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Symmetry-protected topological exceptional chains
in non-Hermitian crystals
Ruo-Yang Zhang 1,3✉, Xiaohan Cui 1,3, Wen-Jie Chen 2, Zhao-Qing Zhang1 & C. T. Chan 1✉

In non-Hermitian systems, defective band degeneracies called exceptional points can form

exceptional lines (ELs) in 3D momentum space in the absence of any symmetries. However,

whether the presence of symmetries can affect the EL configurations had rarely been dis-

cussed. Here we show that a natural orientation can be assigned to every EL according to the

eigenenergy braiding around it, and we establish the source-free principle of ELs stating that

the number of ELs ingoing and outgoing from the junction must be conserved. Based on this

principle, we discover that three crystalline-symmetry-based mechanisms can stabilize the

junction of ELs, resulting in the formation of various types of exceptional chains (ECs). We

further demonstrate that ECs can be observed in prototypical non-Hermitian photonic

crystals. Our results combine the effect of non-Hermitian spatiotemporal symmetry and

topology to pave the way for understanding and manipulating the morphology of ELs in non-

Hermitian crystalline systems.
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In topological physics, an important direction is to study
topologically protected degeneracies with different dimensions
in the band structure1–4. In addition to being manifestations of

hypothetical quasi-particles originally proposed in fundamental
physics, these degeneracies also induce novel transport effects
that have broad application potential. As impressive progress has
been made in understanding Hermitian gapless topology in the
past decades, non-Hermitian degeneracies are increasingly
attracting interest from diverse disciplines of physics, especially
photonics5–9 and condensed matter physics10–16. In marked
contrast to the Hermitian band crossings, non-Hermitian bands
can be degenerate at exceptional points (EPs) where both the
eigenenergies and eigenvectors of different bands coalesce16–19.
Owing to their fascinating physical properties, EPs have given rise
to versatile functionalities, such as ultra-sensitive sensing20–23,
chiral non-adiabatic transport24–27, and unidirectional
lasing28–30. From the perspective of topology, EPs are essentially
the topological obstructions to sorting the complex-valued energy
bands. When traveling around EPs, the eigenenergies braid about
each other, swapping order, and may eventually fail to return to
their initial states after going around a full loop. As uncovered by
recent studies, this eigenenergy braiding along 1D loops faithfully
characterizes the topological classification of the non-Hermitian
gapless phases associated with EPs31–38.

In three-dimensional (3D) non-Hermitian systems, the order-2
EPs can generally trace out robust curves, known as exceptional
lines (ELs)39–42, in the momentum space even in the absence of
any symmetries. Specifically, it has been shown that ELs can be
knotted or linked together in nontrivial ways43–49, analogous to
Hermitian nodal knots and nodal links50–53. However, as the
counterpart of Hermitian nodal chains54–59, exceptional chains
(ECs), formed by several connected ELs, have a fundamental
difference from other EL configurations, i.e., the existence and
stability of ECs demand symmetry protection. Although the
connection or intersection of ELs was accidentally observed in a
few very recent works60–62, the underlying mechanisms of sym-
metry and topology had rarely been discussed. As a result, the
mystery of EC formation remains unraveled until now.

In this work, we reveal that the complex eigenenergy braiding
around an EL can assign a positive orientation to the EL, inspired
by the recent breakthrough of the Hermitian nodal chain and link
theory63–69. Via generalizing the Fermion doubling theorem of
EPs34 to arbitrarily oriented and closed surfaces, we prove that
the directed ELs are always source-free in the 3D momentum
space. As an immediate application, the source-free principle
together with certain non-Hermitian spatiotemporal symmetries
can enforce several directed ELs to be robustly chained with each
other in order to keep the balance between inward and outward
ELs at the chain point. We uncover that by incorporating the
Hermitian-adjoint into account, the non-Hermitian crystalline
systems are generically described by double-antisymmetry (DAS)
space groups70–72, and we propose three DAS point-group
symmetry-based mechanisms that can stabilize different types of
ECs, termed orthogonal ECs, planar ECs, and mirror-symmetric
ECs, respectively, which have distinct local morphologies and
topological features. In particular, we show that in forming these
ECs, both eigenvalue-based and eigenvector-based topologies play
pivotal roles, explaining the richer diversity of ECs than Hermtian
nodal chains. Starting with a Hermitian nodal ring, we also study
the evolution roadmap toward various types of ECs by introdu-
cing thresholdless non-Hermitian perturbations. In addition, we
design non-Hermitian photonic crystals (PCs) to illustrate our
ideas of symmetry-protected ECs. Through numerical simula-
tions, three typical ECs i.e. a pair of linked orthogonal EC net-
works protected by three mirror-adjoint symmetries, a planar EC
with four non-defected chain points, and a double-earring EC
protected by mirror-adjoint and C2T symmetries, are observed in
the PCs, hence confirming the applicability of our theory for
general full-wave systems.

Results
Orientations of exceptional lines. Unlike nodal lines in Her-
mitian systems whose existence requires symmetry protection3,4,
a line of order-2 EPs in 3D momentum space can be topologically
stable in the absence of any symmetries13, where the two crossing
energy bands, Ei, Ei+1, braid about each other and swap their
order along a loop ΓEL encircling the EL (see Fig. 1a–c). The
eigenenergy braiding around an EL can be characterized by
the half-quantized interband energy vorticity10,13νi;iþ1ðΓELÞ ¼
1
2π

H
ΓEL

dk � ∇k arg½EiðkÞ � Eiþ1ðkÞ� ¼ ± 1
2. The sign of the energy

vorticity of the two intertwining bands endows such an elemen-
tary EL with a positive orientation, as indicated by the arrows on
the ELs in Fig. 1:

tEL ¼ sign½νi;iþ1ðΓELÞ�tΓ; ð1Þ
where tΓ is a tangent vector of the EL in compliance with the
right-hand rule of the directed loop ΓEL.

For a generic multi-band Bloch Hamiltonian HðkÞ, a Z
topological invariant, dubbed as discriminant number (DN)34,
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Fig. 1 Orientation of exceptional lines (ELs) and source-free principle.
a An order-2 EL manifests as the phase singularity of the discriminant
Δf(k), where the sign of phase vortex assigns a positive orientation (arrow
on the EL) to the EL in compliance with the right-hand rule of the loop ΓEL
(white dashed). b Real and imaginary parts of two intersecting bands on the
transverse plane in (a), and the red and light-blue trajectories denote the
two modes along the path ΓEL. c Braiding and mode switching of two
eigenenergies along the loop ΓEL in (a). d Schematic of the generalized
doubling theorem for exceptional points. Several directed ELs meet at a
junction that is enclosed by a surface S. Colormap on the surface: arg½Δf ðkÞ�.
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was recently introduced to demarcate non-Hermitian topological
phases on a 1D closed sub-manifold (a closed path Γ), which is
defined as the sum of all interband vorticities νij(Γ) along the
path, and is equivalent to the phase winding number of the
discriminant Δf ðkÞ ¼

Q
i<j½EiðkÞ � EjðkÞ�2 of the Hamiltonian’s

characteristic polynomial f ðE; kÞ ¼ det½E �HðkÞ�31,34,

DðΓÞ ¼ ∑
i≠j
νijðΓÞ ¼ 2∑

i<j
νijðΓÞ ¼

�i
2π

I
Γ
dk � ∇kΔf ðkÞ: ð2Þ

Once DðΓÞ≠0, there exist lines of degenerate points {kd∣Δf(kd)=
0} encircled by the loop Γ, prohibiting Γ from shrinking to
disappear without closing the gap along the loop.

If the loop Γ only encloses a single EL, the DN is solely
contributed by the energy vorticity of the two bands Ei, Ei+1

forming the EL: DðΓÞ ¼ 2νi;iþ1ðΓÞ ¼ ± 1, then the positive
tangent vector of the EL is alternatively expressed as
tEL ¼ DðΓÞtΓ. And for an arbitrary loop Γ in the 3D space, the
DN carried by Γ, DðΓÞ 2 Z, characterizes the net number of the
directed ELs, as counted according to their positive directions,
enclosed by the loop.

Recent studies unveiled that the braiding of eigenenergies along
1D loops (e.g., Fig. 1c) can faithfully determine the 1D non-
Hermitian topology for a generic N-band system with separable
bands, and the complete classification of such topological phases
is given by the braid group of N strands, BN, generated by the
braid generators bi (i∈ {1, 2,⋯ ,N− 1}) denoting the braiding
between ith and (i+1)th eigenenergies31–33. For an arbitrary 1D
loop Γ, the braid element, bðΓÞ ¼ bn1

i1
bn2
i2
bn3
i3

� � � 2 BN , and the
DN, DðΓÞ 2 Z, carried by the loop satisfy the relation (see proof
in Supplementary Note 1)

DðΓÞ ¼ n1 þ n2 þ n3 þ � � � : ð3Þ
Namely, the DN is equal to the sum of the exponents on the braid
generators (also known as the algebraic length of the braid b(Γ)),
representing the net number of times the mode braiding takes
place. On the other hand, the total biorthogonal Berry phase of all
bands along Γ, known as the global Berry phase Θ(Γ), also assigns
a Z2 topological invariant to the loop33,73. Whenever the
sequences of the initial and final eigenstates, Ψ0 and Ψf, after a
cycle along Γ are different up to a permutation p̂ðΓÞ, Ψf ¼ p̂ðΓÞΨ0,
the global Berry phase is determined by the parity of the
permutation33, det½p̂ðΓÞ� ¼ ± 1, and therefore also by the parity of
the DN (see proof in Supplementary Note 1):

exp iΘðΓÞ½ � ¼ exp
I

Γ
dk � Tr Ψ�1∇kΨ

� �� �

¼ det½p̂ðΓÞ� ¼ ð�1ÞDðΓÞ;
ð4Þ

where Ψ ¼ ðjψR
1 ðkÞi; jψR

2 ðkÞi; � � � ; jψR
N ðkÞiÞ and Ψ�1 ¼

ðjψL
1ðkÞi; � � � ; jψL

N ðkÞiÞ
y denote the matrices composed of right

and left eigenstates at k, respectively. Thus, the Z2 global Berry
phase actually describes whether there are even or odd numbers
of ELs passing through the loop.

Source-free principle of ELs. Let us consider an orientable closed
surface, S, in the 3D Brillouin zone (BZ). We are interested in the
net number of ELs penetrating S, as shown by the schematic in
Fig. 1d. Because the discriminant Δf(k) is a continuous single-
valued function in the whole BZ, mathematically, it serves as a
global section on a trivial complex line bundle π : L ffi S ´C !
S possessing a zero Chern number Ch(L)= 0. Therefore, we infer
from the Poincaré–Hopf theorem for complex line bundles74,75

that the total DN carried by all isolated degenerate points {kd} on

the surface must vanish (see Supplementary Note 2),

∑
kd2S

DðΓkd Þ ¼ ChðLÞ ¼ 0; ð5Þ

where Γkd stands for a small directed loop encircling the singu-
larity kd whose direction for the integral of DN is consistent with
the outward normal of the surface.

If all the degenerate points on S are elementary EPs with
DðΓkd Þ ¼ ± 1, Eq. (5) generalizes the Fermion doubling theorem
for EPs34 to arbitrary closed oriented surfaces, i.e., EPs always
appear in pairs with opposite DNs on a closed oriented surface.
The doubling theorem indicates that the ELs are source-free and
have to form closed loops in the 3D BZ, which serves as a
conservation rule regulating the morphology and evolution of ELs
in the 3D space. In particular, if several oriented ELs meet at a
junction under some constraints, the doubling theorem on a
sufficiently small sphere enclosing the junction informs us that
the numbers of inflow and outflow ELs must be equal (Fig. 1d),
even though the ELs are formed by different pairs of bands in
multi-band systems (see examples in Supplementary Note 9).
Next, we will show that the junctions of ELs with various local
morphologies can be guaranteed by certain spatiotemporal
symmetries.

Symmetry-protected exceptional chains. In previous works on
non-Hermitian crystals, the magnetic space groups, including the
time reversal operator T , are usually adopted to characterize the
crystalline symmetries and band degeneracies76,77. However, it
was revealed recently that Hermitian-adjoint “†” could appear as
a new dimension that leads to intriguing physical effects and
enriches the classification of non-Hermitian topological
phases12,78. Here, we uncover that akin to the time-reversal, the
Hermitian-adjoint transformation could be regarded as an
antisymmetry71 with respective to the ordinary space groups.
Hence by involving both Hermitian-adjoint and time reversal as
two antisymmetries, the non-Hermitian crystals can be uni-
versally described by DAS space groups70–72 (see Methods for
details). In what follows, we introduce three mechanisms to sta-
bilize ECs by DAS point-group symmetries.

Orthogonal ECs protected by Mirror-adjoint (M-†) or C2T sym-
metries. In Hermitian systems, as a prerequisite for chaining
different nodal lines together, the line nodes should be confined
by symmetries (usually mirror symmetry) in the high-symmetry
planes63,64,66. This inspires us that seeking suitable symmetries to
fix ELs into planes would be the first step toward an EC. It is
known that in a pseudo-Hermitian79,80 or parity time-reversal
(PT ) symmetric81 system, the parameter space can be divided
into exact and broken phases wherein the eigenenergies are
purely real and in complex conjugate pairs, respectively. And EPs
always occur at the boundaries between the two phases. Bor-
rowing this mechanism to a 2D subspace, we find that two DAS
point-group symmetries, i.e., mirror-adjoint symmetry (denoted
M-†) and combined twofold rotation time-reversal symmetry
(C2T ), fit the bill.

The M-† symmetry is a non-Hermitian generalization of
mirror symmetry, which is defined as the combination of mirror
reflection and Hermitian-adjoint. For the Bloch Hamiltonian
HðkÞ in the momentum space, it can be expressed as

M̂H m̂kð ÞyM̂�1 ¼ H kð Þ; ð6Þ
where m̂ represents the mirror reflection on spatial coordinates
and vectors, and M̂ is a Hermitian unitary reflection operator on
Bloch states. M-† is an intrinsic non-Hermitian spatial symmetry
distinct from the mirror symmetry in non-Hermitian systems,
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while they reduce to an identical one in Hermitian cases. On aM-
invariant plane ΠM ¼ km 2 BZjm̂km ¼ km

� �
, Eq. (6) implies

thatHðkmÞ is pseudo-Hermitian. Therefore, as depicted in Fig. 2a,
all eigenstates on that plane are classified as being either exact or
broken, and the transition boundary of the two phases forms an
EL lying in ΠM (see Supplementary Note 4).

Similarly, the bosonic C2T symmetry of a Bloch Hamiltonian
requires

Ĉ2T̂Hð�ĉ2kÞ�ðĈ2T̂Þ
�1 ¼ HðkÞ; ð7Þ

where ĉ2 denotes the corresponding twofold rotation on
coordinates and vectors, Ĉ2T̂ is the unitary part of the symmetry
operator saitisfying ðĈ2T̂ÞðĈ2T̂Þ

� ¼ 1 as the consequence of
ðC2T Þ2 ¼ 1. On a C2T -invariant plane ΠC2T ¼ fkc 2 BZj
kc ¼ �ĉ2kcg, the Hamiltonian HðkcÞ can be considered to be
2D PT -symmetric, and hence ELs can also be confined in this
plane, separating C2T exact and broken phases.

In Fig. 2b, we consider a system with two such symmetries
R1;R2 2 fM - y;C2T g, whose invariant planes Π1 (red), Π2 (blue)
are perpendicular. Imagining a single EL (red) is fixed by R1 in
the plane Π1 and cuts through Π2 at the midpoint K0, R2
symmetry guarantees this oriented EL to be symmetric about Π2.
In particular, its orientation must be reversed at K0, say, the two
red half-ELs at different sides of Π2 are both directed toward K0

(Fig. 2b), since the DN obeys the relation DðΓÞ ¼ �DðR̂2ΓÞ (see
Supplementary Note 3 for a general discussion of the constraints
on EL orientations imposed by different types of DAS point
group symmetries). By the source-free requirement of ELs at K0,
there should exist at least another EL (blue) on Π2 with two
outflow half-lines connecting the red EL at K0, thereby forming
an orthogonal exceptional chain. Accordingly, regions of the
exact (broken) phase on the two planes are consistently joined
along their intersection. Thus, we have demonstrated that any
pair of symmetries belonging to fM - y;C2T g can protect the
existence of orthogonal ECs.

However, if either of the two symmetries is M-†, the formation
of an orthogonal EC requires the bands to satisfy additional
conditions. To see this, we inspect the relation, imposed by the
M-† symmetry, to a pair of right and left eigenstates, jψRðkmÞi,
jψLðkmÞi in the exact phase on a mirror plane ΠM:

M̂ ψRðkmÞ
�� 	 ¼ ρðkmÞ ψLðkmÞ

�� 	
; ð8Þ

where ρ(km) is a nonzero coefficient. Therefore, the expectations
of the mirror operator in any pair of right and left eigenvectors
always take the same nonzero real value. Then, the sign of mirror
expectation invests each pair of eigenstates jψR=LðkmÞi in the

exact phase with a certain M-†-parity,

~pðkmÞ ¼ sign½hψR=LðkmÞjM̂jψR=LðkmÞi� ¼ ± 1; ð9Þ
which generalizes the concept of mirror-parity for the eigenstates
in mirror-symmetric systems. Intriguingly, the following theorem
can be proved (see Supplementary Note 4).

Theorem 1. AM-†-symmetry-protected order-2 exceptional line on
ΠM can only be formed by two bands with opposite M-†-parities in
the nearby exact phase.

Consequently, we know from the theorem that an orthogonal EC
in Fig. 2b protected either by two M-† symmetries or by
ðM - y;C2T Þ symmetries cannot be formed, unless theM-†-parities
of the two crossing bands take opposite signs in the exact phases on
the corresponding mirror planes.

Planar ECs protected by two M-† symmetries. In the presence of
two orthogonal mirror-adjoint symmetries, denoted M1-† and
M2-†, they can locally stabilize another type of EC, termed planar
EC, as shown in Fig. 3a, with two crossing ELs confined in the
same mirror plane Π1 and the chain point is fixed along
the intersection of the two mirror planes (the little group along
the intersection line is isomorphic to the DAS point group m†m†2
[the symbol is the generalization of Hermann-Mauguin (HM)
notation for point groups72, cf. Methods and Supplementary
Note 6]), where the two ELs are formed by the coalescence of two
bands whose M-† parities are opposite in the nearby exact phase
in Π1 but are identical in Π2.

At first glance, the source-free principle of ELs does not forbid
the two possible evolutions shown in Fig. 3b, c. However, the
contrapositive of the above theorem indicates that any degeneracy
between two bands with the same M2-†-parity in the exact phase
should be non-defective on Π2, hence the crossing point K0 of the
two M2-†-partner ELs on Π1 is a non-defective diabolic point
banned from expanding to an EP ring in Π2 (i.e., the case of
Fig. 3b). This effect also distinguishes the systems with two M-†
symmetries and those with M1-† and C2T symmetries. In the
latter case, the C2T symmetry never prohibits the formation of
the vertical earring EP ring (blue) in Fig. 3b.

In addition, we consider a vertical M1-symmetric loop ΓM ¼
m̂1ΓM

�1 enclosing K0 (the dashed green circle in Fig. 3a), where
the negative exponent indicates the direction of the loop is
reversed by reflection. ΓM is demanded to cross Π1 in two
disconnected regions, A and B, of exact phases nearby the EC. As
another prerequisite, the order of the M1-†-parities of the two

Fig. 2 Orthogonal exceptional chain. a Exceptional line (EL) confined in a
symmetry-invariant plane by M-† or C2T symmetry, separating the exact
(light red) and broken (red) phases. b Orthogonal exceptional chain
protected by two symmetries belonging toM-† or C2T , where ELs, confined
in two perpendicular planes Π1 and Π2 connect at the chain point K0. In
each plane, the lighter (darker) region denotes the exact (broken) phase.

(b)

k2

k3k1

(a)

�Μ

�2

K
0

�1

Region B

(c)
Region A

Fig. 3 Planar exceptional chain. a Schematic of a planar exceptional chain
protected by two mirror-adjoint symmetries (M1,2-†). K0 is the non-
defective chain point confined on the intersection of two mirror planes Π1

and Π2. A and B are two regions of exact phase in Π1 with opposite M1-†
parities ~pþA~p

þ
B ¼ �1. b, c Two plausible evolutions compatible with the

source-free principle of exceptional lines, which are, however, forbidden by
(b) the same M2-†-parity of two bands and by (c) the quantized Berry
phase along ΓM, respectively. In each plane, the lighter (darker) region
denotes the exact (broken) phase.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01291-0

4 COMMUNICATIONS PHYSICS |           (2023) 6:169 | https://doi.org/10.1038/s42005-023-01291-0 | www.nature.com/commsphys

www.nature.com/commsphys


crossing bands must be reversed in the regions A and B, which
means ~pþA~p

þ
B ¼ �1, where the superscript “+ ” denotes the band

with a larger real part of eigenenergy in each region. We will show
later that if the planar EC is directly evolved from a mirror-
symmetry-protected Hermitian nodal line, the opposite M1-
†-parities in regions A and B are guaranteed.

Despite having a null DN, the loop ΓM carries a nontrivial
Berry phase quantized by M1-† symmetry, (see Mehtods and
Supplementary Note 5):

exp i θðΓMÞ

 �

¼ exp iRe½θLRðΓMÞ�

 � ¼ exp iRe½θRLðΓMÞ�


 �
¼ exp i

1
2

θLLðΓMÞ þ θRR
� �� �

¼ ~pþA ~pþB ¼ �1;

ð10Þ

i.e., θðΓMÞ ¼ πmod 2π, where θαβðΓMÞ ¼
H
ΓM
AαβðkÞ � dk and

Aαβ(k)=− i〈ψα(k)∣∇k∣ψβ(k)〉 (α, β∈ {L, R}) denote the four
different types of Berry phases and Berry connections. And in
computing ALL and ARR, the left and right eigenstates are
required to obey the gauge constraint hψLðkÞjψRðkÞi 2 R.
Therefore, the nontrivial Berry phase along ΓM ensures that the
intersection of the ELs cannot be gapped out in the way that
Fig. 3(c) shows, justifying the stability of the planar EC.

From the above analysis, we see that the stability of planar ECs
comes from the joint protection of both eigenvalue-based
(source-free principle of ELs) and eigenvector-based (quantized
Berry phase) topological mechanisms. This explains why planar
chains cannot stably exist in Hermitian systems, where only the
eigenvectors contribute to the nontrivial topology.

Mirror-symmetric exceptional chains. The realization of M-† or
C2T protected ECs relies on the confinement of ELs into
symmetry-invariant planes. Next, we show that a single mirror
symmetry can give rise to EC formation with all ELs leaving from
high-symmetry planes, whose mechanism has no Hermitian
counterpart.

For a general mirror-symmetric non-Hermitian system
satisfying M̂Hðm̂kÞM̂�1 ¼ HðkÞ, every eigenstate on the mirror
plane ΠM has a definite (even or odd) mirror-parity. Considering
two bands with opposite M-parities on ΠM, their eigenenergies
E+(km), E−(km), are well-ordered by the parities (see Fig. 4a, b),
hence ΔE= E+− E− is single-valued in the regions where no
other band crosses. The intersection of the two bands on the
mirror plane requires both the real and imaginary parts of the two
eigenenergies to be equal, Re½ΔEðkmÞ� ¼ 0 and Im½ΔEðkmÞ� = 0,
which corresponds to two curves on ΠM with their crossing point
(e.g., the cyan dot K0) determining the degeneracy of the two
bands, as illustrated in Fig. 4c. Consequently, in contrast to the
well-known fact that Hermitian band crossings on the mirror
plane form nodal lines3, two non-Hermitian bands with opposite
M-parities always stably intersect at isolated points inside the
mirror plane. Moreover, since the eigenstates’ coalescence is
forbidden by their oppositeM-parities, these isolated nodal points
are non-defective, whereas an EP inside the mirror plane can only
be formed by two bands with the same M-parity.

Indeed, the mirror-symmetry-protected nodal point K0 is a
phase singularity of ΔE(km). And since ΔE(km) is single-valued
near K0, the energy vorticity of the two intersecting bands must
take the integer value νþ�ðΓK0

Þ ¼ 1
2π

H
Γd arg½ΔE� ¼ ± 1 along any

loop ΓK0
(white dashed line) on ΠM solely encircling the

degenerate point K0. Thus, the DN of ΓK0
, which is entirely

attributed to νþ�ðΓK0
Þ, is quantized to an even number (see the

phase vortex of Δf(km) on ΠM in Fig. 4c)

DðΓK0
Þ ¼ 2νþ�ðΓK0

Þ ¼ ± 2; ð11Þ
indicating the non-defective node K0 is an intersection of two ELs
that pierce the mirror plane from the same side and form a
mirror-symmetry-protected EC. Different from the M-† or C2T
cases, the two crossing ELs are distributed antisymmetrically
about ΠM, i.e., they have M-symmetric shapes but opposite
orientations, as the consequence of DðΓÞ ¼ Dðm̂ΓÞ for two
mirror-partner loops imposed by the mirror symmetry (see
Supplementary Note 3).
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Fig. 4 Exceptional chain protected by mirror symmetry. a, b Real and imaginary parts of two bands E+, E− with opposite mirror parities on the mirror
plane ΠM. c Mirror-symmetric exceptional chain intersecting at K0 on ΠM. Colormap on ΠM: the phase vortex of Δf(km) around K0. d Eigenenergy braiding
of E+ (red), E− (light blue) along the loop ΓK0

encircling K0 forms a Hopf link with two rings of opposite mirror parities. Inset: section at a point kθ 2 ΓK0

gives E+(kθ), E−(kθ) on the complex plane. Color of the bar depicts arg½Δf �, which is twice as big as the bar’s twist angle arg½ΔE�.
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According to the relation Eq. (3), the DN DðΓK0
Þ ¼ ± 2

indicates that the two eigenmodes of opposite M-parities braid
twice along the loop ΓK0

. Therefore, when returning to the initial
states after a round, their eigenenergy trajectories are interwoven
into a mirror-symmetry-protected Hopf link33,36. As shown in
Fig. 4d, the colored bars connecting the two trajectories represent
the vector ~ΔEðkθÞ ¼ ðRe½ΔE�; Im½ΔE�Þ (kθ 2 ΓK0

) on the complex
energy plane, whose altitude angle gives arg½ΔE�. Therefore, the
eigenenergy Hopf link delineates the twist of the vector ~ΔE
around the loop.

Meanwhile, for the M-symmetric loop ΓM (dashed green circle
in Fig. 4c) vertically circumnavigating the chain point K0, the
mirror symmetry also guarantees the nontrivial quantization of
all four types of Berry phases along ΓM (see Methods and
Supplementary Note 5):

θLLðΓMÞ ¼ θRRðΓMÞ ¼ θLRðΓMÞ ¼ θRLðΓMÞ ¼ πmod 2π: ð12Þ

Therefore, akin to the planar ECs, the stability of the mirror-
symmetric EC also stems from the combined protection of the
eigenvalue-induced and eigenvector-induced topological charges
along the loops ΓK0

and ΓM, which prohibit the two intersecting
ELs from disconnecting along k1 and k2 directions, respectively.

Exceptional chains arising from a nodal ring. In the previous
sections, we have introduced three DAS symmetries, M-†, C2T ,
and M, that can protect ECs. Here, starting from an Mz-protected
Hermitian nodal ring (Fig. 5a) in the mirror plane Πz (light red),
we will enumerate all possible EC structures that can be deter-
ministically generated by thresholdless non-Hermitian perturba-
tions preserving M, M-† or C2T symmetries.

We first introduce Mz-†-invariant non-Hermitian perturba-
tions. As shown in Fig. 5b, c, since the system becomes pseudo-
Hermitian on Πz, the nodal line immediately splits into a pair of
ELs confined in Πz. Considering anMz-symmetric loop Γ1 around
the EL pair, it carries a zero DN, DðΓ1Þ ¼ 0, inherited from the
Hermitian system. Meanwhile, the Mz-†-parities of the two
crossing bands in the regions, A and B, of exact phase are also
inherited from the Mz-parities in the Hermitian case in Fig. 5a.
The original Mz-parities of the two Hermitian bands take
opposite orders in the two regions. This ensures the inherited
non-HermitianMz-†-parities in the two regions (Fig. 5b, c) satisfy
~pþA ~pþB ¼ �1 and hence the quantized biorthogonal Berry phase
along Γ1 is nontrivial θ(Γ1)= π (see Eq. (12)). The null DN and
nontrivial Berry phase along Γ1 oblige the two ELs to be
oppositely directed but exempt from pair annihilation.

If the system under non-Hermitian perturbations also
preserves a second symmetry R2 2 fC2xT ;Mx - yg with an

kx
ky

kz

-2

-22

2

0 0

�

(Mz , C2xT /Mx)

(Mz , C2xT /Mx-†)

(Mz-† , C2xT)

(Mz)

(Mz-† , Mx-†)

(C2xT)

(Mz-†)

kx
ky

kz

-2

-22

2

0 0

�

kx
ky

kz

-2

-22

2

0 0

�

kx
ky

kz

-2

-22

2

0 0

�

kx
ky

kz

-2

-22

2

0 0

�

kx
ky

kz

-2

-22

2

�
�

�

kx
ky

kz

-2

-22

2

0 0

�

�1

�1�2

�1�2

�1

�1

�2

Hermitian Non-Hermitian

(a)

(b)

(c)

(d)

(e)

(f)

(g)

�z

�x

Region A

Region B

Region A
Region B

Region A
Region B
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R2-invariant plane, Πx, normally crossing Πz, the EL pair in Πz

should reverse their directions when traversing Πx, then two
different types of ECs can be deterministically formed. When
R2=Mx-†, evolving from the Mx symmetry of the Hermitian
case, the absence of nodal lines in Πx in Fig. 5a indicates the two
original Hermitian bands share the same Mx-parity. So an
identical Mx-†-parity is inherited by the two non-Hermitian
bands in Πx. According to our analysis in Fig. 3, this identicalMx-
†-parity protects the two ELs in Πz robustly intersect at two non-
defective chain points (cyan dots) when they cross Πx, as shown
in Fig. 5b, therefore forming a planar EC. If theMx-† symmetry is
broken, the ban on EPs appearing in Πx is lifted; then as shown in
Fig. 5e, each non-defective chain point spawns a vertical EP ring
lying out of high-symmetry planes at once. Intriguingly, the
vertical EP rings remain connected with the planar ELs in Πz, and
the EC survives. This remarkable robustness of EC is because the
directions of the ELs cannot change abruptly and the source-free
requirement (Eq. (5)) at the direction-reversal points of the in-
plane ELs compels the emergence of the out-of-plane ELs from
those points, uncovering that the Mz-† symmetry itself can
stabilize ECs.

When R2 ¼ C2xT , the non-Hermitian perturbation expands
the intersection points between the Hermitian nodal line and the
plane Πx into two exceptional rings (blue) fixed in Πx bridging
the gaps between the pair of ELs in Πz (see Fig. 5c), akin to the
formation of an exceptional ring from a Dirac point in 2D PT
symmetric systems (similar to Fig. 3b)8,82,83. Thus, a double-
earring EC can be realized. In addition, if the Mz-† symmetry is
broken while C2xT persists as shown in Fig. 5f, a C2xT -protected
π-quantized biorthogonal Berry phase, θLR ¼ H

Γ2
ALRðkÞ � dk ¼ π,

along a loop Γ2 in Πx protects the earring exceptional ring against
shrinking to disappear (see Methods), and the EC stays alive in
the presence of only the C2xT symmetry. However, since the
annihilation between the two horizontal ELs is now permissible in
that the biorthogonal Berry phase θ(Γ1) is no longer quantized,
the EC can split into two separate ones shown by Fig. 5f.

Next, we consider the case in which the introduced non-
Hermitian perturbation preserves the Mz symmetry. As exhibited
in Fig. 5d, g, the nodal line splits into two ELs antisymmetrically
distributed at the two sides of Πz. Provided that the two ELs meet
inside the mirror plane, Mz symmetry can protect their stable
intersections at non-defective diabolic points on Πz and hence
guarantees the formation of EC, as illustrated in the above
section. By imposing another symmetry R2 2 fC2xT ;Mx - yg,
the chain point can be further fixed on the intersection line of the
two planes Πx and Πz by the DAS point group mzm

y
x2

y
y or

20xm
0
ymz (see Supplementary Note 6). Breaking R2 while

preserving Mz, the chain points can move freely in the Mz-
invariant plane Πz, as shown in Fig. 5g, which cannot disappear
unless annihilating in pairs of opposite DNs D ¼ ± 2. Con-
versely, if we break Mz while maintaining R2 ¼ C2xT , the Mz-
symmetric EC in Fig. 5d can evolve to the configuration in Fig. 5f.

The concrete Hamiltonians generating the ECs in Fig. 5 are
given in Supplementary Note 6, where we also offer a rigorous
analysis of the determinate evolution paths toward various local
morphologies of ECs from a DAS point group perspective.
Furthermore, if we break the symmetries protecting the chain
points in certain manners, the ECs can also deterministically
evolve into more fascinating exceptional links45,46,69 (see details
in Supplementary Note 7). As a result, ECs can be used as critical
phases for producing exceptional links in non-Hermitian crystals.

Photonic crystal realization of exceptional chains. In this sec-
tion, we will show that various types of ECs protected by different
DAS crystalline symmetries can be realized in non-Hermitian

photonic crystals. It has been experimentally proved that a Her-
mitian metallic-mesh PC supports nodal chains protected by both
PT symmetry and three mirror symmetries Mx,y,z

58, and the
nodal rings on different mirror planes can be expanded into
exceptional torus if PT -symmetric non-Hermiticity is
introduced84. Here, we first modify the metallic mesh PC so as to
design a prototypical non-Hermitian PC with three mirror-
adjoint symmetries. One thing to note is that a reciprocal PC with
the three Mx,y,z-† symmetries must be PT symmetric, inasmuch
as reciprocity is equivalent to the time-reversal-adjoint symmetry,
T -y12, and ðMx -yÞðMy -yÞðMz -yÞðT -yÞ ¼ PT . Therefore, to
realize ELs on the mirror planes in all three directions instead of
EP surfaces, we need to break the PT symmetry and accordingly
the reciprocity of the PC, which can be achieved by properly
arranging the non-Hermitian gyrotropic materials with the rela-
tive permittivity and permeability surrounding the metallic mesh:

εr rð Þ ¼
1þ iγðrÞ iαðrÞ 0

�iαðrÞ 1þ iγðrÞ 0

0 0 1þ iγðrÞ

0
B@

1
CA; μr ¼ 1; ð13Þ

where α(r) and γ(r) are real-valued functions of coordinates,
characterizing, respectively, the distributions of gyrotropy and
loss-gain in the background materials.

Figure 6a displays the non-reciprocal Hermitian metallic mesh
PC with γ= 0, where the prism regions are magnetized with the
red (blue) arrows denoting the gyration vectors corresponding to
α= 0.5 (−0.5). The Hermitian space group of the PC is Pmmm1†

(No. 169872) including three mirror symmetries, Mx,yz, but no
PT symmetry. Figure 6d shows the bulk band structure of the
Hermitian PC along high symmetry lines (see Fig. 6g), which is
numerically calculated by the commercial software COMSOL
Multiphysics. Since the two bands near the frequency of
f= 0.65c/a (light-blue region) have opposite mirror parities
(labels on the band structure) along every intersection line of
two orthogonal mirror planes, as shown in Fig. 6g-i, the nodal
rings in different mirror planes should connect together56,57,63

and form a globally connected nodal chain network, where the
nodal rings are retrieved from the 2D band structure on the
mirror planes (see Supplementary Note 10). For the lower two
bands at about f= 0.6c/a (light-pink region) with opposite Mz

parities but identical Mx,y parities, the nodal ring only appears on
the kz= π/a plane, as shown by Fig. 6g-ii.

Introducing loss (gain) with γ= 0.5 (− 0.5) into the back-
ground materials in red (cyan) color in Fig. 6b, the prototype
Hermitian PC becomes non-Hermitian and the three mirror
symmetries Mx,y,z convert to the corresponding mirror-adjoint
symmetries, Mx,y,z-†, so the DAS space group of the PC becomes
Pm†m†m† (No. 355872). The non-Hermitian perturbed band
structure is plotted in Fig. 6e. The nodal rings in different mirror
planes are split into paired exceptional rings with opposite
orientations. For the upper pair of bands near f= 0.65c/a, the two
EP rings on each plane can be marked as “inner” and “outer”
according to their relative positions. In particular, every inner
(outer) EP ring on a mirror plane is chained with another two
outer (inner) rings in the two perpendicular planes, resulting in a
pair of triply orthogonal EC networks linked with each other (see
the tight-binding model generating the same EC structure in
Supplementary Note 8), as depicted by Fig. 6h-i. Moreover, the
numerical tests also verify that the numbers of inflow and outflow
ELs at each chain point are balanced (see Supplementary
Note 10), corroborating the source-free principle of ELs. The
multi-band nature of the PC also demonstrates that our theory of
EC formation is universal for generic full-wave crystalline
systems.
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For the lower pair of bands around f= 0.6c/a, thanks to their
identical Mx-† (My-†) parity on the mirror plane of kx= 0
(ky= 0) inherited from the Hermitian mirror parity, the
Hermitian degenerate points of the two bands along kx= 0 (M-
Z direction in Fig. 6d) stay intact after introducing the non-
Hermiticity (Fig. 6e), and so do the Hermitian degenerate points
along ky= 0. Consequently, as seen from Fig. 6h-ii, the pair of
exceptional rings splitting from the Hermitian nodal ring
intersect at four Mx,y-†-protected non-defective diabolic points
(cyan) and therefore form a planar EC in the kz= π/a plane.

In the last row of Fig. 6, we designed another metallic mesh PC
with a different distribution of the gyrotropic and nonconserva-
tive materials (see the unit cell in Fig. 6c and the band structure in
Fig. 6f), such that its space group is Pmym0y20 (No. 8967)
possessing Mz-† and C2xT symmetries. Because of the lack of
Mx,y symmetries in the prototype Hermitian PC (γ= 0), only the
Mz-invariant planes can support Hermitian nodal rings in this
case. After bringing gain and loss into the PC, the nodal ring in
the kz= π/a plane divides into two planar exceptional rings (red)
joining together by two vertical EP loops (blue) in the kx= 0
plane protected by the C2xT symmetry, as can be seen from

Fig. 6i. As a result, a double-earring EC arises in the non-
Hermitian PC, reproducing the configuration in Fig. 5c.

Discussion
In conclusion, we established the source-free principle of directed
ELs and showed that the source-free principle together with
symmetry constraints are two crucial conditions for the forma-
tion of ECs. Based on this idea, we developed a general theory for
constructing ECs of various local morphologies, including
orthogonal EC, planar EC, and mirror-symmetric EC, protected
by C2T , mirror-adjoint, or mirror symmetries. We also investi-
gated all possible EC configurations evolving from a Hermitian
nodal ring with thresholdless non-Hermitian perturbations. To
further illustrate the idea, we designed non-Hermitian PCs
respecting certain symmetries that exhibit three representative
and exotic ECs in the PCs, i.e., a pair of linked orthogonal EC
networks, a planar EC with non-defective chain points, and a
double-earring EC. It is worth emphasizing that the source-free
principle of ELs and symmetry constraints not only account for
the formation of two-band ECs but are also applicable to
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Fig. 6 Different types of exceptional chains (ECs) in non-Hermitian photonic crystals (PCs). a, b, c Schematics of three cubic PCs' unit cells with lattice
constant a. Orange cylinders: metallic meshes. Regions in gray, red, and cyan colors: conservative (γ= 0), lossy (γ > 0), and gain (γ < 0) materials,
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in (a, b, c). a, d, g The Hermitian PC in (a) respectingMx,y,z symmetries with α= ± 0.5 and γ= 0. Labels [ ± ] in blue, green and red in (d): theMx,y,z-parities
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formed around f= 0.65c/a (light blue shaded region in (e)); (h-ii) A planar EC with four non-defective chain points (cyan dots) formed around f= 0.6c/a
(pink shaded region in (e)). c, f, i The non-Hermitian PC respecting Mz-† and C2xT symmetries with α=− 0.3, γ= ± 0.5. i A double-earring EC formed
around f= 0.65c/a (light blue shaded region in (f)).
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multiband cases, such as the exceptional nexus of the ELs formed
by the intersections of triple bands61 (see Supplementary Note 9).

Compared with Hermitican nodal chains, the morphologies of
ECs exhibit richer diversities. Both the planar EC and mirror-
symmetric EC have no Hermitian analogs. And their stability
stems from the combined protection of eigenvalue-based and
eigenvector-based topological mechanisms, which goes beyond
the protection granted by only a single type of topological
invariant defined by eigenvectors (quantized Berry phase or
winding number) in Hermitian nodal chains. In particular, the
various formation mechanisms of ECs lead to different types of
degeneracy at the chain points of ECs, including the ordinary
second-order exceptional chain points in orthogonal ECs, the
non-defective diabolic chain points in planar and mirror-
symmetric ECs, or even the higher-order exceptional chain
points in multiband ECs (see Supplementary Note 9). The variety
of degeneracies at the chain points also suggests that different
types of ECs may produce remarkably different transport or
excitation effects, which would be useful for direction-sensitive
sensing and anisotropic spontaneous emission enhancement.

Our theory integrates the non-Hermitian topology with the
DAS crystalline symmetries and opens the avenue for symmetry-
protected non-Hermitian topological phases and topological
degeneracies, such as symmetry-protected higher-order EPs85–88,
in non-Hermitian crystals. In light of the analogy between non-
Hermitian physics and other systems or theories89–91, our fra-
mework may also be transplanted to these systems, giving rise to
exotic physical effects. For example, it was recently discovered
that the circular polarization singularity (C point) of 3D optical
polarization fields can map to a non-Hermitian EP91.
Therefore, the present method would also be applied to realize
symmetry-protected chains of C points for 3D optical fields in the
real space.

Methods
Non-Hermitian crystalline symmetries and DAS space groups. An anti-
symmetry A with respect to a group G is defined as an operator satisfying three
conditions71:

1. A itself is not an element of G: A =2G;
2. Involutivity (self-inverseness): A2= I;
3. A commutes with all elements of G : ½A;G� ¼ 0; 8G 2 G.
For example, the time reversal operator T (10 in HM notation) is an

antisymmetry for spinless space (point) groups, hence involving T into the
crystallographic space (point) groups gives rise to single-antisymmetry space
(point) groups, i.e., the magnetic space (point) groups.

For non-Hermitian systems, the Hermitian-adjoint operation has been shown
to be a new symmetry dimension that can greatly enrich the non-Hermitian
topological phases12. In contrast to the spatiotemporal transformations which are
linear (antilinear) operators acting on the states in Hilbert space, the Hermitian-
adjoint (1† in HM notation) is an antiautomorphic map on the set of bounded
linear operators (mathematically, a noncommutative ring) on the Hilbert space.
Nevertheless, the spatiotemporal transformations, say G, may also be regarded as
maps between linear operators via unitary transformation:

GðHÞ ¼ ĜHĜ
�1 ¼ ĜHĜ

y
. In this sense, the Hermitian-adjoint map indeed

manifests as an antisymmetry to any group G of unitary transformations, since it is

self-inverse 1y1yðHÞ ¼ ðHyÞy ¼ H and commutative with any unitary

transformation 1yGðHÞ ¼ ðĜHĜ
yÞ

y
¼ ĜHyĜ

y ¼ G1yðHÞ, 8G 2 G.
Consequently, by taking both time-reversal 10 and Hermitian-adjoint 1† into

account, we find that the expanded space (point) group for a non-Hermitian crystal
is generally isomorphic to a double-antisymmetry space (point) group72. In
particular, the product of time-reversal and Hermition-adjoint operations (denoted
10y in HM notation) is also an antisymmetry to space groups. Physically, it just
represents the reciprocity transformation, T - y, of the system12. These three
antisymmetry operations together with identity transformation constitute a group
isomorphic to the dihedral group D2 with the multiplication table shown in Fig. 7.

In the DAS space (point) groups for non-Hermitian crystals, the symmetries are
sorted into four types:

(i) The pure spatial symmetries, denoted G or g:

ĜHðĝ�1xÞĜ�1 ¼ HðxÞ;
(ii) The spatial-adjoint symmetries, denoted G-† or g†:

ĜHðĝ�1xÞyĜ�1 ¼ HðxÞ;
(iii) The spatiotemporal symmetries, denoted GT or g 0 :

ĜT̂Hðĝ�1xÞ�ðĜT̂Þ�1 ¼ HðxÞ;
(iv) The spatiotemporal-adjoint symmetries, denoted GT - y or g 0y :

ĜT̂Hðĝ�1xÞTðĜT̂Þ�1 ¼ HðxÞ:

Here, ĝ ¼ fR jwg denotes the spatial transformation, with a rotation part R and
a translation part w, acting on the position vector x, and Ĝ, T̂ denote the unitary
parts associated with the G, T operators, respectively, acting on the internal
degrees of freedom. The last three types of symmetries can be viewed as coloring
the original space-group symmetries into red, blue, and green, respectively, so we
can use colored symbols, i.e., g†, g 0 , and g 0y , to represent these symmetries in the
generalized HM notation (cf. the colored symbols in Fig. 7). And the DAS space
(point) groups are obtained by coloring the elements of the original space (point)
groups. There are 624 DAS point groups and 17803 DAS space groups in
total70–72.

Based on these four types of symmetries, the DAS space (point) groups can be
classified into 12 categories72. In the table of Fig. 8, we list the 12 categories with
assigning a physics meaningful designation to each category. The first category (1)
includes all the original colorblind space groups Q without any colored symmetries.
The second column of the table shows four categories of gray space groups
(namely, all elements in a group are uniformly colored), each of which possesses at

1 1′ 1† 1′†

1 1 1′ 1† 1′†

1′ 1′ 1 1′† 1†

1† 1† 1′† 1 1′
1′† 1′† 1† 1′ 1

Fig. 7 Multiplication table of the three antisymmetry operations. Here, 1,
10 , 1†, 10y are the generalized Hermann-Mauguin notations of the identity,
time reversal, Hermitian-adjoint, and reciprocity transformations,
respectively.

Gray space groups Single-antisymmetry groups Multicolor groups

Colorless
crystallographic 
space groups

Q
Category (1)

TRS gray groups Q1′
Category (2)

Magnetic groups Q′
Category (3)

TRS adjoint groupsQ†1′ = Q′†1′
Category (9)

Hermitian gray groups Q1†

Category (4)

Adjoint groups Q†

Category (7)

Hermitian magnetic groups Q′1† = Q′†1†

Category (6)  

Reciprocal gray groups Q1′†

Category (8)

Magnetic-adjoint groups Q′†

Category (11) 

Reciprocal magnetic groups Q′1′† = Q†1′†

Category (10)

Hermitian –TRS groups Q1′1†

Category (5)

Indecomposable DAS groups Q(′)(†)

Category (12)

Fig. 8 Classification of double-antisymmetry space (point) groups for non-Hermitian crystals. The serial number (#) of each category listed in the table
follows ref. 72.
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least one antisymmetry, describing the time-reversal symmetric (TRS) systems,
Hermitian systems, reciprocal systems, and Hermitian TRS systems, respectively.
The third column shows the three categories of single-antisymmetry groups. For
example, the groups in category (3) are just the black-white magnetic groups which
only contain symmetries of types (i) and (iii) but do not have TRS. Similarly, in
category (4), an adjoint group describes the non-Hermitian systems only
possessing symmetries of types (i) and (ii). The space group of the PC shown in
Fig. 6b, Pm†m†m†, just belongs to this category. The categories in the fourth
column describe the groups containing at least three types of symmetries. In
categories (6), (9), and (10), each group also contains an antisymmetry, contrary to
the indecomposable groups in category (12) that violate all the three
antisymmeries. For example, the space group of the PC shown in Fig. 6c, Pmym0y20 ,
belongs to the category (12).

Quantized Berry phases protected by DAS point-group symmetries. The
quantization conditions for Berry phases protected by purely spatial and spatio-
temporal point-group symmetries, such as PT and mirror symmetries, have been
widely investigated in Hermitian systems. However, when extending our per-
spective to non-Hermitian crystalline systems, we urgently need to test whether the
results established in the Hermitian case still hold and whether the DAS point-
group symmetries that are intrinsically non-Hermitian can also preserve the
quantized Berry phases.

Moreover, since the left and right eigenvectors of the same eigenstate become
different in non-Hermitian systems, more variants of Berry phases can be
introduced, making the situation more complicated. Apart from the global
biorthogonal Berry phase Θ in Eq. (4), we can define four different types of Berry
phases, θLL(Γ), θRR(Γ), θLR(Γ), θRL(Γ), of a single continuous band along a loop
Γ ¼ kðϕÞj kðπÞ ¼ kð�πÞ;�π ≤ ϕ≤ π

� �
through integrating the corresponding

Berry connections, ALL, ARR, ALR, ARL10:

θαβðΓÞ ¼
I

Γ
dk � AαβðkÞ; ð14Þ

AαβðkÞ ¼ �i ψα
nðkÞ

� ��∇k ψβ
nðkÞ

�� 	
; ðα; β 2 L;Rf gÞ; ð15Þ

where the eigenvectors ψα=β
n ðkÞ

�� 	
should be normalized by hψα

nðkÞjψβ
nðkÞi ¼ 1,

which is dependent on the different α, β. For the biorthogonal Berry connections
(α ≠ β), ALR, ARL, jψα=β

n ðkÞi respects the binormalization condition
hψL

nðkÞjψR
n ðkÞi ¼ 1. Whereas for left or right Berry connections (α ¼ β 2 L;Rf g),

ALL, ARR, ψα
nðkÞ

�� 	
is just self-normalized: hψα

nðkÞjψα
nðkÞi ¼ 1.

The eigenstates along the loop Γ, abbreviated as ψR=L
n ðϕÞ

�� 	
:¼ ψR=L

n ðkðϕÞÞ
�� 	

,
form a continuous band from ϕ=− π to π. To guarantee the Berry phases are well-
defined, namely, the results are identical in the sense of modulo 2π for any
continuous gauge of the eigenvectors along Γ, we require that the continuous band
concerned is self-closed, namely the eigenstate returns to the initial one, i.e.,
ψα
nðπÞ

�� 	 ¼ ψα
nð�πÞ

�� 	
, after traveling on the concerned band along the loop one

turn (ϕ evolves from− π to π).
In addition, according to the relation

Aαβ� ¼ Aαβy ¼ ih∇kψ
β
njψα

ni ¼ �ihψβ
nj∇kψ

α
ni ¼ Aβα , the two biorthogonal Berry

connections, as well as the two biorthogonal Berry phases, are always complex-
conjugate

ALRðkÞ ¼ ARLðkÞ�; θLRðΓÞ ¼ θRLðΓÞ�; ð16Þ
while the ordinary Berry connections and Berry phases for left (right) eigenvectors
always take real values

ALLðkÞ;ARRðkÞ 2 R3; θLLðΓÞ; θRRðΓÞ 2 R: ð17Þ
In Supplementary Note 5, we proved that the four types of two-fold DAS point-

group symmetries could protect the quantization of different kinds of Berry phases
along symmetry-invariant loops, as summarized in Table 1. Here, two-fold
symmetry means that G2= I. In computing 1

2 ðθLL þ θRRÞ, the left and right
eigenstates are required to satisfy the gauge constraint that 〈ψL(k)∣ψR(k)〉 takes
positive real values. In the Supplementary Information, we also showed that the

self-closeness of the band can be guaranteed by some rather lenient properties of
the bands in each case.

Data availability
The data of simulations that support the findings of this study are available in
DataSpace@HKUST with the identifier “https://doi.org/10.14711/dataset/KKRJPL”92.

Code availability
The code used to evaluate the conclusions in the paper is available upon request. Please
contact the corresponding author.
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