either reflected
or transmitted, and can either be homogeneous (bulk) waves or
inhomogeneous (evanescent) waves bound on the surface of the
solid23. The single surface reflection and transmission coefficients,
which describe the amplitudes of these scattered waves, can be
calculated following the multiple reflection method presented in
Section III.B in Geng and Maasilta23. We denote these coefficients
with an overhead bar, as follows: �tð1Þin!V is the coefficient of an
incoming wave from solid 1 transmitted into a vacuum electric
wave, �tð2ÞV!α is the coefficient of an vacuum wave transmitted into
mode α in solid 2, and �rðiÞV is the coefficient of an vacuum wave
reflected on the vacuum side of the interface of solid i= 1, 2. In
these coefficients, α= 1, ..., 4 correspond to the four physically
allowed electroacoustic partial wave modes in the corresponding
solids 1 or 2. It should be noted that these coefficients are not the
direct analogs of the Fresnel coefficients25 from optics.

A total transmission coefficient tα, which describes the
amplitude ratio of a transmitted partial wave α in solid 2 to an
incoming bulk wave from solid 1, takes a form23 (for details, see
“Methods” section):

tα ¼
�tð1Þin!V

�tð2ÞV!α

ekxd � �rð1ÞV �rð2ÞV e�kxd
¼ �tð1Þin!V

�tð2ÞV!αf mðdÞ; ð1Þ

with kx the wave vector component along the surfaces,
which is conserved in the tunneling process. This expression
can be interpreted as two single surface transmission

Fig. 1 Schematic of the system under study. Two piezoelectric solids 1, 2
are separated by a vacuum gap of width d. An incoming acoustic wave from
solid 1 (positive z-axis of a laboratory coordinates xyz) with an incident
angle θi tunnels across the vacuum gap into solid 2 inside the xz-plane. XYZ
describe the intrinsic crystal coordinates, which can be rotated w.r.t. the xyz
coordinates.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01293-y

2 COMMUNICATIONS PHYSICS |           (2023) 6:178 | https://doi.org/10.1038/s42005-023-01293-y | www.nature.com/commsphys

www.nature.com/commsphys


coefficients �tð1Þin!V and �tð2ÞV!α coupled by a geometrical multiple
reflection factor for evanescent electrical waves in the

gap fmðdÞ ¼ ½expðkxdÞ � �rð1ÞV �rð2ÞV expð�kxdÞ�
�1 23. It implicitly

depends on the incident angle θi not only via kx ¼ k sin θi,
but also via the coefficients �t and �r, which are functions of
vx ¼ ω=ðk sin θiÞ (“Methods”).

Derivation of the condition for complete tunneling. To fully
describe the tunneling of the acoustic wave, we also look at the
energy transfer between the solids. The time-averaged power flow
density (energy flux, units [Wm−2]) of a transmitted partial wave
in the direction normal to the surfaces (denoted as Pα) can be
obtained from the real part of the normal component of piezo-
electric Poynting vector (“Methods”). For the tunneled bulk
partial waves, the transmitted power relates to the normal com-
ponent of the incident power by Pα= ∣tα∣2Pin, in which the input
power Pin can be from a coherent bulk wave or from a thermal
phonon, whereas the reflected or transmitted evanescent partial
waves in solids 1,2 are bound onto the surface and carry no power
in the normal direction (Pα= 0 if α is an evanescent mode).

As there is no dissipation inside the vacuum gap, the normal
direction power flow density inside the vacuum (denoted by PV)
is equal to the total normal direction transmitted power density
(denoted by PΣ). It is clear that PΣ is the sum of Pα over all the
transmitted bulk waves in solid 2, and we can write it using
Eq. (1) as PΣ ¼ ∑αj�tð1Þin!V

�tð2ÞV!αfmðdÞj2Pin, where α runs only over
the bulk modes. The number of transmitted bulk modes can be
from zero to three (in some cases four26), and if there is no bulk
mode available, the power flow in both the vacuum and solid 2
are zero. On the other hand, the normal power flow inside the
vacuum gap can be expressed using the Poynting’s theorem under
the quasistatic approximation as PV ¼ 2j�tð1Þin!VfmðdÞj2Re½�rð2ÞV �Pin
(see Supplementary Note 1 for the derivation). As a result, from
PV= PΣ we find a relation:

2Re �rð2ÞV

h i
¼ ∑

α¼bulk
j�tð2ÞV!αj2: ð2Þ

Furthermore, if we assume that the two solids consist of the
same material with identical crystal orientations, two additional
relations that link the single surface coefficients of the two solids
can be found by exploiting the completeness of the eigensolutions
of the scattering problem (see Supplementary Note 2 for the
derivations). The first one relates the reflection coefficients �rðiÞV of
the two solids as:

�rV � �rð2ÞV ¼ ��rð1ÞV : ð3Þ
The second one states that if the transmitted bulk wave mode γ in
the solid 2 is the same mode as the incident wave in solid 1, there
exists a relation:

�tð1Þγ!V ¼ �tð2ÞV!γ: ð4Þ
In addition, by comparing the relation (4) with Eq. (2), we find

the condition:

2Reð�rVÞ≥ j�tð1Þin!Vj2; ð5Þ
where the equality is satisfied when there exists only one
transmitted bulk wave mode in solid 2 and the mode is the
same as the incident wave in solid 1. By applying the relations (2)
and (3), PΣ can then be simplified to:

PΣ

Pin
¼ 2Reð�rVÞj�tð1Þin!Vj2

4Reð�rVÞ2 þ e2kxd � j�rVj2
� �2

e�2kxd
; ð6Þ

which explicitly depends only on two single surface coefficients:
�tð1Þin!V and �rV.

Equation (6) shows that the total transmitted power PΣ is
always less than the incident power Pin if more than one
transmitted bulk wave modes exist, since in that case the
inequality Eq. (5) takes the greater-than sign. This result has
the implication that complete tunneling, i.e., the full transmission
of the incident power, can’t be achieved if the transmitted wave
consists of multiple partial bulk waves, in contradiction to
previous work5.

In contrast, if there is only one transmitted homogeneous bulk
mode and it is the same mode as the incident wave, then the equal
sign of Eq. (5) is valid, and Eq. (6) simplifies to:

PΣ

Pin
¼ 4Reð�rVÞ2

4Reð�rVÞ2 þ e2kxd � j�rVj2
� �2

e�2kxd
; ð7Þ

which very much resembles the Fabry-Perot-like form of
transmission coefficients for the near-field radiative heat
transfer27. From Eq. (7), it is clear that the maximum transmitted
power is exactly equal to the incident power (PΣ= Pin) when the
resonance condition:

j�rVj ¼ ekxd; ð8Þ
is satisfied, similar to the corresponding condition for perfect
photon tunneling in near-field heat transfer28,29. This proves that
(1) unity transmission (complete tunneling) of an acoustic wave
across a vacuum gap is possible, and (2) the condition for it
depends explicitly only on the single surface reflection coefficient
�rV, the wave vector component kx and the gap width d. The
physical explanation of such complete tunneling is the excitation
of resonant coupled leaky surface waves on both interfaces
(more details below and in Supplementary Note 4), which is
fundamentally different from the principle of antireflection in
optics25.

In particular, with a given material and crystal orientation, �rV
is only a function of the incident angle and is independent of the
gap width or the existence of the adjacent solid. We propose that,
as a material parameter, �rV could be determined experimentally
by measuring the effective surface permittivity ϵeff(vx)24,30,31 or
the TM-wave surface impedance Zp(ω, vx)32,33 of the piezoelectric
solid. They are found to be related by expressions (see
Supplementary Note 3):

�rV ¼ i
ϵeff � ϵ0
ϵeff þ ϵ0

; �rV ¼ i
1þ ivxϵ0Zp

1� ivxϵ0Zp
; ð9Þ

where ϵ0 is the vacuum permittivity. The effective surface
permittivity concept is useful in the study of piezoelectric
materials, for example for the generation and detection of
acoustic waves by transducers31 or for determining the gap wave
modes between piezoelectric solids24. We find the symmetric and
antisymmetric gap wave conditions can be simply expressed by
�rV ¼ ± i expðkxdÞ, which are the poles of the transmission
coefficient of Eq. (1) (Supplementary Note 3).

Numerical examples and physical interpretation of complete
tunneling between identical ZnO crystals. We now turn to
demonstrate the complete tunneling effect with numerical
examples for two identical ZnO crystals, using the formalism
developed before23. The first example is shown in Fig. 2, where
the two crystals are separated with a scaled gap width of kd=
0.01, and are both rotated first with respect to the x-axis by
ϑ= 46.89∘ and then to the z-axis by φ= 88° (see Geng and
Maasilta23 for details on the crystal rotation procedure). The
mode of the incident wave in this example is chosen to be the
slowest quasi-transversal wave (ST), so that there exists a critical

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01293-y ARTICLE

COMMUNICATIONS PHYSICS |           (2023) 6:178 | https://doi.org/10.1038/s42005-023-01293-y | www.nature.com/commsphys 3

www.nature.com/commsphys
www.nature.com/commsphys


incident angle beyond which only one bulk transmitted wave can
be found, thus satisfying the general condition for complete
tunneling.

In Fig. 2a, we plot the transmittance into each bulk mode
Pα/Pin as a function of the incident angle θi, where α can be the
quasi-longitudinal (L), the fast quasi-transversal (FT) or the slow
quasi-transversal (ST) mode, categorized based on their phase
velocities. We see that for most angles, transmittance is low,
except for the two sharp transmission peaks for the ST mode
giving exactly unity transmission at angles between 75° and 80°.
Abrupt cut-offs are visible for the transmitted L and FT modes,
corresponding to the critical incident angles θLc � 28� and
θFTc

� 63:5�. Beyond these critical angles, the corresponding
modes become evanescent, bound on the surface of the solid with
no direct energy transmission into the bulk.

Figure 2b provides a zoomed view on the resonant transmis-
sion peaks, now with two different scaled gap values kd= 1 (blue
solid line) and kd= 0.01 (orange solid line), with an overlay of
the j�rVj curve (black dashed line), helping us also to understand
the doublet structure. The two additional horizontal dashed lines
represent the values of the RHS of Eq. (8) for the two kd values,
whereas the dashed black curve represents the LHS of Eq. (8). It is
clear that the unity transmission occurs where the resonance
condition is valid, proving consistency between the analytical
theory and the numerical approach. In addition, we see that with
the increase of the scaled gap width from 0.01 to 1, the separation

of the peaks is reduced, and with a further increase the two
solutions would merge into one at the maximum of j�rVj. With
this particular ZnO crystal orientation, this maximum is about 4
as shown in the plot, which leads to a maximum gap width of
kd ≈ 1.4 to observe complete tunneling (merged unity transmis-
sion peak). For ZnO (ST wave velocity v= 2780m/s), and a
2 GHz frequency relevant for device applications, this corre-
sponds to a quite long physical distance of d= 300 nm with the
parameters and the orientation used in the example.

In addition, it is also useful to briefly discuss how sensitive the
power transmittance is to deviations from the resonance
condition, based on the above numerical example. For a fixed
frequency of 2 GHz, the transmittance as a function of both the
incident angle θi and the gap width d is presented in Fig. 2c. We
see that when the vacuum gap is small, e.g., d < 100 nm, the two
resonances are well separated and are sensitive to deviations of
both d and θi. For example, a 50% drop in transmittance (white
dashed lines) occurs within a 10 nm change in d or a 0.1 degree
change in θi for the right branch. However, the merging of the
two resonances leads to a higher deviation tolerance. θi= 76. 4° is
an example, where the transmittance remains higher than 50% for
a wide range 150 nm < d < 500 nm, significantly relaxing the
constraint for the gap width control in measuring the tunneling.
Similar discussion can also be applied for a fixed gap width, for
which the transmittance becomes a function of the angular
frequency ω and the in-plane wave vector kx, as illustrated in the
inset of panel (c).

Fig. 2 Angular and gap width dependence of the power transmittance of an incoming ST wave. a Power transmittance Pα/Pin of the longitudinal α= L
(green), the fast transverse α= FT (orange) and the slow transverse α= ST (blue) waves, for an incoming ST wave as function of the incident angle θi,
for two identical ZnO crystals separated by a scaled gap kd= 0.01 and oriented with a zenith angle ϑ= 46.89° and an azimuth angle φ= 88° (inset).
We used the anisotropic crystal parameters c11= 20.97 × 1010 Nm−2, c33= 21.09 × 1010 Nm−2, c44= 4.247 × 1010 Nm−2, c12= 12.11 × 1010 Nm−2,
c13= 10.51 × 1010 Nm−2, c66= (c11− c12)/2, ϵxx= 8.55ϵ0, ϵzz= 10.2ϵ0, ex5=−0.48 Cm−2, ez1=−0.573 Cm−2, ez3= 1.32 Cm−2, and the density
ρ= 5680 kgm−3, taken from Auld19. b Zoomed view on the peaks of the transmittance (left axis) with two values kd= 1 (blue solid line) and kd= 0.01
(orange solid line). The single surface reflection coefficient j�rVj curve (black dashed line) is overlayed (right axis) together with expðkxdÞ ¼ expðsin θiÞ
(blue horizontal dashed line) and expðkxdÞ ¼ expð0:01 sin θiÞ (orange horizontal dashed line) to demonstrate the resonance condition, Eq. (8), for the
two scaled gaps, respectively. c Power transmittance (color scale) as a function of incident angle θi and gap width d at a fixed frequency of 2 GHz
(main panel), and as a function of ω/kx and kx, with a fixed d= 300 nm (inset panel). The black solid line represents the resonance condition (Eq. (8)),
and the white dashed lines indicate 50% power transmittance. d Frequencies of the symmetric (blue) and antisymmetric (orange) resonances as
functions of gap width d for a fixed kx of 2π/kx= 1 μm, where the symmetry refers to the shape of the electrical potential function in the gap. The green
dashed line shows the frequency difference between the two resonances.
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Furthermore, it is possible to take advantage of the resonances
in experiments and potential applications, such as the precise
control of a gap distance. By exciting a bulk wave with a known
in-plane wave vector kx (for example with an interdigital
transducer of finger spacing 2π/kx31), the frequencies of the two
tunneling resonances become functions of the gap distance, as
demonstrated for our numerical example case in Fig. 2d. We see
that while the higher-frequency resonance fsym depends weakly
on d, the lower-frequency resonance fanti is highly sensitive to d,
with ∂f/∂d ≈ 0.3 MHz/nm at d < 20 nm. In addition, the frequency
difference Δf= fsym− fanti (green dashed line, right axis scale) is
also sensitive to d, reaching a responsivity ~0.5 MHz/nm at
d < 20 nm. Such relations can be envisioned to be used not only to
experimentally demonstrate acoustic wave tunneling, but also to
control a buried nanoscale gap distance with nanometer accuracy.

In general, the complete resonant tunneling can take place for a
range of crystal orientations. In Fig. 3, we show the numerically
calculated maximal power transmittance PST/Pin (over all θi) of an
incident ST mode to a transmitted ST mode, as a function of all
possible crystal rotations (ZnO has a crystallographic 6 mm
system with uniaxial symmetry19, hence all the unique orienta-
tions of the crystal can be represented by the direction of the
crystal c-axis (Z-axis) using a zenith angle ϑ∈ (0°, 180°) and an
azimuth angle φ∈ (−90°, 90°)), using again parameters for
anisotropic ZnO19 and a fixed scaled gap kxd= 0.01. We find a
significant parameter space for orientations, with multiple
separate regions, where complete tunneling is possible (dark red
regions). To validate the consistency of the numerics with the
analytical condition, Eq. (8), we also plot a set of dotted contour
lines in Fig. 3a to encircle the orientations satisfying j�rVj>1, where
unity transmission is possible, finding excellent agreement.
Another observation is that the incident angle θi satisfying
complete tunneling varies for different crystal orientations
(Fig. 3b, c), reaching as low values as 60° in some cases (Fig. 3c).

To understand the physics, we first consider the three
ellipsoidal unity transmission areas around ϑ= 90° (Fig. 3).
Inside these areas, the incident ST waves are not pure shear waves

and therefore couple to the other partial waves (L, FT) at the
surface. As a result, when the incoming ST wave has an incident
angle beyond the critical angle of the FT mode, the reflected FT
wave becomes evanescent, with its energy concentrated on the
surface. For those orientations the FT-mode waves are predomi-
nately polarized in the direction of the c-axis, the direction of the
piezoelectric dipole, creating a strong piezoelectric response. That
excites large electric potential differences on the surface and
hence gives rise to a strong electric coupling across the gap, which
finally enables the resonant transmission. On the other hand,
when the azimuth rotations approach φ= ±90° with ϑ= 90°, the
c-axis aligns with the x-axis and the ST mode becomes a pure
shear mode, polarized perpendicular to the sagittal plane. Then
the incident ST waves are very weakly piezoelectric, and also
decouple from all other partial modes.

Other features can also be observed in Fig. 3a. Nodes having
low transmission at around φ= ±25° and ϑ= 90° appear. This is
because the electric potential excited by the reflected FT wave
mode change polarity around these nodes, leading to minimized
potential differences and weak coupling between the two surfaces.
In addition, unity transmission is also observed in four small
areas around φ= ±90°, where the single surface reflection
coefficient �rð1ÞST!FT of the reflected FT partial waves increases
significantly. This indicates an enhanced mode conversion
between the ST and FT partial wave modes at these orientations,
providing large electric potential differences on the solid-vacuum
interface again via the evanescent FT wave, leading to strong
tunneling signal. A more detailed discussion of the physical
interpretation of the resonance can be found in Supplementary
Note 4.

Our numerical formalism can also be applied to the particular
case studied with a simplified model before5, the details of which
can be found in Supplementary Note 5. We do not find complete
tunneling for the incoming modes and the crystal orientation in
question, in contradiction to previous work5.

Conclusions
In conclusion, we have analytically and numerically proven it is
possible for acoustic waves to completely tunnel across a vacuum
gap between two piezoelectric solids, up to gap sizes of about a
wavelength. We showed that such complete tunneling, with unity
power transmittance, is possible only if one transmitted partial
bulk mode is excited, it being the same mode as the incident
wave. We derived a simple resonance tunneling condition for the
complete tunneling effect, Eq. (8), and proved its validity and
range of applicability with numerical examples for arbitrarily
rotated ZnO crystals. As this is a strong and not a rare effect, it
could have an impact in future acoustic wave devices, as well as in
other application areas concerning phonons, such as controlling
heat transport, optomechanics and quantum information science.

Methods
Extended Stroh formalism and multiple reflection approach. In piezoelectric
solids, the dynamics of a propagating plane (bulk) wave � expð�ik � rþ iωtÞ are
governed by the elastic equation of motion∇ ⋅ σ= ρ∂2u/∂t2 and Gauss’s law∇ ⋅
D= 0, together with the piezoelectric constitutive relations19:

σ ¼ cE : S� e � E
D ¼ e : Sþ ϵS � E ð10Þ

where S, σ, u,D are the elastic strain, elastic stress, mechanical displacement and
electric displacement fields, ρ, cE, e, ϵS are the mass density, elastic stiffness tensor
at constant electric field, piezoelectric stress tensor and electric permittivity tensor
at constant strain, respectively. The double dot product indicates summation over
paired indices between second-rank and higher-rank tensors, and the strain-
displacement relation reads as Sij= (∂ui/∂rj+ ∂uj/∂ri)/2.

An incident plane wave is scattered into a linear combination of partial waves at
an interface, which are either reflected or transmitted. The general solutions of such

Fig. 3 Crystal rotation map for complete tunneling between ZnO crystals.
a Color scale of the ST-to-ST mode maximum power transmittance PST/Pin
over all incident angles, plotted as function of crystal rotation angles ϑ and
φ for anisotropic ZnO. The dotted lines encircle the regions where j�rVj>1.
b, c show the range of θi where j�rVj>1 for two fixed φ (b), or ϑ (c). Here, we
fix kxd ¼ kd sin θi instead of kd, as complete tunneling can be achieved by
tuning kx either by changing the incident angle θi or by the angular
frequency ω.
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partial waves that satisfy the governing equations take the expressions34–36:

u ¼ ∑
α
bαAαe

�iðkxxþkyyþpαkxz�ωtÞ

Φ ¼ ∑
α
bαϕαe

�iðkxxþkyyþpαkxz�ωtÞ

n � σ ¼ ikx ∑
α
bαLαe

�iðkxxþkyyþpαkxz�ωtÞ

n �D ¼ ikx ∑
α
bαDαe

�iðkxxþkyyþpαkxz�ωtÞ;

ð11Þ

in which n is the unit vector of the z-axis. Aα, ϕα, Lα,Dα are the normalized
constants describing the polarization vector, the electric potential, the traction force
and the normal projection of the electric displacement of a partial wave mode α,
respectively. bα are dimensionless amplitudes of the partial waves, and p≡ kz/kx. To
avoid redundant writing in the following expressions, we omit the common phase
factor expð�ikxx � ikyy þ iωtÞ shared by all solutions.

In this study, we solved these governing equations under the framework of
extended Stroh formalism23, in which Eq. (10) is combined and rearranged into an
eight-dimensional eigenvalue problem37,38 in the form of:

NðvxÞξα ¼ pαξα; ð12Þ
where N is 8 × 8 real matrix and vx≡ ω/kx is the x-component of the phase velocity.
Generally, eight linearly independent eigenvectors ξα ¼ ½Aα; ϕα; Lα;Dα�T and
corresponding eigenvalues pα can be obtained for partial wave modes α= 1, ..., 8.
These eigenvectors follow the orthonormalization and completeness conditions:

ξTα T̂ξβ ¼ δαβ ð13Þ

∑ξα 	 T̂ξα ¼ Î8 ´ 8; ð14Þ
where the operator⊗ denotes the outer product of two matrices, δαβ is the
Kronecker delta, Î8 ´ 8 is 8 × 8 unit matrix, and T̂ takes the form:

T̂ ¼ O4´ 4 Î4´ 4
Î4 ´ 4 O4 ´ 4

" #
ð15Þ

where O4×4 and Î4´ 4 are 4 × 4 zero and unity matrices.
The continuity of the electric potential (Φ(i)=ΦV, where the subscript i= 1, 2

indicates the medium index and the subscript V indicates the vacuum) and the
normal component of electric displacement (n ⋅D(i)= n ⋅DV), as well as the
condition of a mechanically free surface (n ⋅ σ(i)= 0) enforce the boundary
conditions of the two solid-vacuum interfaces:

bð1Þin U
ð1Þ
in þ ∑

4

α¼1
bð1Þα Uð1Þ

α ¼ bVþ
UVþ

þ bV�
UV�

;

∑
4

α¼1

~b
ð2Þ
α Uð2Þ

α ¼ bVþ
UVþ

e�kxd þ bV�
UV�

ekxd ;

ð16Þ

in which we introduce 5 × 1 column vectors UðiÞ
γ ¼ ½ϕðiÞγ ;DðiÞ

γ ; LðiÞγ �T for wave modes
γ= in, α, where the subscript in indicates the incident wave mode, α= 1, ..., 4
corresponds to four physically allowed wave modes in their corresponding medium

i ¼ 1; 2;UV±
¼ ½ϕV±

;DV±
; 0; 0; 0�T , and ~b

ð2Þ
α � bð2Þα expðipð2Þα kxdÞ for simplicity. In

the vacuum region, the electric potential and displacement fields take the form:

ΦVðzÞ ¼ bVþ
ϕVþ

ekxz þ bV�
ϕV�

e�kxz

n �DVðzÞ ¼ �ϵ0kxbVþ
ϕVþ

ekxz þ ϵ0kxbV�
ϕV�

e�kxz ;
ð17Þ

where ϕV±
¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
± 2iϵ0

p
, noting the normalization condition for the vacuum

mode 2ϕV±
DV±

¼ 1.

The amplitude factors bðiÞα can be solved from the boundary conditions of Eq.
(16), following the multiple reflection method introduced in Geng and Maasilta23:
the single surface reflection (�rðiÞin!α;�r

ðiÞ
V ) and transmission (�tðiÞV!α;�t

ðiÞ
in!V) coefficients

are calculated first via scattering matrices SðiÞ for solid i= 1, 2, and the total
transmission coefficient tα for a partial mode α is then obtained by coupling the
single surface coefficients with a multiple reflection factor fm(d), which explicitly
depends on the gap distance d. We note here that the overlined single surface
coefficients describe the scattering of the electroacoustic wave as if there is no
second adjacent solid.

The 5 × 2 scattering matrices Sð1Þ and Sð2Þ take the following form:

Sð1Þ ¼ �rð1Þ �tð1Þ

�tð1Þin!V �rð1ÞV

" #

¼ Uð1Þ
1 ; :::;Uð1Þ

4 ;�UVþ

h i�1
�Uð1Þ

in ;UV�

h i
;

Sð2Þ ¼ �rð2Þ �tð2Þ

�tð2Þin!V �rð2ÞV

" #

¼ Uð2Þ
1 ; :::;Uð2Þ

4 ;�UV�

h i�1
Uð2Þ

in ;UVþ

h i
ð18Þ

where the expression �rðiÞ ¼ ½�rðiÞin!1; :::;�r
ðiÞ
in!4�

T
and �tðiÞ ¼ ½�tðiÞV!1; :::;�t

ðiÞ
V!4�

T
are the

single surface reflection and transmission coefficients of modes α= 1, ..., 4.
The total transmission coefficient tα from an incoming bulk wave in solid 1 into

a partial wave of mode α in solid 2 can be obtained as:

tα �
~b
ð2Þ
α

bð1Þin

¼ �tð1Þin!V
�tð2ÞV!αfmðdÞ ð19Þ

where the multiple reflection factor is fmðdÞ ¼ ½expðkxdÞ � �rð1ÞV �rð2ÞV expð�kxdÞÞ�
�1
.

Equation (19) is identical to Eq. (1) in the main text.
The time-averaged transmitted power flow density in the direction normal to

the surfaces from solid 1 to 2 can be expressed by the real part of the piezoelectric
Poynting vector in the normal direction34:

Pα ¼ �ωkx
4

jbαj2ξTα T̂ξ
α: ð20Þ

For transmitted homogeneous (bulk) waves, ξTα T̂ξ


α ¼ ± ξTα T̂ξα ¼ ±1, due to

the Stroh-normalization condition (Eq. (13)). Therefore ∣tα∣2 can be interpreted as
the power flow ratio (the transmittance) of the transmitted bulk partial wave over
the incident wave in the normal direction:

Pα ¼ jtαj2Pin: ð21Þ
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