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Coherent optical two-photon resonance
tomographic imaging in three dimensions
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Magnetic resonance imaging is a three-dimensional imaging technique, where a gradient of

the magnetic field is used to interrogate spin resonances with spatial resolution. The appli-

cation of this technique to probe the coherence of atoms with good three-dimensional

resolution is a challenging application. We propose and demonstrate an optical method to

probe spin resonances via a two-photon Raman transition, reconstructing the 3D-structure of

an atomic ensemble’s coherence, which is itself subject to external fields. Our method relies

on a single time-and-space resolved heterodyne measurement, allowing the reconstruction of

a complex 3D coherence profile. Owing to the optical interface, we reach a tomographic

image resolution of 14 × 14 × 36 μm3. The technique allows to probe any transparent medium

with a resonance structure and provides a robust diagnostic tool for atom-based quantum

information protocols. As such, it is a viable technique for application to magnetometry,

electrometry, and imaging of electromagnetic fields.
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It has always been the primary task of optics to deliver images.
Three-dimensional (3D) imaging is now one of the essential
tools in modern sciences, medicine, and technology. The

ability to inspect the internal structure of an object not only
fulfills the basic cognitive curiosity but also constitutes a robust
and direct diagnostic method. Tomography, which nowadays
appears in a plethora of variants, revolutionized medicine and has
been widely adopted in natural and applied sciences1–4. The key
example is magnetic resonance imaging (MRI)5,6 that allows
volumetric inspection of biological samples5,6 by detecting space-
dependent radio frequency signals generated by precessing
nuclear spins placed in a magnetic field gradient. An optical
version of MRI has been proposed as a technique to dramatically
increase the spatial resolution of the system7. In physics, 3D
imaging has been used to reveal and study microscopic features in
quantum fluids8 and solids9–11, to detect and localize single
spins12–15, and to visualize classical10,16–18 and quantum elec-
tromagnetic fields19.

Here we employ a cold-atoms-based memory and demonstrate
a method to optically resolve a three-dimensional spatial dis-
tribution of coherence between two atomic spin states, in its full
complex form. We directly demonstrate and benchmark the
sensitivity of our method by phase-modulating the coherence
with a predetermined pattern. Finally, we show the ability to
detect a magnetic field structure by reconstructing its phase
footprint on the coherence. This achievement is relevant to all
countless protocols that process quantum information carried in
such a coherence20–22. Via this coherence, we are able to measure
external fields influencing the atoms in three dimensions, which
in our case include optical and magnetic fields23,24, but possibly
could be extended to microwave or terahertz sensing via Rydberg
states25,26, imaging of interactions27,28, or as an alternative
technique and a three-dimensional extension to quantum gas
microscopes29,30. The technique could also be mapped to solid-
state resonant systems that can be optically probed, including the
example of color centers in diamonds31,32. Furthermore, our
method is a practical tool for testing optical quantum memories,
providing means to verify phase homogeneity, which is particu-
larly relevant if specific interference of emissions from all atoms is
desired, such as for example in the case of superradiance.

Results
Operating principle. The key idea behind our method is to map
the coherence to light in a way that preserves information about
its three-dimensional structure. Many atom-light interfaces, such
as Electromagnetically Induced Transparency (EIT)33, Autler-
Townes splitting21, or Raman scattering34 allow restoring the
shape of the coherence in dimensions transverse to the propa-
gation axis. The structure along the ensemble is however lost in
the mapping process. The way to prevent this is to alter the
atoms-to-light mapping process, so different components along
the propagation direction are mapped to different frequency
components of the emitted light. This is one of the key features of
the Gradient Echo Memory (GEM)35 protocol in which atomic
transition frequencies are altered by a magnetic field gradient
causing Zeeman shifts. For a linear gradient, during the readout,
the coherence along the ensemble is mapped linearly to the
spectrum of the emitted signal pulse. At the same time, the
transverse components are directly mapped to the corresponding
distribution of the optical field. In reciprocal coordinates the
readout process couples Fourier components of atomic coherence
with wavevector (kx, ky, kz) to chunks of readout signal light
described by coordinates (kx, ky, tR), i.e., emitted at a certain time
with matching perpendicular wavevector components. The
longitudinal direction z is both the direction of the propagation of

the signal, as well as the direction of the magnetic field gradient.
The correspondence between the time tR and kz is determined by
the amount of time a magnetic field gradient β= ∂zBz needs to
decelerate the atoms with momenta ℏkz to rest. In the spectral
and real space coordinates this correspondence translates directly
to the linearly changing Zeeman shift caused by the gradient
μBβz↔ ωℏ, where μB is the Bohr magneton. By measuring the
amplitude and phase of the signal light as a function of (kx, ky, tR)
all the information on initial atomic coherence can be recovered.

Protocol. In order to recover the profile of the atomic coherence
from the optical measurement, we need to first understand the
intricacies behind the interaction. In essence, the spatial depen-
dence will be recovered by means of a multi-dimensional Fourier
transform. However, effects such as diffraction necessitate careful
theoretical treatment. To simplify the derivation of position-
dependent coupling factors and phases introduced by diffraction
let us consider the following protocol. At time t= 0 we are given
an atomic sample with an unknown coherence ϱhg(x, y, z)
between two levels g

�� �
, hj i (see Fig. 1a) that we assume to be

long-lived. The coherence must be magnetically sensitive i.e. by
applying a magnetic field gradient along the ensemble we are able
to introduce a position-dependent phase to the coherence. Spe-
cifically:

∂ϱhg
∂t

¼ iωLϱhg;
ð1Þ

where ωL= μBβ(t)(z− zg)/ℏ is the time and space-dependent
Larmor frequency, with β(t) denoting the gradient along z and zg
the point in space where splitting vanishes (naturally outside
atomic ensemble due to bias field). This equation can be readily
solved to yield

ϱhgðr; tÞ ¼ expðiϕðz; tÞÞϱhgðr; t ¼ 0Þ; ð2Þ

with ϕðz; tÞ ¼ ðz � zgÞ
R t
0 βðt0Þdt0 denoting spatiotemporal GEM

phase shift. We chose to split the total phase shift into a sum of
dominant linear terms and corrections ϕðz; tÞ ¼
�βzt þ �ωLt þOðz; tÞ.
At the time tR we send a short strong control pulse (red arrow in

Fig. 1b) through the atomic ensemble that converts the coherence
ϱhg to signal light Ωs. The control pulse with Rabi frequency ΩC

and signal light with Rabi frequency Ωs together drive a two-
photon transition from hj i through ej i to g

�� �
, as depicted in

Fig. 1a. We assume that both fields are co-propagating along z. In
GEM protocol we work far from resonance (Δ/Γ > optical depth,
with Δ being single photon detuning and Γ being the decay rate of
the ej i state), thus we neglect the single photon absorption and
dispersion of the signal field. Under those conditions, the growth of
the signal field Ωs along the atomic ensemble is governed by the
equation:

∂

∂z
Ωs ¼ �ignðx; y; zÞΩCϱhg þ

i
2k0

∇2
?Ωs; ð3Þ

g ¼ k0
_ϵ0

d2ge
2Δþ iΓ

; ð4Þ

where n(x, y, x) is the atomic density, dge is the relevant transition
dipole moment, and k0 is the signal field wavevector length.
For simplicity, we assume that the change of coherence due to
the two-photon transition, expressed by the equation
_ϱhg ¼ �iΩsΩ

�
C =ð4Δþ 2iΓÞ, can be neglected, and we combine

the coherence term with atomic density into a spin wave:
Sðx; y; zÞ ¼ nðx; y; zÞϱhgðx; y; zÞ. Then equation (3) is integrated
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with two steps. First, transverse dimensions x and y are Fourier
transformed. This affects only the diffraction term ∇2

? ! �k2?.
We obtain:

∂

∂z
Ωsðkx; ky; zÞ ¼ �i

k2?
2k0

Ωsðkx; ky; zÞ þ gΩC
~Sðkx; ky; zÞ: ð5Þ

Next, we integrate the equation along the atomic cloud,
extending from −L to 0:

Ωsðkx; ky; tRÞ ¼ gΩC

Z0

�L

dz exp
izk2?
2k0

� �
~Sðkx; ky; z; tRÞ; ð6Þ

where the source term ~S is a Fourier transform of the spin wave
along x and y:

~Sðkx; ky; z; tRÞ ¼ exp iϕðz; tRÞ
� �F x;y!kxky

Sðx; y; zÞ� 	
: ð7Þ

In equation (6) the z integral can be extended to infinity, since
the source term is anyway nonzero only inside the atomic cloud.
The �βzt term of GEM phase shift ϕ(z, t) enables recasting the
integral into a 3D Fourier transform:

Ωsðkx; ky; tRÞ ¼ gΩC exp i�ωLtR þ ξ
2zg t

2
R

� �
´

F z!kz ¼�βtR
exp izk2?

2k0

� �
F x;y!kx ;ky

Sðx; y; zÞ� 	
 �
;

ð8Þ

where we explicitly write the dominant part of the Oðz; tÞ GEM
phase correction which is a result of the slow decay of the
magnetic field gradient β(t)= β0− ξt with ξtR≪ β0.

Now the above relation is reversible. In the experiment, we use
spatial heterodyne detection to measure the amplitude and phase
of the read-out light Ωs in the far field for each value of tR, i.e.,
exactly the left-hand side of the above equation. To recover the
atomic part Sðx; y; zÞ a series of multiplications and inverse
Fourier transform is simply applied. Proper operation of
the algorithm requires calibration of both the essential (such as
the gradient) as well as nuisance (such as the rate of gradient
decay) parameters.

Implementation. The base of the experiment is a pencil-shaped
(10 × 0.3 × 0.3 mm3) cloud of 87Rb atoms formed in a magneto-
optical trap (MOT) placed in a constant magnetic field along z-
axis: B ¼ ẑB0, with B0 ≈ 1G. Atoms released from the trap are

optically pumped to g
�� � ¼ 5S1/2; F ¼ 2;mF ¼ 2 state, where F

denotes the total angular momentum and mF denotes a projection
of the total angular momentum onto quantization (z) axis.

After pumping, a strong atomic coherence ϱhg between g
�� �

and hj i ¼ 5S1/2; F ¼ 1;mF ¼ 0 states is generated in a Λ
scheme with excited state ej i ¼ 5P1/2; F ¼ 2;mF ¼ 1, coupled
with mutually coherent input signal pulse (at g

�� � ! ej i
transition) and the control beam (at ej i ! hj i transition), as
shown in Fig. 1a.

To benchmark the tomography protocol we generate a flat
atomic coherence across the whole atomic ensemble by writing in
a very short 200 ns input signal pulse accompanied by a control
pulse of the same duration. Such a short pulse populates spin
waves along the entire length of the cloud evenly, as the
bandwidth of the input signal pulse is much larger than the
magnetically (inhomogeneously) broadened two-photon absorp-
tion spectrum of the cloud. This was verified in the measurement
shown in Fig. 2a where we compare the Fourier magnitude of
heterodyne detected input and output signals. Here, we used a
single point, differential photodiode (DPD) detector. The
measurement yields bandwidths of about 8 MHz for the input
signal and about 1.4 MHz for the registered output signal that
directly corresponds to the GEM bandwidth induced by the
Zeeman splitting gradient of around 2π × 1.4MHz cm−1. The
Fourier magnitude of the input signal is flat across the GEM
spectrum which guarantees the creation of a flat spin wave. The
narrow peak visible around 25MHz corresponds to the two-
photon clock transition mF= 1→mF=−1 that due to the same
Zeeman shift for the ground state sublevels is not affected by the
magnetic field. Moreover, in Fig. 2b we show a zoomed-in plot of
the Fourier magnitude of the read-out signal that corresponds to
the (x, y)-averaged atomic density along the z-axis.

For the full 3D reconstruction of Sðx; y; zÞ we replaced the
DPD with an sCMOS camera located in the far field of the
ensemble with an effective focal length of about 250 mm. The two
components of the heterodyne optical signal are registered on two
separate regions of the camera that are then precisely aligned and
subtracted to yield differential images. The camera has a very
limited temporal resolution (exposure time of the order of 1 ms
corresponds to 1 kHz bandwidth) which would spoil the z-
resolution. However, in GEM the temporal structure of the read-
out signal can be probed using a very short control pulse, as
illustrated in Fig. 2c where we show the temporal shape of the
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Fig. 1 Experimental setup for 3D phase-sensitive atomic coherence imaging. a Light-atoms interface used to generate, modulate and retrieve the atomic
coherence (spin wave). The right-hand circularly polarized (σ+) control (red) and left-hand circularly polarized (σ−) signal (yellow) fields couple a two-
photon transition hj i ! gj i between states of total angular momentum F= 2 and F= 1, respectively. This enables the mapping of the signal field onto
atomic coherence. The off-resonant AC-Stark linearly polarized (π) laser (pink, SSM) is used to imprint phase profiles onto the created coherence. b The
light emitted from the atomic cloud that stores a phase-modulated (QOT UW inscription) atomic coherence is detected in the far field of the ensemble
using a spatially-resolved heterodyne detector enabled by the interference of the signal (sig) light with a local oscillator (LO). The temporal shape of the
emitted signal contains information associated with the longitudinal coherence wavevector. The three-dimensional Fourier transform (represented as FFT
block) of the collected heterodyne frames allows the reconstruction of the atomic coherence. The coherence can be created by sending to the atoms an
input signal (sig-in) accompanied by a control field (ctrl) pulse.
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typical heterodyne trace registered by the DPD with the sampling
period represented by ht red-shaded region. The full 3D spin
wave tomography is then realized in a sequence of measurements.
In a single step, the control is turned on for only 200 ns, during
which the read-out signal is generated and registered by the
camera. For each probing time tR we collect 100 frames that are
Fourier-filtered and coherently averaged in real time. The filtering
and averaging strongly decrease the noise that is not correlated
with the signal. The Fourier filtering step in this coherent
detection process corresponds to only taking into account the
signal which originated from the atoms and neglecting the
components that could not be created within the cloud transverse
area. Then, to reconstruct the entire Sðx; y; zÞ, we register a read-
out signal for 600 distinct control pulse delays at a step of 100 ns.
Finally, we get a three-dimensional array, which is a full Fourier
transform of the spin waves stored in the atomic ensemble.

Calibration. The correct 3D reconstruction of the spin wave
phase and amplitude requires calibration of the heterodyne
camera setup. To benchmark and calibrate our device we use an
ac-Stark spatial spin wave phase modulator (SSM). Using a spatial
light modulator (SLM) and the camera, we are able to prepare a
beam with an arbitrarily chosen intensity distribution, which

illuminates atoms for 3 μs after creating the coherence. Thanks to
the ac-Stark effect, the atomic coherence gets an additional phase
which is proportional to the intensity of illuminating light. A
detailed description of this technique can be found in the works
that utilize SSM for various protocols36–38.

Figure 3a presents a checkerboard intensity profile of the ac-
Stark beam, which we use for calibration. Figure 3b shows the
phase cross-section of the full Fourier transform of the signal
registered by the camera (without any compensation). In Fig. 3d we
show a corresponding result of numerical simulation. In both cases,
the checkerboard can be recognized, but the retrieved image is
blurred. In order to obtain a sharp pattern, two phenomena must
be taken into account. The first one is diffraction which manifests
as an additional quadratic phase in a Fourier domain that each slice
attains during propagation. The phase is ðz � z0Þðk2x þ k2yÞ=ð2k0Þ,
where k0 is the wave number of emitted signal and kx,y are
transverse components of the wavevector. In real space, this results
in the blurred retrieved distribution in (x, y) subspace. The second
phenomenon is caused by a slow decrease in magnetic field
gradient strength during the read-out process. This effectively
chirps the output signal. In other words, the signal gets an
additional quadratic phase in the temporal domain, that results in a
blur in z-direction. The temporal phase to be compensated is ζt2

with ζ=− 0.01rad × μs−2. Figure 3c (and numerical simulation in
Fig. 3e) presents the retrieved phase checkerboard pattern after
both compensations. We finally see that the image is in focus and
sharp. The parameters (z0 and ζ) for optimal phase profiles have
been determined to obtain the best sharpness of the resulting
images. Moreover, as the test pattern is prepared in real space
coordinates, the calibration procedure also yields the scaling factors
and rotation for x, y, z axes. For this measurement, we extended the
measurement time window by collecting data for 1000 control
pulse delays spanning a range of 100 μs. The absolute phase value is
obtained by subtracting the reference (ref) image that was acquired
without the SSMmodulation. The amplitude and the phase images
are masked to display only the points that correspond to an atomic
coherence magnitude much above the noise level jSref ðx; y; zÞj>0:1
and thus with a well-defined phase.

Exemplary results. With the calibration completed, we finally
show some exemplary reconstructed phase and amplitude pat-
terns of the atomic coherence. Figure 4 shows retrieved phase and
amplitude profiles of a flat spin wave phase modulated with an
inscription “QOT UW” (abbreviation of Quantum Optical
Technologies, University of Warsaw). Figure 4a represents the

Fig. 2 Gradient echo memory (GEM) and input pulse spectra. a Amplitude
of 200 ns write-in pulse (blue) and read-out signal (red) measured with
heterodyne detection. The spectrum of the write-in signal is much wider
than the bandwidth of the atomic cloud. The Zeeman splitting between the
two-photon clock transition (mF= 1→mF=−1, the narrow peak) and the
memory transition (mF= 2→mF= 0), caused by the magnetic field bias, is
also visible. b Zoomed-in spectrum of the read-out signal from panel a.
c Temporal shape of the signal pulse registered by a point heterodyne
(DPD). The red-shaded region represents the control pulse gating in the
camera measurement.

Fig. 3 Calibration and compensation. a Checkerboard phase profile used
for calibration imprinted onto atomic coherence before reading out the
signal. b The phase of raw three-dimensional Fourier transform of the read-
out signal. c The phase of the three-dimensional Fourier transform of the
read-out signal with compensation of both diffraction and temporal phase.
The right column (d, e) corresponds to a numerical simulation of the results
from the left column (b, c). All panels share the same color scale.
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displayed SSM pattern in phase (rad) units. In Fig. 4b we show
the retrieved phase profile that well matches the target profile.
Additionally, in Fig. 4c we show retrieved spatial amplitude which
in this case (flat spin wave) corresponds to the atomic con-
centration. The full three-dimensional distribution of recon-
structed phase and amplitude in the form of interactive
visualization and a movie is available in Supplementary Data 1
and Supplementary Movie 139.

To demonstrate the ability to reconstruct an amplitude pattern
of the spin wave we replace the flat spin wave with a modulated
one. This is accomplished by using two short (200 ns) input signal
pulses (200 ns) separated by a delay of δt= 8 μs. The spectrum of
two pulses of the same shape yet different amplitudes, separated
in time by δt is a phase and amplitude modulated single pulse
spectrum, given by the Fourier transform:

F ðAðtÞ þ αAðt þ δtÞÞ ¼ eAðωÞð1þ αeiωδt Þ: ð9Þ
Due to the spectrum-to-position mapping feature of GEM40,41

combined with the large input signal bandwidth (see Fig. 2) this
yields uniformly modulated coherence ϱhg / ð1þ αe2πiδtβzÞ.
Figure 5a presents a two-dimensional magnitude slice ∣ϱhg(x, z)∣
of the retrieved and fully compensated spin-wave pattern normal-
ized to a flat spin-wave: ϱhgðx; y; zÞ ¼ Sðx; y; zÞ=Sref ðx; y; zÞ. The
magnitude, as expected, resembles a modulus of cosine function
jϱhgðx; zÞj / j cosð2πδtβzÞj as the relative amplitude ratio is close

to unity α ≈ 1. Figure 5b represents the normalized absolute value
of the coherence slice ∣ϱhg(x, z)∣ averaged over the x-axis.

Let us now shortly discuss the resolution limitation of the
demonstrated 3D imaging method. The resolution in the
perpendicular coordinates (x, y) is limited by the optical imaging
system, namely its numerical aperture. From the calibration image
in Fig. 3c, we can estimate the resolution as the half-width of the
phase slope, which amounts to about 1 px. That equals to δx,
δy ≈ 14 μm. The resolution along the propagation axis is however
limited by the duration of the measurement window Tmeas= 100 μs
that yields the minimal width of a feature in the spectral domain
δω≃ 2π × 1/T, combined with the magnitude of the magnetic field
gradient μBβ/ℏ= 2π × 1.4MHz cm−1 that facilitates the spectrum-
to-positionmapping μBβz/ℏ↔ ω. The longitudinal resolution could
be thus estimated by taking half of the inverse of the product of the
measurement window and Zeeman splitting gradient: δz≃ 0.5/
(TmeasβμB/ℏ) ≈ 36 μm. In the calibration images (Fig. 3c) we see that
the width of the phase slope in the z-direction spans approximately

2 px. This yields 44 μm of resolution. The maximal duration of the
measurement window is in fact limited by the thermal motion of
the atoms inside the ensemble42,43. By measuring the output signal
intensity for a range of storage times (time between creation and
retrieval of the coherence) we estimate that after 120 μs the read-out
efficiency drops by 50%, which corresponds to an ensemble with a
temperature of T= 265 ± 15 μK (see Methods). This is significantly
larger than a typical ultracold system such as a Bose-Einstein
condensate (with Rb atoms), which demonstrates that our method
does not require extreme levels of optical cooling, and performs
excellently with only roughly Doppler-limited cooling.

Finally, we demonstrate the potential for application in 3D
magnetometry by detecting a spin wave phase modulation caused
by the magnetic field generated by a small coil placed above the
atomic ensemble (outside the vacuum chamber). The coil is turned
on for a short period in the sequence after the creation of the
coherence. The inhomogeneous magnetic field generated by the
coil imprints a phase that is proportional to the total magnitude of
the magnetic field ∣B∣ and the interaction time tc. The accumulated
phase is φ ¼ μBjBþ ẑB0jtc=_. The presence of the constant
magnetic field along the z-axis makes the phase sensitive to mostly
the changes of the field along the z-axis. However, one could easily
imagine a more advanced protocol in which for the time of the
measurement the constant field component is switched off. In such
a scenario additionally to the phase modulation, one should
observe amplitude modulation caused by the atomic spin rotation
that yields different projections onto the z-axis and modifies the
read-out process efficiency (the coherence is partially transferred to
a different magnetic sublevel, that is not coupled by the control
laser). Figure 6 shows the retrieved phase profile of the magnetically
modulated coherence. The constant phase value lines correspond
to the constant values of the local magnetic field.

Conclusions
We have demonstrated how to reconstruct a 3D complex spatial
distribution of atomic coherence stored in the atomic ensemble.
Our method employs a magnetic field gradient to map the
longitudinal components of the coherence onto the optical signal
frequency. A single spatiotemporally resolved heterodyne mea-
surement of the signal light allows reconstruction of the full
complex distribution of the atomic coherence S(x, y, z)= n(x, y,
z)ϱhg(x, y, z). The unwinding of phase accumulated due to

Fig. 4 Tomogram of atomic coherence. a “QOT UW” inscription phase
profile imprinted onto atomic coherence. b Phase of three-dimensional
Fourier transform of the measured signal with compensation of both
diffraction and temporal phase. c Amplitude of fully compensated three-
dimensional Fourier transform of the signal, which corresponds to atomic
concentration.

Fig. 5 Amplitude modulated coherence. Slice of fully compensated three-
dimensional Fourier transform of the signal corresponding to the coherence
generated by two 200 ns input signal pulses separated by 8 μs.
a Magnitude of two-dimensional z-x slice of the normalized spin wave
Sðx; y; zÞ=Srefðx; y; zÞ. b Average of the magnitude over the x-axis, revealing
the amplitude modulation. The shaded region represents the standard
deviation of the sample’s average.
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diffraction and compensating for distortions enables the faithful
reconstruction of the complex atomic coherence.

Here, for the detection, we use a time-gated camera that requires
many (short) measurements corresponding to different compo-
nents in the reciprocal space of the propagation axis. However, a
2D array of photodiodes coupled with fast analog to digital con-
verters would allow a single-shot measurement of the full 3D dis-
tribution. Moreover, a much simpler 1D array could be used in a
hybrid measurement scheme with one of the axes resolved using a
rainbow heterodyning technique44 enabled by a multi-frequency
LO with a frequency gradient along the given (orthogonal to the
array) axis. Finally, the demonstrated 3D magnetometry protocol
could be extended to enable a 3D tomography of electric and
electromagnetic fields in the microwave regime45, opening a new
kind of atom-based metrology. Although our demonstration covers
a millimeter-scale cold ensemble the protocol could be imple-
mented in larger systems such as glass cells containing warm
atoms, enabling centimeter-scale tomography. Beyond measuring
external influences, the three-dimensional structure of Rydberg-
atom interactions and propagation of Rydberg polaritons could be
interrogated with the presented method, in order to generate exotic
states of matter such as Efimov states46 efficiently.

Methods
Quantum memory setup. The GEM is based on a cold rubidium-87 ensemble
prepared in a magneto-optical trap (MOT). The MOT utilizes quadruple coils and 3
pairs of counter-propagating trapping and cooling beams, which generate a strong
symmetric trapping potential in the x and y axes. The trapping potential along the
propagation (z) axis is much weaker. The resulting ensemble is thus elongated in the
z-direction with approximate dimensions of 10 × 0.3 × 0.3mm3. The trap is held in a
bias magnetic field along the z-axis of B ¼ ẑB0, with B0 ≈ 1 G, that cancels the
magnetic sublevels degeneration. After the trapping period (ca. 20ms) we optically
pump the atoms to g

�� � ¼ 5S1/2; F ¼ 2;mF ¼ 2 state. This is achieved by illumi-
nating the cloud with two laser beams for 15 μs. The first beam at 795 nm is tuned to
5S1/2, F= 1→ 5P1/2, F= 2 transition and illuminates the cloud from 4 sides. The
beam provides hyperfine pumping by emptying the 5S1/2, F= 1 ground level. The
second σ+ circularly polarized beam at 780 nm is tuned to 5S1/2, F= 2→ 5P3/2, F= 2
transition and illuminates the atoms along the propagation axis, providing
magnetic sublevel pumping within the 5S1/2, F= 2 manifold, ideally populating
only the g

�� �
state. The GEM coils are square-shaped with 10 cm side length, and

are separated by 18 cm. They produce a linear magnetic field gradient along the
cloud of approximately 1Gcm−1, which can be rapidly (0.35G cm−1 μs−1) switched
to the opposite.

Heterodyne camera. The heterodyne camera setup incorporates a single
Scientific-CMOS (sCMOS) camera (Andor Zyla) located in the far field of the
atomic ensemble. The camera pane is divided into two regions (two ports of the
heterodyne) that are precisely aligned and subtracted during measurements. The
local oscillator (LO) is derived from the same laser as the control and signal
fields, and is shifted in frequency by around 1 MHz. Moreover the LO is slightly
angled with respect to the signal field, which produces spatial interference
fringes in the measurement (spatial heterodyne). The spatial and temporal
frequency shifts allow us to separate the genuine signal from background noises.
The differential heterodyne frames are coherently averaged for each measure-
ment point. The averaging is possible thanks to an additional reference frame
preceding each signal frame. For this, we set the camera in the Particle Imaging
Velocimetry (PIV) mode which enables the collection of two frames separated
by a very short delay (2 μs). The first frame collects light from the incoming
signal pulse that is used to create atomic coherence, and provides a phase
reference for the second frame containing the read-out signal. For coherent

averaging, we first unwind the phase of each signal frame according to the
reference frame and then simply sum all the signal frames for a given mea-
surement time tR. It is worth noting here that the phase fluctuations that we are
compensating this way are solely caused by the signal-control-LO optical path
length difference fluctuations, and not the laser itself (as all the beams are
coming from the same laser, and the global phase fluctuations cancel out in the
heterodyne measurement).

Thermal decoherence. To estimate the rate of thermal decoherence caused by the
atomic motion, we measured the output signal amplitude for a range of read-out
times tR. The results are presented in Fig. 7. The measurements were performed
with and without a magnetic field gradient. The thermal decoherence of spin waves
in an atomic ensemble without the magnetic field gradient is well known and yields
a Gaussian decay42. In the GEM, due to the magnetic field gradient, atoms traveling
along the ensemble enter regions with different values of the magnetic field and
attain additional phase. Namely, each group of atoms with velocity vz gains an
additional phase factor of expðiβvzt2R =4Þ. That, after averaging with Maxwell
velocity distribution, gives additional exponential decoherence term with time in
the fourth power. The full expression for the read-out decay reads:

ηk;βðtÞ ¼ e
� t2

2τ2
k

� t4

2τ4
β ;

τk ¼ 1
kS

ffiffiffiffiffiffi
m
kbT

q
; τβ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
πβ

ffiffiffiffiffiffi
m
kbT

qr
;

ð10Þ

where kS is the spin wave wavevector, kb is Boltzmann constant, m is 87Rb
mass and T is the temperature of the atomic cloud. The solid curves in Fig. 7
correspond to the above model fitted to the experimental data. From the mea-
surement without magnetic field gradient, we recover the characteristic time
τk= 173 ± 5 μs. This for the angle between the control and the write-in signal
beam of 4.6mrad corresponds to a temperature of T= 265 ± 15 μK. The second
measurement with the gradient turned on yields τβ= 175.4 ± 2.5 μs. To compen-
sate for this decay in the reconstruction procedure we divide the measured signal
AðtRÞ by the factor ηk,β(tR).

Data availability
The data presented in the figures of this manuscript has been deposited in ref. 47.
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