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Shortcuts to adiabaticity in superconducting
circuits for fast multi-partite state generation
Francisco Andrés Cárdenas-López 1,2✉, Juan Carlos Retamal 3,4 & Xi Chen 5,6✉

Shortcuts to adiabaticity provide a flexible method to accelerate and improve a quantum

control task beyond adiabatic criteria. However, their application to the fast generation of

multi-partite quantum gates is still not optimized. Here we propose the reverse-engineering

approach to design the longitudinal coupling between a set of qubits coupled to several field

modes, for achieving a fast generation of multi-partite quantum gates in photonic or qubit-

based architecture. We show that the enhancing generation time is at the nanosecond scale

that does not scale with the number of system components. In addition, our protocol does not

suffer noticeable detrimental effects due to the dissipative dynamics. Finally, the possible

implementation is discussed with the state-of-the-art circuit quantum electrodynamics

architecture.
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It has been scrutinized that entanglement1,2 in multi-partite
quantum systems, plays a crucial role in quantum technologies
applications such as quantum information processing3–5,

quantum computation5,6, and quantum simulation7, respectively.
Entanglement as a quantum resource can lead to a speed-up in
the running time of quantum algorithms8–11. Furthermore, the
entanglement characterization in many-body systems may pro-
vide helpful information concerning whether it is possible to find
underlying features of the low-lying energy spectrum with accu-
rate numerical methods12,13. Likewise, entanglement dis-
continuity is an excellent indicator to characterize phase
transitions on quantum systems14–17. Besides, in the context of
quantum metrology and sensing, using entangled states has
achieved quantum-enhanced precision measurements near the
shoot-noise limit18–20, among other applications.

A fundamental condition to generate such multi-partite
entangled states relies on the capability of our quantum plat-
form to access a set of interactions or controlled quantum gates
that communicate all the system components (all-to-all). Feasibly
controllable trapped-ion platform21 gives a step forward in this
direction with the implementation of the so-called Sørensen-
Mølmer quantum gate22–24, where external lasers applied to a
confined array of alkali atoms permit access to the red and blue
sidebands so that the effective interaction between the ions is of
the form σx‘σ

x
‘0
25,26.

On the other hand, it is possible to engineer similar interac-
tions in superconducting quantum circuit and circuit quantum
electrodynamics (cQED)27–41, where Josephson junction-based
electrical circuits having discrete energy spectrum mimics artifi-
cial atoms42–55, whereas quantized field modes correspond to
either LC resonators, coplanar waveguide or stripline
resonator56–60. In this architecture, it is possible to engineer
multi-qubit interactions by coupling all of them to a common
resonator bus such that in the dispersive regime, we obtain a like-
Sørensen-Mølmer interaction61–64 as a result of a second-order
interaction which in principle are slower than the resonant case
make them fragile against the unavoidable action with
environment65–68.

Enhanced performance of these protocols may require access
to higher coupling strength values where the system operates in
the so-called ultrastrong or deep strong coupling regime69–72. In
such regimes, however, the high hybridization of the energy levels
makes it difficult to distinguish between the light and matter
degree of freedom. An alternative approach relies on engineering
either a pulse sequence or the coupling strength following the
ubiquitous methods of shortcut to adiabaticity (STA)73,74 that
allow us to control a quantum system to accelerate an adiabatic
evolution overcoming preparation errors and minimizing the
action of the environment74. STA has received renewed interest
in the context of cQED since it has been generalized to open
quantum system75,76 permitting to design of counter-diabatic and
optimal pulses to speed up a dissipative evolution77,78. Motivated
by this, we propose a reverse-engineering method to accelerate
the generation of multi-partite entangled states. We design a
modulated longitudinal coupling strength that accelerate the
generation of multi-partite photnonic/qubit states within the
nanosecond scale that does not scale with the number of systems
(field modes and qubits). Because of the short time, we observe no
detrimental effect produced by the action of the environment.
Finally, we propose the possible implementation in cQED
architecture.

Results
Longitudinal Interaction. We start describing the fundamental
ingredient in generating multi-partite entangled states. To do so,

let us consider a set of N two-levels systems of frequency Ωn

coupled to M quantized field modes of frequency ωm through
time-dependent longitudinal coupling gmn ðtÞ governed by the
following Hamiltonian (ℏ≡ 1)

Hm
n ¼∑

n

Ωn

2
σxn þ∑

m
ωma

y
mam

þ ∑
n;m

gmn ðtÞσxnðaym þ amÞ;
ð1Þ

where σxn corresponds to the x-component Pauli matrix char-
acterizing the n-th two-level system, and am (aym) stands for the
annihilation (creation) bosonic operator of each field mode,
respectively. In cQED systems, we can engineer the longitudinal
interaction in an artificial atom coupled to a resonator sharing the
common external magnetic flux79,80, or couple both subsystems
through a superconducting quantum interference device
(SQUID)81,82.

On the other hand, the structure of the longitudinal coupling
between two-level systems with a quantized field mode is suitable
for implementing reversed engineering protocols since both
interaction and free energy term commutes. Such relation allows
us to find an exact adiabatic transformation that accelerates
quantum processes such as the qubit readout78 or implementing
faster two-qubit gates83, and now we will use it to accelerate the
generation of multi-partite entangled states of either photonic or
qubit states, respectively.

To generate entangled photonic states, we assume that the field
modes couple to a single two-level system, i.e., N= 1. In such a
case, the Hamiltonian reads

Hm
1 ¼ Ω

2
σx þ∑

m
ωma

y
mam þ∑

m
gm1 ðtÞσxðaym þ amÞ: ð2Þ

The Hamiltonian dynamics Hm
1 , in the interaction picture,

corresponds to a state-dependent cavity drive represented by the
following time-evolution operator

Um
1 ðtÞ ¼

Y
m

D̂mðαmðtÞσxÞ; ð3Þ

where D̂mðσxαmðtÞÞ ¼ expðσxðαmðtÞaym þ α�mðtÞamÞÞ is the displa-
cement operator of the mth field mode with αmðtÞ ¼
�i
R t
0 gmðsÞeiωmsds as the cavity displacement. For a time-

independent coupling strength, we obtain that at time Tk= (2
k+ 1)π/ωm the field mode reaches its maximum displacement
αmax ¼ ± 2gm1 =ωm that depends on the qubit state. Thus, for the

system prepared in the initial state Ψð0Þ
�� � ¼ g

�� �NM

m¼1
0j im ( g

�� �
is the ground state of the two-level system, and 0j im is the
vacuum state of the mth field mode) the system evolves to the so-
called Greenberger-Horne-Zeilinger cat state84–87

ΨðTÞ
�� � ¼ 1ffiffiffi

2
p ej i

OM
m¼1

αmax

�� �
mþ g
�� �OM

m¼1

�αmax

�� �
m

" #
; ð4Þ

by rotating the qubit state along the y axis, we obtain

Ψj i ¼ 1ffiffiffi
2

p ej i
OM
m¼1

αþ
�� �

m þ g
�� �OM

m¼1

α�
�� �

m

" #
; ð5Þ

where jα± im ¼ ðjαmaxim ± j � αmaximÞ=
ffiffiffi
2

p
is the even/odd

coherent state superposition88. Thus we are lead with a multi-
partite hybrid light-matter state embedding maximal entangle-
ment, not being affected by local operations and classical
communication (LOCC)89.

On the other hand, it is possible to generate multi-partite
entangled states of qubits when we consider that N two-level
systems are coupled to a single field mode described by the
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Hamiltonian

H1
n ¼ ωayaþ∑

n

Ωn

2
σxn þ∑

n
g1nðtÞσxnðay þ aÞ: ð6Þ

In the interaction picture, the time-evolution operator of H1
n

can be written in a factorized form using the Baker-Campbell-
Hausdorff (BCH) formula90

U1
nðtÞ ¼

Y
n

e�iAnσ
x
xa
Y
n

e�iA�
nσ

x
xa

y Y
n;n0

e�iBnn0 σ
x
nσ

x
n0 : ð7Þ

The coefficients An(t) (A�
nðtÞ) and Bnn0 ðtÞ are obtained

calculating the Schrödinger equation for the time-evolution

operator i _U
1
nðtÞ ¼ H1

nU
1
nðtÞ (we refer to the reader to the

Supplementary Note 1 for the detailed calculation), we obtain
that these coefficients must satisfy the following differential
equations

dAnðtÞ
dt

¼ g1nðtÞe�iωt ;
dBnn0 ðtÞ

dt
¼ iAn0 ðtÞ

dA�
nðtÞ
dt

: ð8Þ

For time-independent coupling strength g1n with the initial
conditions Anð0Þ ¼ Bnn0 ¼ 0, we obtain62

AnðtÞ ¼
ig1n
ω

ðe�iωt � 1Þ; ð9aÞ

Bnn0 ðtÞ ¼
g1ng

1
n0

ω
½�iðeiωt � 1Þ � t�: ð9bÞ

By choosing τ= 2π/ω, the coefficient An(τ) vanishes and
Bnn0 ðτÞ � θnn0 ¼ 2πg1ng

1
n0=ω

2. Consequently, the time evolution
operator reduces to

U1
nðτÞ ¼

Y
n;n0

exp �iθnn0σ
x
nσ

x
n0

� �
¼
Y
n≠n0

cosðθnn0 ÞIþ i sinðθnn0 Þσxnσxn0
� �

;
ð10Þ

corresponding to the Sørensen-Mølmer quantum gate22,23

(SMG). It is worthy to mention that the SMG has been widely
used in the context of quantum simulation to codify fermionic
system in a set of coupled two-level system91,92. If we initialize the
system in the state Φð0Þ

�� �¼NN
n¼1 g
�� �

n � 0j i, and choose
θnn0 ¼ π=4, the state evolves to a GHZ state93

ΦðτÞ
�� � ¼ 1ffiffiffi

2
p

ON
n¼1

g
�� �

n
þ eiπðNþ1Þ=2ON

n¼1

ej in
" #

0j i; ð11Þ

Notice that in those derivations, the time generation is
constrained by the ratios gm1 =ωm, and g1n=ωm, respectively. In
particular, it is possible to implement the multi-partite gate for
photons in the timescale T= 47.61 (ns), whereas for the multi-
partite operation with qubits, the gate time is T= 19 (ns)62. Thus,
to obtain faster time generation, we must achieve larger coupling
strength values, meaning that the system will operate in the ultra-
strong or deep-strong coupling regime69–72. A way to accelerate
the generation time without demanding larger coupling strength
relies upon the technique of STA74, where the modulation of
system parameters or the addition of an additional term on the
system dynamics leads to a speedup of the quantum processes. In
what follows that we will explore the former alternative, the
reverse-engineering method73,78, to design the coupling strength
gn1 and g1n such that the gating time is shortened significantly.

reverse engineering protocol. Afterwards defining the model, we
will discuss how to design the coupling strengths gn1 and g1n in the
frame of reverse-engineering approach73,78. We will develop the
theory considering a single two-level system (N= 1) coupled to a
single field mode (M= 1) with coupling strength g(t), the

extension to many qubits and field modes is easily derivable. In this
case, we propose the solution of the Schrödinger equation of the
form Ψðx; tÞ

�� � ¼ expð�itϵÞUðtÞ φðx; tÞ�� �
, where ϵ=ω(n+ 1/2)

and φðx; tÞ
�� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mωr=π
4
p

expð�mωrx
2=2Þ corresponds to the

eigenfunction for the uncoupled cavity with Hamiltonian ωra†a
and ξj i � g

�� � describes the ground state of the qubit. Additionally,
UðtÞ stands for a unitary transformation that eliminates the qubit-
field mode coupling94–96

UðtÞ ¼ eiβðtÞe�i _gcðtÞσxðayþaÞ=ω2
e�gcðtÞσxðay�aÞ=ω: ð12Þ

Here, the overdot notation represents time-derivative, and
βðtÞ ¼ � R t0 LgðsÞds corresponds to a phase factor that relates the
coupling strength g(t) with the auxiliary variable gc(t) through the
classical Lagrangian

LgðtÞ ¼
_g2c ðtÞ
ω3

� g2c ðtÞ
ω

� 2gcðtÞgðtÞ
ω

: ð13Þ

To guarantee that φðx; tÞ
�� �

corresponds to the exact solution of
the time-dependent Schödinger equation, the classical variable
must obey the following equation of motion

€gcðtÞ þ ω2½ gcðtÞ þ gðtÞ� ¼ 0; ð14Þ
which is nothing but the Euler-Lagrange equation from the
classical Lagrangian. The auxiliary variable gc(t) needs to satisfy
the following boundary conditions to guarantee that at the initial/
final time, the auxiliary variable does not participate in the system

gcðt0Þ ¼ _gcðt0Þ ¼ €gcðt0Þ ¼ 0; ð15aÞ

gcðtf Þ ¼ _gcðtf Þ ¼ €gcðtf Þ ¼ 0; ð15bÞ
Furthermore, we can add more conditions depending on the
problem to be solved. For the photonic GHZ, we require that the
final cavity displacement be larger as we can at the final time tf the
final cavity displacement is larger than we can. In this scenario,
together with the boundary conditions in Eq. (15a) and Eq. (15b),
we add the following constrains

αðtf Þ ¼ �i
Z tf

0
gðsÞeiωsds ¼ dmax; ð16Þ

corresponding to an arbitrary cavity displacement. On the other
hand, for the generation of the GHZ state for qubits, apart from
the boundary conditions given in Eq. (15a) and Eq. (15b) we
require that

Anðtf Þ ¼ 0; Bnn0 ðtf Þ ¼
π

4
: ð17Þ

In light of the experimental implementation of our model
provided in Section Physical implementation, the modulation of
the longitudinal coupling strength g(t) is through an adequate
modulation of the external flux ϕx(t). Therefore, we propose a
Fourier decomposition of the form ϕxðtÞ ¼ ∑kck sinðπk t=tf Þ and
plug this ansätze in Eq. (??) to compute the reversed engineering
g(t) (see Section Physical implementation for the detailed
derivation). In that way, the problem reduces to calculate the
coefficient ck such gc(t) fulfills the boundary condition given in
Eq. (15a), Eq. (15b) together with Eq. (16) for the photonic case,
and Eqs. (17) for the qubits, respectively.

We numerically calculate the coefficients ck using the gradient
descent minimization package of python97. Figure 1 shows the
auxiliary variable gc(t) and the coupling strength g(t) obtained
through Eq. (14) as a function of the dimensionless time t/tf for
three different maximal cavity displacement dmax ¼ f1; 3; 5g,
respectively. It manifests that the maximal value of the coupling
strength g(t) strongly depends on the maximal value of the cavity
displacement constraining the coherent state’s size, unlike the
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qubit case, where we do not observe such behavior in the
resulting gc(t) and g(t), respectively. Moreover, it is shown that
the modulations obtained in Fig. 1 satisfy the additional
conditions stated in Eq. (16) and Eqs. (17) for the photonic
and qubit case, respectively. We plot these quantities as a function
of the dimensionless time t/tf depicted in Fig. 2. For the coupling
strength g/2π= 21MHz79 for the photonic system, we obtain a
generation time tf= π/(40g)≡ 3.74 (ns) achieving αðtf Þ ¼ dmax.
Whereas, the qubit-based GHZ state can be generated within the
timescale tf= πω/(80g2)≡ 1.89 (ns) for a coupling strength g/
2π= 114MHz62 where the conditions An(tf)= 0 and Bn;n0 ðtf Þ ¼
π=4 are fulfilled, respectively.

Multi-partite photonic state. We analyze the performance of the
reversely engineered coupling strength g(t) to generate photonic
GHZ states for M= 3 modes, see Hamiltonian of Eq. (2). In such
a case, we assume that gm1 ðtÞ � gðtÞ ∀m. We quantify the Wigner
function W(x, p) of the reduced density matrix of the first field
modes given by ρf 1 ðtÞ ¼ Trff 2;:::;f M ;qg½jΨðtÞihΨðtÞj�, where the sub-
indexes fk, and q corresponds to the partial trace over the k-th

field mode and the qubit, respectively. Given that W(x, p) for a
coherent state αj i corresponds to a Gaussian centered in
ðReðαÞ; ImðαÞÞ88, at the final STA time tf, where
ρf 1 ðtf Þ ¼ ð1=2Þðjdmaxihdmaxj þ j � dmaxih�dmaxjÞ, the Wigner
function represents two Gaussians centered at ± dmax. Figure 3a
shows the Wigner function on the phase space corresponding to
two points far apart from each other from a distance 2dmax.
Likewise, Fig. 3b, c shows the one-dimensional projection of
W(x, p) in the coordinate and momentum space, respectively. In
concordance with Fig. 3, we appreciate that on the coordinate
projection, we should expect to see a single Gaussian centered at
zero (no imaginary component on the coherent state) placed at
p ¼ ± dmax. In contrast, in the momentum projection, we have to
see two overlapping Gaussian centered at x ¼ ± dmax, respec-
tively. From Fig. 3c we see a wide region where W(x, p) takes
negative values, showing the non-local nature of the multi-partite
entangled state88.

Furthermore, we also calculate the Fidelity F ðρ; σÞ ¼
ðTr½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ
p

σ
ffiffiffi
ρ

pp �Þ2 (ρ and σ are arbitrary density matrices) between
the state ΨðtÞ

�� �
obtained by numerically solve the Schödinger

Fig. 1 Coupling strength modulation. Reversely engineered coupling strength gc(t) (continuous line) and g(t) (dotted) as a function of the dimensionless
time t/tf for a the GHZ for photonic systems, blue, orange and green data corresponds to the pulse considering α(tf)= 1, 3, 5, respectively. Whereas
b stands for the GHZ in qubits. The numerical simulations are preformed with the following system parameters a ω/2π= 6.6 GHz, g/2π= 21MHz, and
b Ω/2π= 10 GHz, ω/2π= 1 GHz, and g/2π= 144MHz.

Fig. 2 Reversed enginnered modulation. Reversely engineered a absolute cavity displacement ∣α(t)∣ as a function of the dimensionless time t/tf, blue,
orange and green lines correspond to the maximal cavity displacement of dmax ¼ f1; 3; 5g, respectively. b, c stands for the real (blue) and imaginary (green)
parts of the reversely engineered ∣An(t)∣ and jBnn0 ðtÞj coefficients, respectively. The numerical simulations are performed with the same parameters as those
in Fig. 1.
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equation of Eq. (2) with the target GHZ state defined in Eq. (5)
for M= 3 field modes for two different maximal field displace-
ment dmax ¼ f1; 3g as depicted in Fig. 3d. We observe that the
reversed engineering protocol is insensitive to the final displace-
ment dmax, where we appreciate fidelities close to one for both
modulations.

Thus far, we have demonstrated that our reverse-engineering
protocol provides a flexible way to engineer the longitudinal
coupling strength that allows us to generate a multi-partite
photonic states at a short timescale (tf≡ 3.2 (ns)), which is one
order of magnitude shorter than the same protocol without the
use of the reverse engineering approach (T= 47.61 (ns)). More-
over, our reverse engineering approach permit us fixing the final
cavity displacement beyond the maximal distplacement
αmax ¼ ± 2gm1 =ωm. Nevertheless, nothing is said about the scaling
of the protocol in terms of the number of field modes. We should
expect that the gating time tf does not scale from our calculations.
To assure that, we solve the dynamics by increasing the number
of field modes from M= 1 to M= 4 and compute the fidelity
F ðtf Þ at tf for each case. Those results are depicted in Fig. 4a,
where we observe a high-fidelity generation of the cat Schödinger
states (the maximal fidelities obtained with the protocol are
around 98–99% for each case). Furthermore, we also see minor
variations in the achieved maximal fidelity for the maximal
number of modes simulated here. The exploration regarding a
higher amount of field modes may be helpful to probe our
conjecture. However, we are contained by the maximal

displacement that bound the size of the whole Hilbert space,
i.e., the maximal size of each field mode is chosen such
Nmax ¼ jdmaxj þ 1. In this sense, there exists a trade-off between
the macroscopic size of the coherent state (related to the maximal
displacement) with the maximal number of field modes to be
simulated.

Multi-partite qubit state. Alternatively, we will analyze the
performance of the reverse-engineering protocol to generate GHZ
states in a qubit-based system. For doing so, we study the
dynamics of the Hamiltonian in Eq. (6) by considering N= 2
qubits assuming homogeneous coupling strength between the
qubits with the field mode, i.e., g1nðtÞ ¼ gðtÞ ∀ n. Then, we can
extend the result to a multi-qubit system up to 12 of them.

Similar to the previous section, we look at a reduced part of the
Hilbert space corresponding to the reduced density matrix of the
N qubits defined as ρqðtÞ ¼ Trf ½jΦðtÞihΦðtÞj�, where the sub-

index f corresponds to the trace over the field mode, where ΦðtÞ
�� �

is the solution of the Schödinger equation for the Hamiltonian
given in Eq. (6). Figure 5a shows the population evolution for a
system composing by N= 2 qubits. We see that the occupation
probabilities of the symmetric subspace fjgei; jegig does not be
equal to zero during all the dynamics because the terms related to
their evolution in the time evolution operator given in Eq. (7) is
not zero at all the times. In fact, the quantity An(t) only vanishes
at t= 0, and t= tf, respectively. Likewise, the population of the

Fig. 3 Multi-partite photonic state. aWigner representation of the reduced density matrix of the first field mode at final time tf for a system consisting into
three field mode coupled to a single qubit. Projection of the Wigner function to the b coordinate space and c the momentum space, corresponding to a
Gaussian function centered in ± dmax ¼ 3. d Fidelity F between the target Greenberger-Horne-Zeilinger state in Eq. (5) with the state ΨðtÞ

�� �
for two

different maximal cavity displacement dmax ¼ 1 to the blue line, and dmax ¼ 3 for the green line, respectively. The numerical simulations are carried out with
the same parameters as those in Fig. 1.
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state eej i keeps changing until tf achieves its optimal value. In
Fig. 5b we plot the fidelity F as a function of time with the target
state given in Eq. (11). Since the symmetric state contributes to
the whole state’s probability, fidelity tends to decrease until it
reaches its maximal value around F ¼ 99%. Concerning the
scaling of the generation time for the GHZ state, we obtain that
the gating time does not scale with the number of qubits. In order
to prove that, we calculate the fidelity F evaluated at t= tf by
increasing the number of qubits from N= {2− 12}. Figure 4b
shows the maximal fidelity as a function of the number of qubits.
It is observed that the fidelities F are bounded between 98% and
99%, thus demonstrating that the gating time does not scale with
the number of qubits for achieving a large fidelity.

Notice that in the derivation of the unitary transformation
provided in Eq. (10), no approximation has been made, which
makes this protocol faster than other proposals based on
dispersive interaction corresponding to second-order
processes61,63,64. In this sense, the reverse-engineering protocol
of generating these multi-parties entangled states allows us to
accelerate its generation leading to generation times shorter than
the tenth nanosecond scale, which mitigates the error produced
by the unavoidable interaction with the environment. In the next
section, we will quantify how the dissipation affects the
performance of our protocols.

On the other hand, more quantum control techniques are
available such as DRAG98,99, FAQUAD100, and GRAPE101,102. The
latter corresponds to a gradient-based protocol that found the
optimal modulation to control a system with decimated dynamics.

The working principle of this algorithm relies upon assuming
constant control fields for time windows. Under this approximation,
we write the time-evolution operator without the time-ordered
operator corresponding only to Hamiltonian exponentiation, and we
update the control fields through their gradients. The complexity
scales with (a) the number of time steps of the control field, the
Hamiltonian size, and its exponentiation. In our particular problem,
a GRAPE-based implementation requires computing the exponen-
tiation and their gradients for each time step at each minimization
iteration, making them computationally challenging even for a
modest number of cavities/qubits. Therefore, for the photonic GHZ,
we must exponentiate matrices of dimension 2� dim ðaÞM ,
whereas, for the qubit multi-partite entangled state, the dimension
scales as 2N � dimðaÞ. Contrary, the STA reversed engineering
approach is less computationally demanding since we are only
required to solve a set of differential equations that can be efficiently
solved using standard numerical/analytical techniques.

Dissipative dynamics. The next step is to analyze the perfor-
mance of the reversed engineering approach to generate

Fig. 4 Fidelity as function of the number of subsystems. Fidelity F at the shortcut to adiabaticity time tf as a function of the number of system
constituents for a system corresponding to a one qubit coupled to M= {1, 2, 3, 4} field modes with maximal cavity displacement dmax ¼ 3, and b one field
mode coupled to N= {2, 4, 6, 8, 10, 12}, respectively. The numerical simulations are carried out with the same parameters as those in Fig. 1.

Fig. 5 Revsersed engineering multi-qubit state generation. a Population evolution of the two-qubit states ggj i (continuous blue), gej i (continuous
orange), egj i (dotted green), and eej i (continuous red) computed from the Hamiltonian in Eq. (6) through the reverse- engineering protocol as a function of
the dimensionless time t/tf, we observe that at the final time the state evolves to a GHZ state. b Fidelity F as a function of t/tf between the GHZ state of
two qubits with the state ΦðtÞ

�� �
. The numerical simulations are carried out with the same parameters as those in Fig. 1.
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entangled states under dissipative and dephasing dynamics on
qubits described by the following master equation

dρðtÞ
dt

¼� i½Hm
n ; ρðtÞ� þ ∑

M

m¼1
κmL½am; ρðtÞ�

þ ∑
N

N¼1
ðγnL½σ�n ; ρðtÞ� þ γϕ;nL½σzn; ρðtÞ�Þ;

ð18Þ

where Hm
n is the Hamiltonian given in Eq. (1), L½O; ρðtÞ� ¼

OρðtÞOy � fOyO; ρðtÞg=2 is the Lindbladian operator describing
the dynamics of an open quantum system103. κm and γn stand for
the relaxation ratio of the m-th cavity and the n-th qubits,
respectively. Finally, γϕ,n is the dephasing ratio of the n-th qubit.

In superconducting circuits and cQED, energy relaxation
appears as the consequence of the coupling between the quantum
system with its electronic environment from the external
circuitry, which we interpret as the interaction through an
effective resistance. This noise profile is known as Nyquist noise
or ohmic noise54,104. Another source of relaxation relies upon
quasiparticle decay105,106, generated by the unpairing of Cooper-
pairs due to electronic/thermal fluctuations. These electrons
tunnel through the device, and we interpret them as an ohmic
current leading to random spin flips. On the other hand, one of
the dephasing sources corresponds to random spin flips in the
superconducting metal forming the device due to the modulation
of the external magnetic flux in the artificial atom107. Another
source of error is produced by the longitudinal coupling with the
quasiparticle bath that randomly changes the energy of the
artificial atom108,109.

In light of our experimental implementation that requires
manipulating the external flux for the reversed engineering
protocol, a way to mitigate errors associated with the tuning relies
upon accessing a flat energy spectrum in the artificial atom for
achieving reduced flux sensitivity ∂[Ωn]/∂[ϕx] ≈ 0, which can be
achieved with larger Josephson junctions105.

Here, we will focus on the previous cases, where we consider a
single-qubit interacting with M modes described by Hm

1 as in Eq.
(2), and N qubits interacting with a single cavity characterized by
H1

n in Eq. (6). Without loss of generality, we assume
homogeneous decay rates for the energy relaxation of the field
mode, qubit relaxation, and dephasing rate, i.e., κm= κ, γn= γ,
and γϕ,n= γϕ, respectively. We start by preparing the systems in

the following state ρm1 ð0Þ ¼ g
�� � g
� ��NM

m¼1
0m
�� �

0m
� �� for the

photonic case, and ρ1nð0Þ¼
NN

n¼1 gn
�� �

gn
� ��� 0j i 0h j for the pqubit

based, respectively. We let them evolve until tf, and compute the
fidelity F at that time. For the GHZ cat state, we obtain that the
fidelities for M= 1 and M= 2 is equal to F ¼ f0:998; 0:996g.
Due to the constraints imposed by the size of the Hilbert space,
we cannot explore the system, including more field modes. For
the qubit-based GHZ state, we obtain that the fidelities are given
by F ¼ f0:999; 0:998g for N= {2, 4}, respectively. Since the
coherence times are longer than the generation time, we do not
observe an appreciable change in the optimal fidelity. We have
performed our numerical simulation considering the same
physical parameters as Fig. 1. For the decay rates we have chosen
κ/2π= 1MHz79 for the field modes, and γ/2π= 1/T1, with
T1= 40 μs and γϕ/2π= 1/T2 with T2= 40 μs110 for the two-level
system, respectively.

Physical implementation. Finally, we propose an implementa-
tion for Hm

n in Eq. (1) based on cQED architecture consisting of a
coplanar waveguide resonator (CPWR)59 of length d with capa-
citance and inductance per unit length l and c, respectively. We
couple N like-flux-qubit50,51,55 artificial atom formed by two
Josephson junctions (JJs) capacitances fCðnÞ

J1
;CðnÞ

J2
g and Josephson

energies fEðnÞ
J1
; EðnÞ

J2
g to the CPWR through an embedded junction

of capacitance CðnÞ
JE

and Josephson energy EðnÞ
JE

uniformly dis-
tributed along it111 (see Fig. 6a). Moreover, we thread the artificial
atom with an external magnetic flux φðnÞ

x and driven by an
external voltage V ðnÞ

g through the capacitor CðnÞ
g , as illustrated in

Fig. 6b. The circuit Lagrangian reads

L ¼ ∑
N

n¼1
LðnÞ
q þ LðnÞ

int

h i
þ LCPWR; ð19Þ

where

LðnÞ
q ¼

CðnÞ
Σ1

2
½ _ϕðnÞ1 �

2
� qðnÞg

_ϕ
ðnÞ
1 þ EðnÞ

J1
cos

ϕðnÞ1

φ0

 !

þ EðnÞ
J2

cos
ϕðnÞ1 � ϕðnÞx

φ0

 !
;

ð20Þ

LðnÞ
int ¼� CðnÞ

J1
_ϕ
ðnÞ
1 _ψðx�n ; tÞ � CðnÞ

J2
_ϕ
ðnÞ
1 _ψðxþn ; tÞ

� CðnÞ
J2

_ϕ
ðnÞ
1

_ϕ
ðnÞ
x � CðnÞ

J2
_ψðxþn ; tÞ _ϕ

ðnÞ
x

þ EðnÞ
J1

sin
ϕðnÞ1

φ0

 !
ψðx�n ; tÞ

φ0

þ EðnÞ
J2

sin
ϕðnÞ1 � ϕðnÞx

φ0

 !
ψðxþn ; tÞ

φ0

;

ð21Þ

LCPWR ¼
Z d

0

c
2
½∂tψðx; tÞ�2 �

1
2l
½∂xψðx; tÞ�2

� 	
dx

þ ∑
N

n¼1

CðnÞ
Σ2

2
½∂tψðx�n ; tÞ�2 þ

CðnÞ
Σ3

2
½∂tψðxþn ; tÞ�

2 � CðnÞ
JE
∂tψðx�n ; tÞ∂tψðxþn ; tÞ

" #
:

ð22Þ
Here, ϕðnÞ1 and ψ(x, t) corresponds to the flux variables describing

the artificial atom and the flux at the position x of the CPWR,
moreover, CðnÞ

Σ1
¼ CðnÞ

g þ CðnÞ
J1

þ CðnÞ
J2
, CðnÞ

Σ2
¼ CðnÞ

J1
þ CðnÞ

JE
and

CðnÞ
Σ3

¼ CðnÞ
J2

þ CðnÞ
JE

are effective capacitances. Furthremore, qðnÞg ¼
CðnÞ
g V ðnÞ

g is the charge bias, φ0= ℏ/2e is the reduced quantum flux.
Following the standard procedure of circuit quantization, and
assuming that the junction forming the flux-qubit is identical and
the embedded ones are different by a factor α(n) we arrive the
following Hamiltonian

H ¼∑
M

m
ωma

y
mam þ ∑

N

n¼1

Ωn

2
σzn

þ ∑
n;m

gmn ðφn
xÞσznðaym þ amÞ:

ð23Þ

The detailed derivation of the above Hamiltonian can be found
in Supplementary Note 2. Here amðaymÞ correspond to the
annihilation (creation) bosonic operator describing the mth
mode of the CPWR with frequency ωm. Moreover, σzn is the z-
component Pauli matrix describes the flux-qubit in the two-level
approximation with transition frequency Ωm. Finally, gmn ðφn

xÞ is
the flux-dependent coupling strength between the CPWR with
the N two-level systems. Notice that we have neglected all the
capacitive interactions since we are assuming the Josephson
energy as the leading energy contribution in the artificial atom.
Likewise, due to the presence of the embedded junction in the
CPWR, we obtain an antisymmetric spatial profile in the current/
voltage of the resonator. This eliminates the coupling between the
artificial atom and the node ψðxþn ; tÞ of the CPWR, leading to a
longitudinal interaction between both subsystems.
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Conclusion
In this article, we have proposed the reverse-engineering method
to design a longitudinal interaction to generate multi-partite
entangled states in photonic and qubit-based systems. Such
approach suggests a modulation that satisfies the desired criteria
under suitable conditions. In our case, we constrain the mod-
ulation to achieve a fixed cavity displacement to generate pho-
tonic multi-partite entangled states. In contrast, we impose the
vanishing of some unwanted interaction to implement a
Sørensen-Mølmer quantum gate to generate multi-partite qubit
states, respectively. As a result, we obtain a fast generation time
(less than tens of nanoseconds) with the current state-of-the-art
superconducting quantum circuits architecture. Notably, the
gating time does not scale with the number of either field modes

or qubits, allowing us to generate entangled quantum states
containing many parties. Since the generation time is shorter than
the coherence time of the subsystem, the unavoidable effect of the
environment does not induce a significantly detrimental impact
on the final fidelity generation. The renewed attention to the
protocols provided by STA in the context of cQED may pave the
way to accelerate and improve several quantum tasks by engi-
neering the adequate pulses sequences and modulation that are
fundamentally constrained in the quantum platform.

Data availability
The data that support the findings of this study are available from the corresponding
author, F.A.C.L., upon reasonable request.

Fig. 6 circuit quantum electrodynamic implementation. Schematic illustration of our experimental proposal consisting of a λ/2 coplanar waveguide
resonator (CPWR) of length d galvanically coupled to b N artificial atoms C(n) formed by three Josephson junctions EðnÞJ‘

threaded by an external magnetic
flux ϕðnÞx . Moreover, we biased each artificial atom through a voltage source VðnÞ

g coupled through a capacitor CðnÞ
g . We model the coplanar waveguide

resonator as a series of LC circuits characterized by the capacitance and inductance per unit of length c and l, respectively.
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