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Practical advantage of quantum machine learning
in ghost imaging
Tailong Xiao 1,3, Xinliang Zhai1,3, Xiaoyan Wu1, Jianping Fan2 & Guihua Zeng 1✉

Demonstrating the practical advantage of quantum computation remains a long-standing

challenge whereas quantum machine learning becomes a promising application that can be

resorted to. In this work, we investigate the practical advantage of quantum machine learning

in ghost imaging by overcoming the limitations of classical methods in blind object identi-

fication and imaging. We propose two hybrid quantum-classical machine learning algorithms

and a physical-inspired patch strategy to allow distributed quantum learning with parallel

variational circuits. In light of the algorithm, we conduct experiments for imaging-free object

identification and blind ghost imaging under different physical sampling rates. We further

quantitatively analyze the advantage through the lens of information geometry and gen-

eralization capability. The numerical results showcase that quantum machine learning can

restore high-quality images but classical machine learning fails. The advantage of identifi-

cation rate are up to 10% via fair comparison with the classical machine learning methods.

Our work explores a physics-related application capable of practical quantum advantage,

which highlights the prospect of quantum computation in the machine learning field.
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Quantum computation is widely believed to have the
potential to speed up classical computation1,2. This
technology has possible applications in various fields,

including machine learning3–5, materials discovery and
synthesis6, and drug research and development7. Demonstrating
quantum advantage in unknown applications or scientific pro-
blems is a crucial step toward illustrating the practical usage of
quantum computation.

One of the challenges in quantum computation is to identify
practical applications or problems where quantum algorithms
can outperform classical ones8,9. Although various experiments
have demonstrated quantum advantage, such as random circuit
sampling10, Boson sampling11–13, and quantum walks14, they
have limited practical applications in the near term. In the noisy
intermediate-scale quantum (NISQ) era15, quantum noise can-
not be fully eliminated, and the number of qubits is limited.
Therefore, the focus is on demonstrating the advantage of
quantum hardware-based computation in terms of sample or
time complexity compared to classical counterparts16. Several
research studies aim to clarify the advantage of quantum
machine learning (QML), such as the rigorous speedup for dis-
crete logarithm problems using the quantum kernel method17

and the theoretical advantage for identifying quantum states/
processes using QML18. These works demonstrate the possibility
of achieving theoretical quantum advantage in NISQ devices
using QML to solve specific problems. Furthermore, hybrid QML
has been experimentally demonstrated to generate high-quality
images using ion-trap quantum computers19. QML has also been
used to generate handwritten digits without the use of classical
neural networks in superconducting quantum computers20. In
these works, QML directly processes classical data using specific
quantum encoding techniques. Although these works demon-
strate the feasibility of QML, the practical quantum advantage
has yet to be highlighted as pure classical datasets were used.
QML has recently been applied in high-energy physics21,22 and
quantum many-body physics23. These studies suggest that QML
is more suitable for dealing with data generated from actual
physical systems24,25. Recently, there has been a trend in QML
applications, where in reduced resource scenarios, it is better to
constrain the available resources rather than scale up the
device26. Ghost imaging (GI) is a promising bridge connecting
classical data and QML and is likely to be the first physics-related
application in the classical regime to demonstrate quantum
advantage.

GI retrieves an image by using two correlated beams, the
reference beam, and the object beam27–30. The reference beam is
typically captured by a spatial resolution detector and does not
interact with the object. In contrast, the object beam records the
object information by a bucket detector that lacks spatial reso-
lution. Figure 1a shows the experimental setup. Early GI experi-
ments were based on entangled light sources27, and the basis of
correlated imaging was considered to be quantum entanglement
properties31. Subsequently, it was demonstrated that ghost ima-
ging can also be implemented using a classical light source28,32,33.
Further, the reference beam can be replaced by a programmable
spatial light modulator (SLM) or a digital micro-mirror device
(DMD), which simplifies GI to a single-beam configuration34.
Compared to a traditional array camera, GI is a time-for-space
imaging method. Due to its inevitable time-consuming sampling,
obtaining high-quality images at a low sampling rate is sig-
nificant, under which the dimension of the bucket signals can be
greatly reduced. The signals contain information about the
physical process, leading to potential advantages when using
QML. The bucket signals can be directly used for downstream
tasks, such as imaging-free recognition35, tracking36, and
segmentation37.

In this work, we propose a hybrid QML algorithm for GI
systems to demonstrate their practical advantages in physically-
inspired imaging systems. We investigate two challenging appli-
cations: object identification and imaging, which can be regarded
as classification and regression problems in the machine learning
field. We collect experimentally detected signals from the GI
system to train QML models using a physical-inspired patch
strategy to divide high-dimensional measured signals into low-
dimensional pieces for accessible data encoding by current NISQ
devices. We also build classical neural networks with an
approximate number of trainable parameters to benchmark the
performance fairly. In the identification and imaging applications,
our hybrid QML methods are shown to be superior to their
corresponding classical machine learning methods. We investi-
gate the generalization capability of QML when reducing the
training samples and quantify the quantum advantage using a
capacity measure of QML from the perspective of information
geometry. Furthermore, we study the impact of quantum noise in
the QML method on the imaging application. Our results
demonstrate the substantial advantage of QML algorithms in the
GI system through rigorous quantitative analysis, highlighting
their potential advantages in physically-related systems.

Results
Practical advantage of QML in GI. The hybrid quantum-
classical machine learning algorithm presented in this work
consists of a classical artificial neural network and a para-
meterized quantum circuit (PQC), as shown in Fig. 1b. The
performance of the PQC can vary depending on its topology, but
we utilize a typical circuit structure with interleaved single-qubit
rotation layers and entangling layers, given the current availability
of hardware. The QML model first maps the bucket signals B into
the quantum Hilbert feature space using a predefined encoding
strategy, such as angle encoding, amplitude encoding, or other
quantum many-body inspired encoding38 (see Supplementary
Note 2). While there have been numerical studies evaluating the
performance of QML models in toy tasks, their practical appli-
cation and advantage in classical tasks is still rare. We investigate
the GI system and find that the measured bucket signals from the
GI system are highly suitable for current QML models. We
experimentally collect the bucket signals to constitute the dataset.
Our hybrid quantum learning model is more practically relevant
compared to previous works and has the potential to enhance the
performance of the GI system, including object identification and
imaging.

In our algorithm, we do not utilize the pattern information,
and hence the identification and imaging process is blind. In GI,
the target information is reconstructed based on the correlation
between the illumination patterns and the acquired bucket
intensities. However, environmental turbulence can prevent the
detection or evaluation of illumination patterns in practical
scenarios, such as remote sensing, biomedical imaging, and
underwater perception. Therefore, reconstructing without illumi-
nation patterns is a natural way to address this problem39,40.

As shown in Fig. 1a, the single-beam ghost imaging technique
retrieves an image by utilizing the correlation between the
modulated patterns displayed on the digital DMD and the bucket
signals collected by the detector. In this technique, a laser beam
initially illuminates the DMD, which is loaded with various
modulated patterns. The modulated light field then propagates
toward the object, and after interacting with the scene, the
transmitted or reflected light is collected by a bucket detector
(i.e., a single-pixel detector). This physical process essentially
encodes the scene information optically via the illumination
light field. Consequently, the collected bucket signal B can be
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mathematically represented as follows

B ¼
Z

Ið r!0ÞSð r!0Þd r!0; ð1Þ

where Ið r!0Þ is the intensity distribution imprinted on the object
plane, and Sð r!0Þ is the intensity transmission or reflection
function of the object. According to GI theory33,41,42, a ghost
image can be restored via intensity correlation as

Gð r!0Þ ¼ ΔI r!o

� �
ΔB

� �
; ð2Þ

where ΔIð r!oÞ and ΔB is the intensity fluctuations of illumina-
tions and the bucket signals, respectively. The notation �h i
presents the ensemble average. Eq. (2) indicates that one needs to
detect a large number of intensities under corresponding
illuminating patterns to retrieve an Np-pixel image. According
to the Nyquist sampling criterion, the measurement number M
needs to be at least equal to Np. In the case of M=Np, the
illuminations need to be guaranteed orthogonal or simply set to
point scanning. However, considering the noise disturbance and
the cost of programmable modulators, random patterns are
widely used in GI applications30,43–45, where the sampling needs
to meet M≫Np.

In practical computational GI scenes, to reduce imaging time,
the sampling is always limited and the illumination Ið r!oÞ is
always approximated by the loaded patterns Ið r!Þ. Thus, the
solution of Eq. (2) can be presented as

Gð r!0Þ �
1
M

∑
M

i¼1
ΔIi r!� �

ΔBi; ð3Þ

In Eq. (3), M needs to be at least equal to the imaging pixel
number Np, which is time-consuming. To accelerate the progress,
GI is always performed under M≪Np. In this case, the image
reconstruction of GI is an underdetermined optimization
problem

Ĝ ¼ argmin
G

IG� Bk k22; ð4Þ
where I is the measurement matrix consisting of the modulated
illumination patterns Ið r!Þ, and �k k2 denotes the L2 norm. The
conventional method to directly solve the optimization problem
is still hard, especially in cases where the sample rate is
insufficient. To solve this underdetermined problem, a common
practice is to introduce a regularization term into Eq. (4). The
regularization term is also known as the sparsity constraint. For
example, the compressed sensing (CS)46 construction algorithms
are based on the sparsity of natural images and are widely used in
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Fig. 1 Hardware-efficient quantum machine learning enhanced ghost imaging. a The typical experimental setup for ghost imaging in which the patterns
can be randomly sampled or optimized according to the poster processing and a single-pixel detector is used to measure the object-interacted light field
modulated by the prescribed illumination patterns. The patterns and bucket signals are correlated to recover the image. b Hybrid quantum machine
learning algorithm by combining the artificial neural network or convolution neural network enhances object identification and the quality of object imaging.
Quantum feature encoding and learning operations are hardware-efficient such that they can be implemented in the noisy intermediate-scale quantum
(NISQ) devices.
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GI42,47. However, CS-based methods usually need much time to
iterate and have no generalization ability.

Machine learning has shown to be effective in improving
optimization results under noisy measurements and ill-posed or
uncertain measurement operators48–50. However, the need for
large datasets and neural networks still limits its application.
QML, specifically its hybrid version (see Methods), shows
promise in enhancing learning capabilities and reducing neural
network size. It is worth noting that the basis for patch processing
of bucket signals (see Eq. (8)) is rooted in the independence of
each bucket signal from the others. As per signals and systems
theory51, the physical model presented in Eq. (1) is a basic linear
time-invariant system, and the system’s response to independent
illumination patterns (I1, I2, . . . , IM) will remain independent.

Object identification. Real-time identification of objects has
significant applications in various fields, from remote sensing to
biomedicine. Traditional image-based recognition suffers from
high data dimensionality and long acquisition time. This has
inspired researchers to use GI bucket signals directly for real-time
target identification. This can be achieved by formulating the
identification problem as a multi-class classification problem
using machine learning, as shown in the imaging-free recognition
branch of Fig. 1b. The proposed QML model maps the bucket
signals into a classical neural network to reduce dimensionality.
The pre-processed features are further mapped into a quantum
encoder that maps classical features into a Hilbert space. The
quantum learning operations transform the quantum feature
vector, clustering the features with the same class label while
separating those with different labels. Finally, a linear classifier
classifies the bucket signals into their respective categories. The
specific design of PQC can be found in Supplementary Note 2.

We collect the experimental data of handwritten digits to
evaluate the proposed model on the recognition task. Detailed
data acquisition is demonstrated in the Methods section. To

illustrate the advantages of the QML algorithm, the number of
training parameters for QML and classical machine learning
(CML) are restricted to be approximately equal for a fair
comparison and the prediction performances of QML and CML
is displayed as Fig. 2 shows. We collect two types of bucket signals
with optimized and random illumination patterns, with measure-
ment times set at M= 16, 32, 64, 128. The illumination pattern
can be optimized according to the identification accuracy by
adopting a machine learning strategy and the details can refer to
Supplementary Note 1. We propose the patch strategy to divide
large M into small ones by executing multi-PQCs in parallel. For
example, when M= 32, we have two PQCs each with 16 qubits to
learn the feature information. One can also regard PQC with 8
qubits as an unit and simultaneously run 4 PQCs to extract the
feature. As we have clarified previously, since we can regard each
detection as one independent sampling process from the light
field, the bucket signals can mathematically be viewed as
independently identically distributed. Therefore, the patch
strategy in QML is well-founded and interpretable, which is also
very suitable for current NISQ devices. The training curves of
QML with different M are shown in Fig. 2a–d, and the validation
accuracy of CML and QML for the optimized and random
patterns are demonstrated in Fig. 2b–e, respectively.

In both cases, QML showed a tangible advantage over CML
when limiting the classical and quantum model to have
approximately the same number of training parameters. Even
when the quantum decoherence rate for each neighboring qubits
is 10−3, a typical decoherence rate achievable for current NISQ
devices, the quantum advantage still holds. However, when the
decoherence rate is increased to 3 × 10−3, the accuracy enhance-
ment weakens. The experimental results showed that large
quantum error rates may counteract the quantum advantage for
current NISQ devices in imaging identification tasks. Therefore,
noise mitigating techniques to reduce the error rate are necessary
to maintain the quantum advantage. Additionally, we visualize
the original bucket signals and QML-learned features using the
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Fig. 2 The identification results of ghost imaging (GI) system based on classical machine learning (CML) and hybrid quantum machine learning (QML)
algorithm. a The loss (left) and validation accuracy curve (right) of hybrid QML varied with the training epochs, where the bucket signals are measured
based on the optimized patterns. b The ultimate identification precision of classical and hybrid (noisy, 10−3 or 3 × 10−3) QML with approximately equal size
of parameter space varied with different numbers of optimized illumination patterns. c The t-distributed stochastic neighbor embedding (TSNE)
visualization of raw bucket signals with random patterns (M= 16). d The loss (left) and validation accuracy (right) curve of hybrid QML varied with the
training epochs based on random patterns. e The final accuracy of classical and hybrid (noisy, 10−3 or 3 × 10−3) QML for different number of random
patterns. f The TSNE visualization of hybrid QML optimized bucket signals with random patterns (M= 16).

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01290-1

4 COMMUNICATIONS PHYSICS |           (2023) 6:171 | https://doi.org/10.1038/s42005-023-01290-1 | www.nature.com/commsphys

www.nature.com/commsphys


t-distributed stochastic neighbor embedding (TSNE) method (see
Fig. 2f). QML mapped features are distributed separately in two-
dimensional embedding, allowing for better identification error
rates. Further details of TSNE can be found in Supplementary
Note 3. Finally, we note that QML is less prone to overfitting
compared to CML, with the QML model capturing more
generalized representations due to the large feature Hilbert space.

To assess the generalization performance of QML in GI, we
conducted experiments with smaller training datasets consisting
of random patterns. The training samples are set to be
1 × 103, 2.5 × 103, 5 × 103, 104, 2 × 104, respectively. The results
obtained through QML and CML methods are presented in
Fig. 3. As expected, decreasing the training dataset size results in a
decrease in the validation accuracy for both methods. However,
for each measurement times M, QML outperforms CML in terms
of prediction accuracy. Moreover, the difference in prediction
accuracy between QML and CML remains consistent across all
training dataset sizes. With a comparable number of training
parameters, QML has demonstrated an empirical advantage of
3–10% in terms of identification accuracy compared to CML.
Additionally, our experiments reveal that QML has strong
generalization capabilities when the number of training samples
is limited. This feature is particularly useful in scenarios with a
low sampling rate and a small number of training samples. We
also evaluate the prediction performance of QML and CML in
two actual objects in the GI system. The results show that the
QML-enhanced GI system has fewer prediction errors than the
CML method. Further details can be found in Supplementary
Note 4.

Object imaging. As mentioned before in GI, imaging time and
quality are mutually restricted. Therefore, we attempt to break
this predicament by using hybrid QML. Object imaging requires
reconstructing an image that is as identical as possible to the
original object according to its single-pixel detected bucket
signals. We study the performance of the hybrid QML, which
combines the classical convolution networks as shown in the
imaging branch of Fig. 1b. The convolution network is com-
posed of the upsampling layer with bilinear interpolation to
enlarge the image size and the multi-filter convolution layer to
extract the local features. The upsampling and convolution layer
are repeated for certain numbers until the reconstructed image

size equals the original image size. We note that the upsampling
layer has no trainable parameters and the convolution layer has
a relatively smaller number of parameters compared to the fully-
connected neural network. The hybrid QML first divides the
bucket signals into several parts and maps them into parallel
quantum encoders, respectively. Subsequently, each quantum
encoder is followed by variational quantum layers to process the
quantum features in Hilbert space. Then, each qubit is measured
locally to estimate the predefined observable O ¼ �n

i¼1Zi as the
quantum output. The quantum output from different PQCs
should be concatenated into a single vector that is then pro-
cessed by classical convolution networks. For a fair comparison,
we replace the PQC with the classical NN and both of them have
the approximate number of trainable parameters. CML and
QML have the same post-processing architecture i.e., they have
identical convolution networks. In reality, our PQC architecture
always has a smaller number of training parameters than clas-
sical NN. The details of the hyperparameters can be found in
Supplementary Note 6.

To study the potential advantage of QML ghosting imaging, we
conduct the optical experiments in Fig. 1a to collect the bucket
signals. The dataset used to generate the buckets signals can be
found in Method. We adopt the remote sensing images as our
dataset. The images have a low signal-to-noise ratio and the
contrast ratio of the images is also low. Reconstructing remote-
sensing images is a challenging task in the field of imaging
processing. By using a GI system, we collect the bucket signals as
the input of the QML/CML and then output the reconstructed
images. By using the MSE loss function, we can calculate the
gradients of loss over each training parameter. The details can be
found in Method. As we can see, the intuitive comparison from
reconstructed images between QML and CML in Fig. 4a
demonstrates that QML outperforms CML in terms of the
resolution and outline of the images. Here, we do not concentrate
on the resolution of reconstructed images. From Fig. 4b, we
present the validation mean absolute error (MAE) of QML and
CML. We can find that the MAE of the QML is much smaller
than the CML. The ultimate MAE in the last epoch (500) of both
CML and QML is presented in Fig. 4c. The final MAE of QML is
3.6, 4.2, 4.9, 5.9 fold smaller than the MAE of CML for M= 64,
128, 256, 512, respectively. Increasing the number of illumination
patterns from M= 64 to 512, the MAE of the QML is decreased
linearly. On the contrary, the MAE of the CML does not decrease,
which indicates that the network did not converge well. In
principle, increasing the number of patterns can increase the GI
quality. This is illustrated by the differential ghost imaging
(DGI)52 results (see Supplementary Note 4). DGI reconstruction
requires the use of illumination speckles, which is not blind
imaging. Even though we find that QML results are still better
than DGI under the same sample rate.

We also investigate the performance of our QML model with
practical quantum noise, such as decoherent noise. To simulate
the noise, we insert Kraus operators after each two-qubit
entangling gate, as entangling gates in NISQ devices are difficult
to perfect and highly critical to the PQC. We simulat decoherent
noise for each qubit operated by the entangling gate. Further
details on the quantum circuit used can be found in Supplemen-
tary Note 2, while the results under the noise circuit can be found
in Supplementary Note 4. From Fig. 4d, we observe that as the
quantum noise rate increased to 5 × 10−3, the decreasing
tendency of the mean absolute error (MAE) is different from
Fig. 4b. The ultimate MAE shows a slight increase compared to
the ideal case. Figure 4e also reveals that as the noise rate
increased to 5 × 10−2, the final MAE increases even further
compared to the case with a lower noise rate. In both noisy cases,
however, increasing the illumination patterns decreases the MAE.
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Fig. 3 Comparison of the generalization performance of two methods.
The generalization performance of classical machine learning (CML) and
hybrid quantum machine learning (QML) is evaluated by the validation
accuracy with different capacities of training samples. The classical neural
network has the approximate number of training parameters with the
hybrid QML.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01290-1 ARTICLE

COMMUNICATIONS PHYSICS |           (2023) 6:171 | https://doi.org/10.1038/s42005-023-01290-1 | www.nature.com/commsphys 5

www.nature.com/commsphys
www.nature.com/commsphys


These results demonstrate that noisy QML can still exploit
additional information to increase learning capabilities. Further-
more, the results suggest that NISQ devices remain applicable,
even when the fidelity of quantum gates is not perfect. Employing
statistical information processing in QML can to some extent
mitigate the effects of quantum noise.

To quantitatively illustrate the quality of the reconstructed
images, we calculate two criteria: peak signal-to-noise rate
(PSNR) and similar structure (SSIM). These two criteria are the
common standards for evaluating the quality of the images. From
Table 1, we find that the PSNR and SSIM of the test images
reconstructed by the QML model are higher than CML. The
maximum PSNR of QML is 8 dB higher than that of CML
models. The CML model, in fact, cannot image in blind GI
especially in large sampling rate. We can conclude that QML
shows a practical advantage in blind GI over the image
reconstruction capability compared to CML.

The QML model can make use of the measurement
information to train the model. However, the CML model
cannot correctly extract the additional measurement information
to reduce the MAE. We suspect the reason is that the blind GI-
based reconstruction tasks are too complex. Most of the existing
conventional deep-learning-based works49,53,54 is to reconstruct
images with known illumination patterns, and the input of such
methods is generally the preliminary imaging result obtained
using conventional methods, e.g., DGI52. The neural networks in
these methods only need to learn how to improve the
reconstruction quality. However, in our case, the network has
to learn not only the illumination pattern matrix implicitly but
also the image features, which will be increasingly difficult as the
number of patterns increases. Alternatively, we can understand
the problem from the other perspective. In learning-based ghost
imaging, the neural network of CML/QML is trained to learn the
inverse physical process of ghost imaging from data, specifically
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learning the mapping from one-dimensional bucket signals to
two-dimensional images. By analogy, the learning process of
CML/QML can be seen as approximating the inverse matrix of an
M ×Np matrix, where Np is the number of pixels. As the value of
M increases, this learning process becomes more challenging.

Quantified advantage of QML models. To quantitatively char-
acterize the learning capability of the QML and CML models, we
make use of the measure of local effective dimension (LED) in
information geometry to analyze the performance of ML models.
Compared to other capacity measures such as the Vapnik-
Chervonenkis dimension, Rademacher complexity, etc., LED is
more practical and general in terms of the common criteria to
evaluate the capability of ML models55. LED largely depends on
the Fisher information, which is often approximated in practice
and it is still closely related to generalization error. LED is defined
based on a statistic model MΘ ¼ fpð�; �; θÞ : θ 2 Θg and trained
well parameter set θ⋆ ∈ Rd with d the total number of training
parameters. It can be calculated by

dn;γ MKϵðθ?Þ
� �

¼
2 log 1

Vϵ

R
Kϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Id þ κF̂ ðθÞ� �q

dθ

	 

log κ

;
ð5Þ

where κ ¼ γMs
2π logMs

with γ denoting a constant γ 2 2π logMs
Ms

; 1
� i

.

Kϵðθ?Þ ¼ fθ 2 Θ : jjθ � θ?jj≤ ϵ; ϵ> 0g denotes the ϵ-ball around
trained well parameter set and the volume of the ball Vϵ ¼R
Kϵ
dθ ¼ πd=2ϵd

Γðd=2þ1Þ 2 Rþ where Γ denotes the Euler’s gamma

function. The approximated normalized Fisher information
matrix F̂ ðθÞ can be calculated by

F̂ ijðθÞ ¼ d
VϵR

Kðθ?ÞtrðF ðθÞÞdθ
F ijðθÞ; ð6Þ

where F ðθÞ 2 Rd ´ d denotes the Fisher information matrix of
p( ⋅ , ⋅ , ; θ). The probability function can be calculated by ML
model with the probability rule, i.e., p(x, y; θ)= p(y∣x; θ)p(x) in
which p(x) denotes the prior distribution of data samples and
p(y∣x) denotes the conditional distribution of predicting the target
given the samples as the input. The generalization error of ML
models can be upper bounded by LED. More details about the
LED can be found in Supplementary Note 5.

We calculate the LED of the trained models in identification
task. We present the calculation results of normalized LEDs (LED
averaged over the total number of parameters) by using Eq. (5)
with test dataset under different number of extrapolation samples.
The numerical results of normalized LEDs calculated by using
training dataset can refer to Supplementary Note 5. It is assumed
that the extrapolation data pairs obey the same probability
distribution with the test data pairs. LED calculated by 10,000 test
data pairs can be further extrapolated to larger number of data
samples. In principle, smaller LED indicates a smaller general-
ization error and vice versa. In all experiments as Fig. 5 shows,
QML models have smaller normalized LED value compared to
CML models over all sampling rates and extrapolations. As the
number of data samples becomes large, LED becomes larger
implying that the generalization error is larger, which informs us
that current ML models require increasing the training
parameters to fit more data samples. The gap of normalized
LED between the CML and QML models is also amplified since
the QML models have stronger parameter efficiency over the
CML models, i.e., the size of the QML models has a lower
increment than the CML models when requiring fitting more
complex data distributions. Besides increasing the sampling rate
from 16 to 128, the normalized LED also increases slightly. Larger
sampling rates leads to a more complex data distribution over the
feature space since the noise and dimension increase. Therefore, it
requires more powerful model such as ML models with deeper
layers and more variational quantum parameters to learn the
high-dimensional complex data. Overall, the normalized LED of
the optimized patterns is smaller than the case of randomized

a b c d

e f g h

Fig. 5 Normalized local effective dimension under different numbers of samplings M with random and optimized patterns. The top row is with random
patterns: (a) M= 16, (b) M= 32, (c) M= 64, and (d) M= 128; The bottom row is with optimized patterns: (e) M= 16, (f) M= 32, (g) M= 64, and (h)
M= 128. All results are obtained under the test dataset of MNIST and the numbers of extra data are from 105 to 108.

Table 1 Numerical values of commonly used picture quality
evaluation criteria for quantum machine learning (QML) and
classical machine learning (CML), respectively.

M= 64 M= 128 M= 256 M= 512

PSNR (dB, Q) 19.08 20.35 21.75 23.24
PSNR (dB, C) 15.66 15.18 15.06 15.12
SSIM (Q) 0.42 0.50 0.57 0.66
SSIM (C) 0.31 0.30 0.32 0.31

PSNR peak signal-to-noise ratio, SSIM structural similarity. Q QML-enhanced ghost imaging, C
CML-based ghost imaging.
Bold values show a larger value calculated by QML methods.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01290-1 ARTICLE

COMMUNICATIONS PHYSICS |           (2023) 6:171 | https://doi.org/10.1038/s42005-023-01290-1 | www.nature.com/commsphys 7

www.nature.com/commsphys
www.nature.com/commsphys


patterns demonstrating that optimizing the patterns in GI system
can increase the useful information of the bucket signals thus
leading to a lower requirement of number of samples to train the
ML models. These results quantitatively demonstrate the benefits
of using optimized patterns from the perspective of information
geometry. The normalized LED is a powerful capacity measure
which directly connects the trainability, expressiveness and
generalization error of ML models. Our numerical results
demonstrate that QML models have stronger generalization
capability over CML models when the number of parameters are
assumed to be the same. We note that LED is concerned for the
training process and specific dataset and the latter may also be the
potential advantage source of QML56. Our work becomes the first
one, to our knowledge that not only applies QML into practical
and classical task but also quantitatively analyzes the quantum
advantage in terms of the generalization error.

Discussion
In summary, we apply QML to practical GI systems to demon-
strate its advantages experimentally and theoretically. We pro-
pose a hardware-efficient hybrid QML framework based on
shallow variational quantum circuits and quantitatively demon-
strate its practical advantages in classic GI task. We exploit a
highly flexible physical-inspired patch strategy that is applicable
for current NISQ devices when handling large-scale classical
dataset. The strategy also makes the large-scale classical simula-
tion of QML in the GI system possible.

Through collecting the experimental dataset with different
sampling rates in imaging-free object identification and object
imaging tasks in the GI system, we conduct plenty of machine
learning experiments to demonstrate the advantage of the QML
algorithm. The results show that the recognition rate of the
QML algorithm is 3% ~ 10% higher than that of the CML
algorithm in 10-category classification problem when they
approximately have the same number of training parameters.
We also testify the actual object based on the GI system and find
the prediction errors of the QML method are much less than the
CML algorithms. In the imaging task, QML-enhanced blind GI
can fully make use of the information of a large sampling rate
and reconstruct the object images with high PSNR. In contrast,
CML cannot simultaneously learn the illumination patterns and
the feature information of the object such that it cannot
reconstruct a high-PSNR image. To quantitatively characterize
the quantum advantage, we calculate the LED values of QML
and CML models to evaluate the generalization error. We find
that the generalization capability of QML models is stronger
than CML models, which demonstrates that QML models are
more expressive, thus certifying the quantum advantage. We
attribute the superior performance of QML in part to the
exponentially larger quantum-featured Hilbert space, which
provides a more powerful learning capability in high-
dimensional spaces.

Although other researches use QML in classical machine
learning fields but achieve no obvious practical advantage, the
application of real physical-related GI system amplifies the
advantage of the QML algorithm. Our study presents a practical
and crucial application for the QML field and also highlights the
point that QML is likely to be suitable for processing physically
system-generated datasets24. In future work, we will study the
connections of QML and sparse encoding and other applications
of QML in the GI system.

Methods
Hybrid quantum machine learning algorithm. The backbone of the hybrid
quantum-classical machine learning algorithm consists of a classical artificial
neural network and a parameterized quantum circuit (PQC) as Fig. 1b shows. The

PQC with different topological structures has varied performance. However,
considering the current hardware availability, we make use of the typical circuit
structure with a hardware-efficient interleaved single-qubit rotation layer and
entangling layer. The quantum learning model first maps the bucket signals B into
the quantum Hilbert feature space with a predefined encoding strategy such as the
angle encoding, amplitude encoding, and other quantum many-body inspired
encoding38. In our scheme, the performance of different encoding schemes in
identification and imaging branches is studied. We note that the amplitude
encoding scheme saves the number of qubits exponentially compared to the angle
encoding scheme, where a normalized M-dimensional data x!; x!2 B only
requires logM qubits by using ψx

�� � ¼ ∑ixi ij i to encode all classical information
into a quantum state. In the NISQ devices, angle encoding is relatively easier to be
implemented in practice. More concretely, the classical state x! can be encoded by

ψx

�� � ¼ YL
i¼1

Eiðθi; x!Þ
 !

0j i�M ; ð7Þ

where L denotes the number of encoding layers, the parameters {θi} are the var-
iational quantum parameters. When the required number of qubits is not sup-
ported by the device, we can patch the quantum learning model by dividing the
classical state into independent parts. Thus, the encoded state can be written as the
tensor product of local small-size embedding. Suppose n=M/N where N denotes
the maximum number of qubits that a device allows, it turns out that

ψx

�� �
P
¼
On
j¼1

YL
i¼1

Ej
i θji; x
!
ðj�1ÞN:jN

� � !
0j i�ðj�1ÞN:jN ; ð8Þ

where (j− 1)N: jN denotes the jth part of the N-dimension classical state, θji are
variational parameters of the jth patch of the ith layer, E is the encoding unitary
operation. Therefore, we have jψxiP ¼ �n

j¼1jψxj
i and each local embedding can be

processed by the following quantum learning operations. We remark that the patch
strategy can reduce the demand for a large number of qubits and the theoretical
performance can be guaranteed of the locality of different bucket signals. The
quantum learning operations consist of multi-layers with a single-qubit rotation
layer and an entangling layer. Formally, the final quantum state evolved by the
learning operations is given by

ψf

��� E
P
¼
On
j¼1

YL
i¼1

U j
i ϑji

� �
ψxj

��� E
; ð9Þ

where U j
i denotes the variational learning operation, ϑ

j
i is the trainable parameter of

jth patch in ith learning layer. To obtain the classical information of the final
quantum state, we require measuring the observable O ¼ �n

i¼jOj, that is

hOi ¼ hψf jOjψf iP: ð10Þ
Unlike the quantum generative models where the discrete probability distribution
is sampled from the quantum circuit by measuring the computational basis used as
the feature representation, we regard the expectation values of the observable as the
feature representation to make predictions. Arbitrary Hermitian operator can be
decomposed into Oj ¼ ∑iw

j
ih

j
i where hji denotes the sub-Hamiltonian in the N-

qubit Pauli group hji 2 PN , w
j
i denotes the decomposed coefficients of jth local

patch. Therefore, the observable average can be estimated via quantum expectation
estimation method57 given by

hOi ¼
On
j¼1

∑
i
wj
ihψf jhjijψf iP

	 

: ð11Þ

More efficient estimation methods use importance sampling to adjust the number
of shots allocated for each local Pauli observable58. The tensor product of inde-
pendent quantum patches can be projected into a compact form by directly con-

catenating the different patches of observable expectation into a vector hO!i. In
general, the observable can also be trained to adaptively adjust the measurement
settings. The successive classical neural network takes the quantum output as
inputs to make predictions. Especially for imaging problems, we require using
convolution layers and upsampling layers to reconstruct the images based on the
quantum feature representation.

We denote the classical neural network in objective identification as the
functional mapping FC and in imaging as FR . Hence, the post-classical processing
of the quantum feature map in the identification task can be written as

pind ¼ Softmax ðFCðhO
!iÞÞ; ð12Þ

where pind denotes the probability vector with each element corresponding to the
identification probability of each category. In the imaging task, the reconstructed
images can be written as

IR ¼ F RðhO
!iÞ: ð13Þ

To train the identification branch with dataset size jBj, we make use of the cross-

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01290-1

8 COMMUNICATIONS PHYSICS |           (2023) 6:171 | https://doi.org/10.1038/s42005-023-01290-1 | www.nature.com/commsphys

www.nature.com/commsphys


entropy (CE) loss function, that is

LC ¼ �
1
jBj ∑
jBj

i¼1
∑
C

k¼1
yic log picind; ð14Þ

where K denotes the number of categories and y is the true label of the sample. To
train the imaging branch, the MSE loss function is applied given by

LR ¼
1
jBj ∑
jBj

i¼1
IiT � IiR
� �2

; ð15Þ

where IiT denotes the original image required to be reconstructed. Since F R;FC are
differentiable over the trainable parameters, the parameters can be optimized by
the stochastic gradient descent method. The gradient loss function over variational
parameters can be estimated by parameter-shift rule57 by constructing an unbiased
estimator of the observable. The parameter-shift rule is compatible with the
classical stochastic gradient descent. We denote all the trainable parameters in
quantum and classical neural networks as ν, then we can update the parameters in
the different branches through

ν ν� αh∂LC;R=∂νi; ð16Þ
with the Adam optimizer59, where α is the learning rate and 〈 ⋅ 〉 denotes the mini-
batch average. The training process terminates once the parameters converge
toward a minimum of the loss function. Our proposed hybrid quantum-classical
machine learning model is suited for the vast majority of the classical task such as
pattern recognition and imaging task.

Machine learning and software specifications. Classical machine learning in
object identification is composed of an artificial neural network (ANN), where the
number of parameters (weights and bias in neurons) is approximately the same as
the hybrid QML for a fair comparison. Hybrid QML has the potential advantage to
surpass the pure classical neural network in terms of learning capability. Hybrid
QML consists of classical ANN and PQC and they can cooperate to enhance the
machine learning ability60. Current NISQ devices require that the algorithms
should be resilient to quantum noise and the circuit should not be too deep since
which can lead to the Barren Plateau61–63 and the fidelity of qubits in the real
device also drops dramatically. Therefore, in our implementation, the number of
layers is limited to 4 layers, i.e., our circuit is shallow. There are two types of hybrid
QML methods in our work: (1) we stack multiple patches of PQC to separately
map the divided bucket signal into quantum feature space, (2) we first map the
bucket signal into the classical feature space through an ANN to reduce the
dimension. Successively, we encode the reduced latent feature into the PQC with a
fixed number of qubits. The training process is based on stochastic gradient descent
to minimize the loss function until convergence.

The training process of the pure classical ANN has a mature mathematical
toolbox i.e., automatic differentiation (AD) since all the operations in ANN are
continuous and differentiable. However, in hybrid QML, the gradient calculation
contains two parts: (1) the loss function over the classical parameters, and (2) the
loss function over the quantum parameters. In a hybrid data pipeline, the most
critical part is the quantum gradient estimation-based parameter shift rule, in
which the observable of the jth patch over the quantum parameters is given by

∂hOjiνQ
∂νQi

¼ 1
2
hOjiνQþπ

2ei
� hOjiνQ�π

2ei

� �
; ð17Þ

where the vector ei is all zeros except that the position i is one. Then according to
the chain rule, we have

∂LC;R

∂νQi
¼ ∂LC;R

∂hOjiνQ
´
∂hOjiνQ
∂νQi

: ð18Þ

The first part of the right-hand equation can be calculated based on classical AD,
and the second part can be calculated with quantum expectation estimation. In the
NISQ devices, suppose estimating the local observable of one patch PQC for each
parameter requires L shots and the total shots are 2nL∣νQ∣ to obtain the gradient
vector over all quantum parameters. Considering the practical sampling rate of the
NISQ devices, estimating the quantum gradient based on the parameter shift rule is
feasible.

In our hybrid QML, we use the classical simulation to build the PQC so that the
gradient calculating is based on the AD even for the quantum part since all the
quantum states and operations can be simulated by tensor operations for the
mediate size of qubits. The latter is differentiable under current machine learning
frameworks such as PyTorch64 and Tensorflow65. We use the tensorcircuit
package66 as our software which supports vmap and jit and largely accelerates the
simulation process. The classical ANN is constructed based on Tensorflow Keras.
The details of quantum encoding, quantum learning operations, and measurements
can be found in Supplementary Note 2.

Data acquisition. To train and evaluate the proposed model on the recognition
task, we collect the experimental data based on the MNIST dataset67. Based on the
imaging system shown in Fig. 1a, the handwritten digits multiplied with

modulation patterns are loaded on DMD, and the corresponding bucket signals are
collected by the sensor. The total MNIST data consists of the training set with
60,000 examples and a test set with 10,000 examples. The digit images are resized
into 64 × 64 to match the size of the patterns. The number of samplings is set as
128, and we divide it into four different sampling ratios, i.e., 3.125% (128/4096),
1.5625% (64/4096), 0.78125% (32/4096), and 0.390625% (16/4096).

Similar to the classification task, we also build an aircraft imaging dataset based
on an open-source remote sensing image database RarePlanes68. RarePlanes is a
synthetic/real combination dataset, and we only use the real part of the data.
Specifically, we first detect the position of planes in the remote sensing image based
on the YOLO-v3 algorithm69. Second, these plane images are cropped into the
same size as 64 × 64. Then, we divide the data into the training set with 3447
examples and the test set with 862 examples. Finally, in the same way, as MNIST’s
bucket signals are collected, we collected the plane data at different sampling rates
(12.5%, 6.25%, 3.125%, and 1.5625%) on the optical imaging system.

For the classification task, we use two illumination patterns to measure the
target: random patterns and optimized patterns. As for the imaging task, only
random patterns are used for measurements. The random patterns are generated
by a computer with a wavelength of 680 nm, an aperture diameter of 0.08 m, and a
propagation distance of 0.32 m. The generation of optimized patterns is
demonstrated in Supplementary Note 1.

Experimental details. The optical imaging system we built for the experimental
demonstration is shown in Fig. 1a. The light source from a pulsed laser is first
filtered by a filter with a transmission wavelength of 680 nm. And then, the light
illuminates the DMD (DLC9500P24, 1080 × 1920) after collimating. Each pattern
has 64 × 64 pixels, and each pixel consists of 8 × 8 micro mirror units. We use a 4f
system (Lens 1 and Lens 2) to project the illumination field Ið r!Þ at the DMD plane
to the surface of the object. The focal length of Lens 1 and Lens 2 are both 100 mm.
The transmitted or reflected light is collected by Lens 3 with a focal length of
150 mm. Finally, the information light is recorded by a detector. In our experiment,
a CCD (iXon Ultra & Life 897, Andor) is used as the bucket detector, i.e., only the
total intensity on the CCD is used for the correlation measurement.

To evaluate the generalization performance of the proposed method, a tiny
license plate model is used as the object to be recognized. The size of the plate is
7 × 1.3 cm and the linewidth of numbers is 2 mm. To recognize the license plate, we
sequentially move each digit into the field of view to collect the bucket signals for
each digit on the license plate. Note that this imaging process is in a reflective way.

Data availability
All data needed to evaluate the conclusions are available from https://github.com/
JayShaun/QMLGI. The data include the bucket signals of MNIST digits and the plane
images. All the random and optimized patterns are also attached.

Code availability
The code used to generate data is available from https://github.com/JayShaun/QMLGI.
The codes include the implementation of the QML and CML algorithms and other
toolboxes to visualize the data.
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