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Optogenetic control of migration of contractile cells
predicted by an active gel model
Oliver M. Drozdowski 1,2, Falko Ziebert 1,2 & Ulrich S. Schwarz 1,2✉

Cell crawling on flat substrates stems from intracellular flows of the actin cytoskeleton that

are driven by both actin polymerization at the front and myosin contractility at the back.

Optogenetics makes it experimentally possible to spatially control contraction and possibly

cell migration too. Here we theoretically analyze this situation using a one-dimensional active

gel model that reflects the property of myosin II to assemble into minifilaments. Our model

predicts bistability between sessile and motile solutions when cell adhesion and contractility

are sufficiently large and in balance. We show that one can switch between the different

states at realistic parameter values via optogenetic activation or inhibition of contractility, in

agreement with recent experiments performed for neutrophils in microchannels. We predict

the required activation strengths and initiation times, compare the effects of local and global

increases of myosin II levels, and show that actin polymerization alone can affect a switch in

direction only at high strength.
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Crawling migration is an essential property of animal cells
and plays a crucial role in development, wound healing,
immune response and cancer metastasis1. In addition, the

design of synthetic cellular systems calls for a better under-
standing of the minimal components required for cell motility2.
Obviously the most essential element of cell migration is the
symmetry break between front and back. In mesenchymal cell
migration, the front uses actin polymerization to push the
membrane forward, while the back uses myosin II contractility to
generate retrograde flow and to pull the rear forward. Tradi-
tionally, these processes are considered to be coordinated by
gradients in biochemical activity, most prominently the antag-
onistic signaling pathways of Rac/Cdc42 and RhoA for front and
back, respectively3.

A striking feature of locomoting cells is the bistability of their
motility behavior: sessile cells can be forced into migration by the
application of physical stimuli if the applied stimulus is suffi-
ciently large to polarize their cytoskeleton4,5. While on two-
dimensional substrates bistability can result from cell shape
changes5,6, in one-dimensional situations like migration on fibers,
lines or channels, bistability has to be mediated by internal
polarization. Recently it has been shown for sessile mesenchymal
cells on micropatterned lines of fibronectin that polarization can
be induced by optogenetic activation of contractility, which leads
to rupture of the adhesion sites on the activated side of the cell7.
More recently, it has been shown that the direction of cell
crawling in channels can be reversed by optogenetic stimulation
that effectively decreases myosin II contraction at the back8. Both
experimental setups are essentially one-dimensional, but the
second one is even more reduced because it does not rely on
changes in cell adhesion. Optogenetic perturbations of cell con-
tractility have revealed that contractile cells usually do not work
at saturation, but at an intermediate setpoint of tension that
allows for up- and downregulation7–11. These observations made
with the help of optogenetics shed new light on a long-standing
question in the fundamental understanding of cell migration,
namely how cell migration works and can be controlled in purely
contractile cells. However, it is not clear yet how much further the
new tool of optogenetics can be pushed to control cell migration.
Moreover it is an open question how much migration control by
contractility can be achieved by local versus global means. While
the RhoA-pathway is known to generate local increases in

contractility9, also global myosin recruitment has been observed
to initiate motility, e.g., as a response to nuclear deformation12,13.
Which mechanism serves which purpose remains puzzling.

The natural framework to understand cytoskeletal flow within
cells and the role of contraction is active gel theory14,15, which has
been used early on to describe cell migration16. Despite recent
advances in modeling polarization-driven motility with a focus on
the role of the stick-slip dynamics of cell adhesion7,17–19, an
active gel theory that allows one to predict the exact conditions to
switch cell migration by manipulation of its internal actin flows is
still missing. In contrast to modeling amoeboidal cell migration,
for mesenchymal cell migration myosin contractility and not
actin polymerization should be the main focus of such a theory.
Previous attempts with active gel theory have relied on the
assumption that the contractile active stress as a function of
motor concentration can be in the saturated regime20,21, which
however does not agree with the recent experimental finding that
usually further contractility can be achieved by optogenetic
activation7–11.

Here we show that active gel theory can explain and predict
optogenetic control of mesenchymal cell migration if one starts
from the observation that myosin II molecules assemble into
larger complexes. While earlier works used an ideal gas descrip-
tion for the myosins20,21, here we describe them as a supercritical
van der Waals (vdW) fluid, a concept suggested before for other
protein systems22. In the myosin context, it accounts both for the
crowdedness of the cytosol and the aggregation of myosin II into
so-called minifilaments, which are supramolecular clusters that
lead to persistent contraction of the actin cytoskeleton. The vdW-
model for myosin results in other nonlinearities than the
saturation model, but is consistent concerning linear irreversible
thermodynamics, since the driving force, the gradient in chemical
potential, is still in linear order. Here we introduce the vdW-
model into active gel theory from microscopic rules for the
binding kinetics of myosin II motors to actin filaments. This
model yields an effective diffusion constant that depends on
myosin concentration in a nonlinear fashion. We next show that
the same function results from linear irreversible thermo-
dynamics for a vdW-fluid in solution. We then show that our
vdW-model explains the experimentally observed bistability in
cell migration, and that it predicts optogenetic switching between
sessile and motile solutions (Fig. 1a). We also parametrize our

Fig. 1 Crawling of mesenchymal cells depends strongly on the spatial distribution of myosin motors and can be controlled via optogenetics. a A
homogeneous motor distribution does not induce intracellular flows and therefore corresponds to a sessile cell (top). In contrast, a myosin gradient
corresponds to a motile cell with velocity V (bottom). Optogenetic activation of contractility (red) can be used to switch between these two states by
inducing internal flows (gray arrows). b Optogenetic experiments that indirectly affect the myosin system have demonstrated that one-dimensional cell
migration in microchannels can be perturbed, arrested and reoriented. Color maps either show front polarity signaling via Cdc42 (perturbation and
reorientation) or myosin intensity (arrest). Scale bar is 25 μm. Circles indicate optogenetic activation. Modified under Creative Commons Attribution 4.0
International License from Hadjitheodorou et al.8.
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model and demonstrate that our predictions agree with the recent
experiments on motility reorientation and suggest possible
alternative protocols to achieve experimental control of cell
migration. In particular, our model is able to describe the
experimentally observed phenomena of motility perturbation,
arrest and reorientation as a function of cell contractility
(Fig. 1b)8. In addition, we compare the effect of local versus global
myosin recruitment. We find that localized and reversible con-
tractility increases allow for full controllability, while global
myosin recruitment is less versatile, but nevertheless achieves
robust motility initiation. These findings reconcile previous
experimental observations that motility can be initiated both via
local patterning7,23, in the form of contractility gradients in cell
migration, as well as via global recruitment, e.g., as a reaction to
nuclear deformation12. We also implement actin polymerization
and find that it can effect motility reversal and inversion of the
myosin gradient only at very high levels, which further under-
scores the central role of contractility.

Results
Active gel model. Cells in microchannels are effectively one-
dimensional. Following the usual approach for a minimal version
of active gel theory, we model them with the constitutive relation
of an infinitely compressible active gel with a linear dependence of
the active stress on the myosin concentration field c(x, t):

η∂xvðx; tÞ ¼ σðx; tÞ � χcðx; tÞ: ð1Þ

Here v(x, t) is the flow velocity field, η the shear viscosity, σ(x, t)
the total stress field and χ the contractility per motor protein. We
assume viscous drag with the substrate, ∂xσ(x, t)= ξv(x, t), with a
friction coefficient ξ. Because our focus here is on contractility and
not on adhesion, we refrain from including any heterogeneity in
friction. The cell is considered to have a variable length, with left
edge l−(t) and right edge l+(t), and an elastic boundary condition
σ(l±, t)=−k(L(t)− L0)/L0, where L(t)= l+(t)− l−(t) is the cell
length and L0 its reference length. This constraint reflects cellular
volume homeostasis, which in cells is achieved mainly by hydro-
static and osmotic pressure control, and assumes instantaneous
communication between the front and the back, which can be
provided by membrane tension. In the absence of any other

effects, the flow field determines the movement of the boundaries,
vðl ± ; tÞ ¼ _l ± ðtÞ. In the presence of polymerization at the cell
boundaries, we have vðl ± ; tÞ ¼ _l ± ðtÞ þ v ±

p with fixed poly-
merization velocities v ±

p (compare Drozdowski et al.24).

Microscopic model. We now turn to the main focus of this work,
namely the effect of myosin contractility. Its optogenetic activa-
tion through the Rho-pathway leads to both assembly of myosin
II minifilaments and force generation by their motorheads,
resulting in the motor stress χc(x, t). Because the minifilaments
have a finite size around 300 nm and cannot directly touch each
other due to the requirement of an organized actin network
around them, the assembly process cannot proceed without
limits. Moreover it is very dynamic, with myosin molecules
continuously exchanging between solution and minifilaments, as
verified by experiments with fluorescence recovery after
photobleaching25.

We first show that a microscopic model of these processes
leads to a nonlinear concentration-dependent diffusion constant
D(c). We consider a two-species model of bound and diffusing
myosin motor proteins (Fig. 2a), with concentrations c(x, t) and
cd(x, t), respectively, similarly to previous active gel models with
myosins26. The bound motors are passively advected with the
active gel with the flow velocity v(x, t), while the unbound motors
diffuse freely. The un/binding process is described by a (in
general nonlinear) binding kinetics R(c, cd), yielding:

∂tcðx; tÞ þ ∂xðvðx; tÞ cðx; tÞÞ ¼ Rðc; cdÞ;
∂tcdðx; tÞ � ~D∂2xcdðx; tÞ ¼ �Rðc; cdÞ;

ð2Þ

with ~D being the diffusion coefficient of the unbound myosins.
For the binding kinetics, we assume:

Rðc; cdÞ ¼
kon
c1

ðc1 � cÞcd � koff cþ
kcb
c21

ðc1 � cÞ2c cd; ð3Þ

describing binding, unbinding, and cooperative binding, respec-
tively. Here koff is the linear unbinding rate. The excluded volume
effect introduces a factor of (c∞− c)/c∞ to the binding rate, which
models that a free space on the actin filament is needed. For the
cooperative binding this term is squared as it includes both the
probability for a diffusing motor to find a free binding space and
for a cooperative binding partner to be next to such a binding
space. The cooperativity is considered via a term ∝ccd, describing
the binding of an unbound motor due to binding to an already
bound motor, thus modeling the growth of a myosin II
minifilament. Note that in the dilute limit, i.e., for small c/c∞,
the binding rate is given by kon and the cooperative binding
coefficient by kcb.

Assuming (local) chemical equilibrium, R(c, cd)= 0, and
introducing the linear reaction constant K= kon/koff and the
relative cooperative binding ratio eA= 2kcb/kon, we obtain for the
equilibrium concentration:

cd ¼
1
K

c c1
c1 � c

1
1þ ðeA=2c1Þðc1 � cÞc

� 1
K

c c1
c1 � c

� eA
2
c2

� �
;

ð4Þ

where we assumed weak cooperativity in order to use a Taylor
approximation. Inserting this result into the sum of the equations
for c and cd, Eq. (2), i.e., assuming local chemical equilibrium, and
then taking the limit of fast binding K→∞ and fast diffusion
~D=K ! D (similarly to previous microscopic models26) yields a
single advection-diffusion equation for the bound motors,

Fig. 2 Myosin binding kinetics yield nonlinear diffusion in agreement with
the van der Waals model. aMicroscopic model of myosin (red) un/binding
from actin (gray), which leads to a nonlinear diffusion coefficient,
corresponding to the van der Waals (vdW) model. We assume that
diffusing motors bind with binding rate kon, subject to excluded volume
effects, and unbind with rate koff. We also assume weak cooperative
binding with coefficient kcb. b, c Nonlinear diffusion coefficient DðcÞ of the
myosins as a function of their concentration with c∞= 10 for different
intermolecular attraction energies eA. b Only excluded volume effects
(Tonks gas), eA= 0. c Including attraction (vdW-fluid), eA= 0.63.
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namely:

∂tc ¼ �∂xðvcÞ þ ∂x DðcÞ∂xc
� �

; ð5Þ
with a nonlinear concentration-dependent diffusion coefficient:

DðcÞ ¼ DDðcÞ ¼ D 1þ c
c1 � c

� �2

� eAc

" #
: ð6Þ

We note that the effects of such concentration-dependent
diffusion coefficients have been observed experimentally27, for
instance in the context of binary liquids28 and colloidal
suspensions of hard spheres29. It has been used in models for
bacterial growth30 and very recently also for excluded volume
effects of myosins in cells31. Inhomogeneous myosin diffusion
coefficients in the cell have been reported in fibroblasts32.

Myosins as van der Waals fluid. Next, we show that the non-
linear diffusion constant arising from the microscopic model
corresponds to the linear irreversible thermodynamics of a van
der Waals (vdW) fluid. We start with the chemical potential μc of
the vdW-fluid33:

μc ¼� NAkBT log
1=NA � cb

cb

� �
þ NAkBT

cb
1=NA � cb

� 2aN2
Acþ NAkBT log λ3=2th

� �
:

ð7Þ

Here NA is the Avogadro number, kB the Boltzmann constant, T
temperature, b the vdW excluded volume and a the average value
of the attractive interaction energy per unit concentration.
λth= (2πℏ2/mkBT) is the thermal wavelength. According to linear
irreversible thermodynamics34, the diffusive particle flux JD fol-
lows from the gradient of the chemical potential, JD∝ ∂xμ. The
diffusive part of the continuity equation ∂tc=−∂xJD then yields a
diffusion equation with the same diffusion coefficient D(c) as
derived above on microscopic ground (Eq. (6)), when we identify
the saturation concentration c∞= 1/NAb and the attractive energy
eA= 2aNA/kBT. Including only volume exclusion for the binding
in the microscopic model, one obtains the nonlinear diffusion
coefficient of the so-called Tonks gas (with excluded volume, but
eA= 0). This shows that the excluded volume concentration c∞ of
the vdW-model describes the steric constraints on the actin
filaments. In Fig. 2b, c, we plot D(c) from Eq. (6) without and
with attractive energy eA, respectively (the first case corresponds
to the Tonks gas). In both cases, one sees the singularity for
c= c∞, which results from hard core repulsion and increased
diffusion at high concentrations. The energetic term leads to a
slowdown of diffusion for intermediate concentrations.

Full model. Our full model is defined by combining the con-
stitutive active gel equation for v from Eq. (1), the advection-
diffusion equation for myosin concentration c from Eq. (5) and
the nonlinear diffusion constant D(c) from Eq. (6) corresponding
to the vdW-fluid. For the advection-diffusion equation, we con-
sider no-flux boundary conditions at the edges, i.e., ∂xc(l±, t)= 0.
Following earlier work along these lines20,24, we non-
dimensionalize length by L0, time by L20=D, stress by k, and
concentration by c0= ∫c dx/L0. We then map the problem on the
interval [0, 1] using u= (x− l−)/L and get three dimensionless
model parameters: the length ratio L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η=ðξL20Þ

p
arising from

the competition between viscous and frictional dissipation; the
Péclet number Pe= k/ξD describing the importance of advection
versus diffusion; and myosin contractility P ¼ χc0=k. The inverse
Péclet number A ¼ 1=Pe can also be interpreted as adhesion
strength, because a large value of A corresponds to strong friction
if L2A ¼ Dη=kL20 is kept fixed, which is a combination of

quantities that typically cannot be changed in experiments. In the
following, adhesiveness A and contractility P are considered as
the main parameters, as experimentally they are known to control
transitions in cell state.

Defining the cell center G= (l++ l−)/2 and the advection
velocity v̂ðuÞ ¼ � _Gþ _Lð1=2� uÞ, and rescaling ~c ¼ Lc, we finally
arrive at our central equations, namely the following boundary
value problem (BVP):

L2=L2 ∂2uσ � σ ¼ �P=L~c;
∂t~cþ 1

L ∂u
1
AL ∂uσ þ v̂
� �

~c
	 
 ¼ 1

L2 ∂u½Dð~c=LÞ∂u~c�;
ð8Þ

with the boundary conditions σ(u±, t)=−(L(t)− 1) and ∂uc(u±,
t)= 0 with u−= 0, u+= 1. As we will show below, this system
can be comprehensively analyzed using a combination of
analytical and numerical methods.

The parameters of the model can be estimated from
experimental data for crawling cells. Following earlier work24,
one obtains L2 ¼ 1:25 and P ¼ 0:1. A can be determined
from k= 104 Pa20,24,35,36, ξ= 2 ⋅ 1014 Pa s/m224,37 and
D= 0.7 ⋅ 10−12 m2/s32,37–39 to be A � 1=70, we choose A ¼
1=77 (details on parameters given in Supplementary Information
(SI) Table S1). Concerning the vdW-parameters, we limit our
discussion to the supercritical vdW-fluid33, i.e., the temperature is
above the critical temperature kBTc= 8a/27b, corresponding to
attractive energies eA < eðcÞA ¼ 27=4c1. This supercriticality
implies the coexistence of motor protein clusters of different
sizes without strict phase separation, very much resembling the
situation in the cell. Myosin motors have a coiled coil with
length ≈ 150 nm, two head domains of size ≈ 7 nm40 and the
myosin concentration in cells is of the order of c0 ≈ μM41. A
rough estimate for the volume of one (unclustered) myosin motor
is thus 102 nm2 ⋅ 100 nm. This implies the estimate c∞= 100, not
accounting, however, for crowding in the cell or finite thickness of
the cortex, which should decrease this number. In the micro-
scopic motivation of the vdW-fluid, the saturation concentration
c∞ describes the concentration maximum of bound motors to the
actin network, also justifying a smaller c∞ value. Therefore we use
c∞= 10, which implies eðcÞA ¼ 0:675. This saturation concentra-
tion is consistent to the experimental situation. According to our
model, a fully saturated, motile and polarized cell has a myosin-
enriched region at the back with a fraction of 1/Lc∞ ≈ 9% of the
cell length. From experiments, one can estimate a fraction of
20–40%8,20, implying a lower boundary of c∞≳ 4. In practice, the
saturation concentration should be larger, as steady state profiles
are expected to not be so strongly saturated. Note that for the
vdW-fluid eA ¼ 20πemin=9c1 � 0:7 � emin, with emin being the
binding energy in the Lennard-Jones potential of the vdW-fluid
(in units of kBT). While eA could be obtained from microscopic
considerations, we choose eA= 0.63, for which bistability occurs
for the parameters used within the study. This value is within the
supercritical parameter region, consistent with the assumption of
weak cooperativity, and is close to the thermal energy scale kBT,
reflecting the dynamic nature of the system.

Bistability between sessile and motile solutions. We will now
discuss how the effective nonlinear diffusion arising from volume
exclusion and aggregation of myosin results in bistability between
sessile and motile solutions. Our focus will be on the case without
polymerization, which we will discuss only in the end, thus v ±

p ¼
0 for the time being. To find the steady states, one assumes
_l ± ¼ V , with velocity V, _L ¼ 0 and steady profiles. One then
obtains two coupled ordinary differential equations. The case
DðcÞ � 1 has already been studied in refs. 42,43: two non-motile
solution families exist with flat stress profiles σ≡−(L− 1) and
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lengths L̂± ¼ ð1 ± ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4Pp Þ=2. More complex solutions bifur-

cate from these branches. However, only two were found to be
asymptotically stable, the trivial branch L̂þ and a motile branch
bifurcating from it, with a peak in the motor concentration at the
trailing edge42.

For the nonlinear diffusion considered here, a flat stress profile
is still a steady state solution. In the following we focus on the
bifurcation from the sessile, flat-stress state (L ¼ L̂þ, σ ¼ 1� L̂þ,
ĉ ¼ 1=L̂þ) to the first motile state, as our numerical results
suggest that these are again the only stable solutions for
experimentally relevant parameters. Figure 3a shows the results
from the continuation in Pe for cell length and velocity. We see
that approaching the critical eðcÞA from below renders the
supercritical pitchfork bifurcation toward the motile solution to
be subcritical, implying bistability. Analytically obtained bifurca-
tion points (indicated as circles) are discussed in Supplementary
Note 1 and agree with the numerics, showing that increasing the
attraction eA in addition decreases the value of Pe at which the
bifurcation occurs. Hence, attractive interactions both induce
bistability and reduce the motility threshold. We stress that for
pure volume exclusion (Tonks gas) no bistability is obtained. A
detailed comparison to other proposed models is given in
Supplementary Note 2, where we identify the minimal

components in nonlinear diffusion necessary for bistability. We
find that at least a quadratic contribution of c in DðcÞ is necessary
where positive higher order terms are neglected compared to the
Tonks gas. This is in line with our interpretation of a slow-down
of diffusion compared to exclusion via the chemical potential (cf.
SI, Fig. S3). We also investigated the full, time-dependent BVP
numerically, using the discontinuous Galerkin finite elements
method44,45 (see Methods section), and found that indeed both
solutions marked in Fig. 3a as solid curves are stable in the
bistable regime (cf. SI, Fig. S1).

Using advanced continuation methods (branch point and fold
continuation46, see Methods section), we determined the
boundaries of the three different regimes—sessile, bistable and
motile—as shown by the state diagram in Fig. 3b. Note that we
now kept L2A fixed as explained above. In Fig. 3b, we focused on
the range around the experimentally reasonable values P � 0:1
and A � 1=77 (a full diagram can be found in the SI, Fig. S2). We
see that bistability requires a balance between adhesion and
contractility. Starting in the bistable regime, increasing adhesion
leads to a transition to the non-motile state, while increasing
contractility favors the motile regime. Already a change in
contractility of 5% allows for these transitions. Note that
changing eA shifts all the boundaries and hence, depending on
eA, also the opposite scenario can occur, i.e., decreasing adhesion
inducing motility.

Finally, Fig. 3c shows the normalized motor concentrations
c(u)L of the three possible states in the coexistence region. The
unstable branch displays enrichment of motors at the trailing
edge, while the motile branch develops a layer of high myosin
concentration. Importantly, the volume exclusion of the vdW
limits the height of the concentration (and stress) peak at the
edges even for small A (cf. SI, Fig. S1e). This has to be contrasted
to the linear model, where unrealistically large peaks develop20.
There a strong myosin peak forms at the trailing edge of a motile
cell, which can reach values of up to ≈40 times the average
concentration, completely depleting myosin at the front. In
contrast, our model is in agreement with experimental findings of
moderate myosin enrichment in the back47. The flow profiles _u
shown in Fig. 3c indicate the flow to the trailing edge. The flow
velocity is maximum in the motor-enriched boundary region.
Such a local maximum in flow velocity at the edge of the myosin
layer is consistent with flow profiles in keratocytes48. This,
together with the attraction and subsequent minimum diffusion,
promotes the formation of the myosin layer. The diffusion
coefficient within the cell corresponding to the stable motile case,
depicted in Fig. 3c, shows exactly this slowdown at the edge of the
myosin-enriched layer. In particular, the diffusion is considerably
slower in the back and thus the slowdown of diffusion by
clustering effects facilitates bistability.

Optogenetic switch of cell migration. Having established that
the model displays bistability for experimentally realistic para-
meters, we next ask if optogenetics can be used to switch between
the sessile and motile solutions. Optogenetic control of con-
tractility usually exploits light-induced recruitment of a GTP-
exchange factor to the cell membrane, which in turn activates the
RhoA-pathway and thus leads to an increase in myosin II con-
tractility and localized myosin recruitment9,10. The RhoA-
pathway is also known to be involved in upregulating the total
contractility level through global myosin recruitment and the
subsequent onset of motility, for example as a response to nuclear
deformation12,13. Finally, an alternative way has been described
very recently: there a chemotactic signaling pathway was opto-
genetically activated in neutrophils, which promotes Rac/Cdc42-
activity and thus decreases contractility8. Although neutrophils in

Fig. 3 Active gel model predicts bistability of cell migration. a Cell
velocities V and the length differences from the sessile state, ΔL ¼ L� L̂þ,
for the obtained solution branches as a function of Péclet number Pe for
different (supercritical) attractive energies eA. The bifurcation points are
marked with circles. Stable (unstable) solutions are shown as solid
(dashed). b State diagram for eA= 0.63 and for L2A ¼ 1:25=77 fixed
(containing parameters, which cannot be changed by the cell, cf. text).
Depending on adhesion strength A and contractility P, one finds a sessile,
bistable or motile regime. Parameter values estimated from experiments
are marked with a circle and used in (c). The solid/dot-dashed curves
correspond to the loci of the pitchfork/saddle node bifurcation.
c Normalized motor concentration profiles for experimental parameters
(and V≥ 0) in the bistable regime for the stable sessile, the unstable motile
and stable motile solutions, shown as solid red curves. The flow velocities
are shown as dashed lines. For the stable motile steady state the resulting
diffusion coefficient DðcðuÞÞ inside the cell is shown as solid black curve.
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general show a mixture of mesenchymal and amoeboidal motility
modes, in the context of channel migration they can be con-
sidered to be in a mesenchymal motility mode.

Different optogenetic strategies can be implemented in our
model by introducing an optogenetic contribution to contraction,
P ! P þ EΞ, with a shape function Ξ encoding the spatio-
temporal activation and E the activation strength24. E is positive
(negative), depending on whether one activates (inhibits) myosin II
contractility. We consider a box-shaped function within an
activation region Uact, i.e., Ξ(u, t)= 0 in general and Ξ(u, t)= 1
only if u∈Uact and t∈ [ton, toff] with turn-on/turn-off times ton and
toff. We first concentrate on the effect of local RhoA activation and
local contractility control without a global increase in contractility
levels.

Figure 4 shows that both activation in the front half (a) and
inhibition in the back half (b) can be used to induce reversals of
direction of cell migration. The first protocol has been
experimentally shown to achieve reorientation in adhesive
situations7 but has not been analyzed thoroughly with respect
to length and velocity changes and full migratory control.
However, the simulated trajectories and changes in length for the
latter correspond well to the recent experimental results8. Note
that initiating motility through activation also speaks in favor of
contractility saturation not being central in this context.

In the activation protocol the cell’s length decreases as
contractility is locally increased. The effect of the perturbation
builds up throughout the activation period, since length and
velocity are governed by the integrated active stress (see
Supplementary Note 3). For the inhibition scenario the effect is
opposite, as we inhibit in the half with higher initial concentra-
tion: an immediate length response and a more gradual velocity
change is obtained. In particular, we predict a decrease of ∣V∣ after
turn-off, exactly as observed experimentally8.

Focusing on the activation protocol, we next address the
question whether optogenetic control of contractility can be used
to initiate or arrest motility of cells inside the bistable regime. In

Fig. 5a, we started with the non-motile steady state and activated
the left half. Motility is indeed initiated for E as small as 1.2% of
P. Increasing E further leads to faster initiation. For the smaller E
shown, the perturbation is not sufficiently strong for the induced
flow to overcome diffusion and the system cannot leave the basin
of attraction of the sessile state. In Fig. 5b, we started with the
motile steady state (moving to the right) and activated the right
(leading) half. Compared to the case in (a), now larger
perturbations are required, because in the motile regime the
advection from motility is dominating and has to be overcome.
Arrest is possible only when fine-tuning the turn-off of the
optogenetic signal: it has to occur in the “re-symmetrized region”
that belongs to the basin of attraction of the sessile solution;
activating beyond this point rather induces reorientation. Again,
larger strengths E lead to faster arrest/reorientation.

Timescale of motility initiation. Having demonstrated the pos-
sibility to initiate or arrest cell migration by optogenetics, we now
predict the corresponding time scales. In Fig. 6, we show the time
tini at which the steady state velocity is reached. For the relatively
weak activation strength considered here, these times vary
between hundreds and tens of minutes; later we will see that they
can be below minutes for strong activation strength. In general we
find that tini is larger for stronger adhesion, as one would expect.
Initiation is faster for larger activation strengths, with an
asymptotic dependence of tini � ðE=PÞ�1, cf. Fig. 6a. Using
continuation of the optogenetically perturbed system (see Sup-
plementary Note 4), we determined the lower initiation boundary
for different adhesion strengths, see Fig. 6b. We find that
increasing adhesion not only affects the stability of the steady
states, but also slows down the dynamics and increases the
necessary activation strength. Note that this can be tested
experimentally, as activation strength has been shown to depend
on the size of the illuminated area and on laser power in opto-
genetic experiments9.

Fig. 4 Both optogenetic activation and inhibition can reverse cell
migration. a Positive activation strength E ¼ 0:07 at the front and
b negative activation strength E ¼ �0:07 at the back both lead to
persistent reversal of migration. The upper panels show kymographs, i.e.,
material cell points as function of time in lab coordinates; myosin
concentration is color-coded. The lower panels show cell velocity V and
length L scaled by initial length L(0). Time periods of activation/inhibition
are shaded.

Fig. 5 Local increase in contractility can both initiate and arrest
migration. a Motility can be initiated by optogenetically perturbing the flat
motor concentration in (the left) half of the cell; activation E=P ¼
1:2%;0:8% for A, B. b Motility can be arrested or reoriented when a motile
steady state is activated in the leading (right) half; activation E=P ¼
6:7%;6:6%;4% for A, B, and C. Solid curves are simulations and dashed
(dotted) lines represent stable (unstable) steady states; motile (non-
motile) states are in gray (black). Time periods of activation are shaded.
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Effect of inhibition strength and inhibition time. To further
study the cellular response to the strength and time of pertur-
bations, we next discuss the inhibitory protocol in more detail.
Experimental optogenetic perturbations of contraction via
inhibition have shown a large variety of possible outcomes
when trying to reorient the effectively one-dimensional mode of
migration in a microchannel (cf. Fig. 1b)8,49. Some cells were
not perturbed upon light illumination, while the migratory
behavior changed for others. The response ranged from weak
response, where the velocity remained positive throughout the
experimental observation time; through intermediate response,
where the direction changed for a certain amount of time; to
strong response with full arrest or reorientation. To recapitulate
this behavior, we consider inhibition in the trailing half for
ε=−0.04 and −0.09 for inhibition times of Δtinh= 31 s, 63 s
and 126 s. Figure 7 shows that the model predicts all experi-
mentally observed behaviors. To be more realistic, here we use
an exponentially plateauing effective temporal activation func-
tion Ξeff, which describes the temporal evolution of the con-
tractility following light turn-on and turn-off, as suggested in
refs. 9,11,24. The characteristic timescale of de-/activation is
assumed to be teff= 25 s and the resulting activation is
depicted in Fig. 7. We obtain a characteristic dip in the velo-
city at the end of activation time, resulting from the relaxation
of the response function after turn-off. This dip also occurs
with a sharp response function on a slower timescale due to
relaxation toward the steady state, cf. Fig. 5. In experiments
this dip has also been observed on a short timescale8,
consistent with the relaxation of contraction after turn-off.
More precisely, the difference of the largest negative velocity V
at signal turn-off and the final velocity at t= 400 s is of the
order of ≈30%, compared to the difference between initial and
final velocity in Fig. 7d. In experiments the corresponding
relative dip depth was observed to start at 10% in comparable
cases, going far beyond in cases with similar final and initial
velocities. As in Hadjitheodorou et al.8, we also find a change in
motility direction before the cell has completely repolarized,
i.e., before the myosin motor proteins have accumulated at the
new rear.

For intermediate responses to occur (Fig. 7c), the inhibition
time has to be too small to achieve full resymmetrization. Weak
responses can then result from either even shorter activation
times, cf. Fig. 7b, or from smaller inhibition strengths, cf. Fig. 7a.
We do not find the slowing down response for large optogenetic
inhibition strengths and long times, as the ability to change

the velocity direction induces motor advection, leading to
reorientation or arrest on longer time scales. The strong
dependence on the inhibition strength could thus explain the
variability in experimental outcomes, as cell-to-cell variations in
the achievable inhibitions, resulting from the used indirect
perturbation of contractility, are likely.

We also investigated the effect of differences in total
contractility P. In experiments a correlation of weak response
to external optogenetic cues and of initial contractility, as well
as initial myosin polarization has been found8. We performed
simulations for different contractilities to find that indeed larger
P corresponds to a larger myosin peak at the back and faster
relaxation toward a motile state (see SI Fig. S5). However, our
results indicate that the relative activation strength E=P and
activation time determine the strength of the effect on motility.
In the bistable regime, which we are most interested in, cf.
Fig. 7, the relaxation to the motile steady state is very slow
compared to experimental timescales (cf. Fig. 5), due to the
competing effect of advection and diffusion. For larger
contractilities this relaxation is much faster, but bistability is
lost. This suggests that bistability might not be present for all
cells.

In all inhibitory protocols cell length has a maximum during
inhibition with subsequent relaxation toward the initial length, as
the total contractility level has only been modified reversibly with
the local protocol. While this general behavior is consistent with
experiments, a small length decrease has been found there, which
we address next when studying the global myosin recruitment
mechanism.

Effect of global myosin recruitment. To model global myosin
recruitment, we introduce into the model a logistic growth of the
concentration upon light illumination, where the saturation
concentration is chosen to be c∞. Specifically, the equation for the
myosin concentration in Eq. (8), is replaced by, in dimensionless
form:

∂t~cþ
1
L
∂u

1
AL

∂uσ þ v̂

� �
~c

� �
¼ 1
L2

∂u½Dð~c=LÞ∂u~c�

þ ðR=LÞΞ~c Lc1 � ~c
� �

;

ð9Þ

whereR is a non-dimensional myosin recruitment rate. The shape
function Ξ again encodes the spatiotemporal details of the activa-
tion protocol. Note that albeit the optogenetic perturbation is local,
it yields a global increase of myosin concentration, since the total
concentration

R
~c du is increased and motors may be advected or

diffuse away from the activation region. Here we consider the
opposite case from before, i.e., no local increase of contractility
(E ¼ 0) beyond the effect of locally added motors. Considering the
coupling of c to the stress, cf. Eq. (8), the increase in the overall
myosin level implies identical steady states of the perturbed system
compared to an unperturbed system, but with effective contractility
parameter Peff ¼ P R 1

0 cL du and with changed vdW-parameters:
c1 ! ðP=Peff Þc1 and eA ! ðPeff=PÞeA.

To approximate the recruitment rate we estimate the time
scale of global contractility increase to be bounded from below
by trecr ≳ 3000 s, estimated from Oakes et al.9. This corresponds
to R⪅0:2. Figure 8a depicts simulation results for optogenetic
perturbations of the nonmotile steady state via the recruitment
mechanism. Even for small recruitment rates motility initiation
occurs robustly if the activation time is chosen to be sufficiently
long, as myosin motor proteins are consistently recruited
during activation. This eventually leads to the crossing of the
motility threshold in contractility P and the sessile steady state
becoming unstable (in Fig. 3b, the system moves from the
experimental point upwards). Recruitment at the front of a

Fig. 6 Active gel model predicts initiation times. a For different levels of
adhesion the initiation time tini for motility differs, where A ¼ 0:013
corresponds to Pe= 77. Time tini decreases for larger activations E=P,
asymptotically decaying as tini � ðE=PÞ�1. b For larger adhesion tini grows
larger, with concomitantly increasing minimal activation E=P necessary for
motility initiation. The dashed line is the initiation threshold, obtained using
continuation.
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Fig. 7 Active gel model describes the effects of inhibition strength and inhibition time. In the upper panels kymographs are shown, i.e., material points as
functions of time, of the cell in laboratory coordinates with myosin concentration in color. Below we depict the effective activation of the shape function,
caused by the optogenetic signal, as a function of time, Ξeff; the velocity V; and the relative length L/L(t= 0). The inhibition region is chosen as the left half
of the cell, i.e., Uact= [0, 0.5]. Time periods of activation are shaded. For a small optogenetic inhibition strength E ¼ �0:04 (with Δtinh= toff− ton= 126 s)
(a) and for a short inhibition time of Δtinh= 31 s (with E ¼ �0:09) (b) only weak motility responses occur. c For a strong inhibition (E ¼ �0:09) and an
increased Δtinh= 63 s, which is of the order of the experimentally used time, we find a strong motility response: here the velocity becomes negative, even
though the initial orientation persists after the signal is turned off. d For strong inhibition (E ¼ �0:09) and a longer inhibition time (Δtinh= 126 s), cell
migration is arrested.

Fig. 8 Global myosin recruitment initiates motility but does not allow for full control. a Velocity V, length L and the effective contractility Peff for
activation of the left half Uact= [0, 0.5] of a sessile state with the recruitment protocol. Motility is initiated robustly, even for small recruitment rates
R. b No reorientation for recruitment in the leading half, Uact= [0.5, 1], of a motile cell for small recruitment rates R<1. c Reorientation becomes possible
for recruitment in the front 20% of the cell, Uact= [0.8, 1], with large R. The dashed lines in (a–c) correspond to the steady state values we expect from
the effectively changed vdW-parameters (see text), where Peff is calculated via the integrated final concentration field. Time periods of activation are
shaded. d, e Kymographs of concentrations in internal coordinates as functions of time for recruitment in the front of motile cells. The dashed lines mark
the spatial and temporal extent of the activation region. d Kymograph corresponds to the case of no reorientation for R ¼ 0:2, marked in (b) as ⋆.
e Reorientation for R ¼ 4, marked in (c) as ⋆⋆.
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motile cell cannot reorient or arrest motility for small (but
experimentally realistic) recruitment rates R, cf. Fig. 8b. Only
increasing R allows for reorientation (cf. Fig. 8c), as it is
necessary to recruit motors faster than they can be transported
to the back by internal flows (cf. Fig. 8d, e). Note that the model
only allows for stable steady states with finite length L > 0 for a
finite contractility P < 1=4, as increasing contractility beyond
this point cannot be balanced by the elastic boundary
conditions20. Therefore increasing R means that the activation
time has to be shortened to not activate too many myosin
motors in the cell. Moreover, we find that reorientation also
necessitates the activation of a smaller region at the front to
increase the asymmetry and polarize the concentration field
into the opposite direction.

Due to the dependence of velocity and length on contractility
P, we find that recruitment leads to a length decrease, which was
also observed experimentally for the inhibitory protocol. As
optogenetic activation in the back would not be consistent with
reorientation from global recruitment, this shows the secondary
role of global recruitment in direction control. This assessment is
strengthened by the strong variability in length and velocity after
activation with different recruitment rates R, which was not
observed experimentally8. As we expect the recruitment to also
depend on the illuminated area, like it was observed for the
contractility increase9, this should be observable experimentally if
global recruitment would be the primary mechanism for motility
control.

Figure 8d, e show kymographs of the concentration in internal
coordinates for the case of no reorientation (d) and reorientation
(e). If the state of motility is not changed, the overall intensity is
increased as the total amount of active myosin is increased. This
also occurs for reorientation but we also find redistribution of
myosin motors to the other edge. This redistribution also occurs
after turn-off of the optogenetic recruitment, as the polarization
has been switched, leading to overall flow to the other edge. Note
that this also occurs for local activation (cf. Fig. 4) and in
experiments (cf. Fig. 1b).

To summarize the effect of a global contractility increase
through recruitment, full controllability would only be possible
for very localized additional recruitment of motor proteins with
an unrealistically high recruitment rate. Our model hence
strongly suggests that global recruitment is not the primary
mechanism for direction control in motility, in agreement with
the fact that the RhoA-pathway usually acts locally. Nonetheless
global activation can also robustly initiate motility, because it can
destabilize the sessile state.

In addition to non-reversible recruitment, also a non-reversible
decrease of total contractility could be envisioned. Such a decrease
can be implemented by considering a negative recruitment rate
R< 0. As contractility P depends on the integrated concentra-
tion, this will eventually lead to a motility arrest, as we effectively
move downward in the phase diagram of Fig. 3b. Note that this
could be tested experimentally, for example, via myosin
degradation due to phototoxicity.

Reorientation through a switch of polymerization. We finally
turn to the effect of actin polymerization, which mainly occurs at
the boundaries, is controlled by Rac/Cdc42 and can also be tuned
by optogenetics50. As explained above, this effect can be easily
incorporated into our model via the boundary conditions, using
vþp ≠ 0 and v�p ≠ 0. Myosin conservation then leads to the mod-
ified boundary condition:

∂u~cðu± ; tÞ ¼
ð1=AÞ∂uσðu± ; tÞ þ Lv̂
	 


~cðu± ; tÞ
D ~cðu ± ; tÞ=L
� � : ð10Þ

Here we will assume polymerization at one of the edges without
de/polymerization at the corresponding other edge, i.e., vþp > 0
and v�p ¼ 0, or v�p < 0 and vþp ¼ 0.

We find that such an asymmetric polymerization breaks the
symmetry and leads to so-called imperfect bifurcations: the
pitchfork bifurcation of the model without polymerization splits
into 2+ 1 saddle-node bifurcations, see Fig. 9a, b. For large
polymerization velocities the bistability is entirely lost as two of the
saddle-node bifurcations vanish. To estimate realistic polymeriza-
tion velocities, we note that in experimental systems, retrograde
flow velocities of 1–3 μm/min have been measured51, which is
smaller than single-filament polymerization velocities, being of the
order of hundreds of nm per second52,53. For experimental cell
velocities of 20 μm/min this entails a lower polymerization velocity
boundary of 5% of the cell velocity. In the following we will hence
consider vþp ¼ 0:05 (corresponding to ≈4% of the final cell velocity
in our simulations) and the stable motile state as the initial state (cf.
the red dot at Pe= 77 in Fig. 9a, b). To study the effect of
polymerization repolarization, we consider an instantaneous switch
to v�p <0 and vþp ¼ 0 from the above steady state.

From the bifurcation diagram in Fig. 9b we find that for small jv�p j
a motile steady state without reorientation exists at Pe= 77. We
expect to find a less polarized concentration field which, however,
has opposite polarization to the polymerization. Thus the myosin
peak is expected to remain at the back with no reorientation (V > 0
prevails). For larger polymerization velocities the saddle-node
bifurcation moves past the considered Péclet value and thus the
only stable steady state exists at V < 0, corresponding to a
reorientation event. We find for the chosen parameters the critical
polymerization value jv�p j � 0:04, which is the lower boundary for
possible reorientation. To confirm this scenario, we performed
dynamical simulations at v�p ¼ �0:035 and −0.045 in Fig. 9c, d,
respectively. In (b) we find a small myosin layer broadening without
reorientation, while in (c) indeed reorientation occurs as the
polymerization flow can fully repolarize the myosin field.

We have neglected in this discussion the temporal details of the
change in polymerization velocity, but as the existence of the not-
reoriented steady state solely depends on the maximum final
value of jv�p j, we do not expect dynamical effects to change the
scenario. Importantly, note that we find no overshoot in the
velocity, contrary to the experimental observations8. This suggests
that the optogenetic effect on contraction is central in the
reorientation experiments. In addition, the magnitude of v�p �
�0:04 suggests that a rather large reversal of the polymerization is
necessary to overcome the myosin distribution, with perturbed
polymerization velocities comparable to the ones in the motile
state. These results again underscore the importance of the
contraction effects, which lower this large threshold.

Discussion
We have shown that active gel theory can explain bistability and
optogenetic switching in cell crawling when the myosins perform
nonlinear diffusion. We have derived a concentration-dependent
diffusion constant D(c) from a microscopic model for the binding
kinetics of the myosins and showed that this result is equivalent
to the irreversible thermodynamics approach when the myosins
are described as a supercritical vdW-fluid. The model predictions
agree well with recent experiments of cell motility inside
microchannels8, including the time scale of motility arrest and
perturbations. The experimental cell velocity and reorientation
response are slightly faster than predicted here. However, the time
scale of our model is set by the myosin II effective diffusion
coefficient D, which in practice could be larger than for free
diffusion. Moreover, in experiments directly perturbing RhoA
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signaling optogenetically, reorientation has been observed to
occur on a slower time scale, consistent with our findings7. We
also find that variations in total contractility lead to faster
relaxation for cells in a parameter regime without bistability,
consistent with experiments8.

Considering the effects of local contractility increase versus
global myosin recruitment, we have shown that global recruit-
ment leads to robust motility initiation. This could explain why
cells globally upregulate contraction upon nuclear deformation12.
On the other hand, local contractility increase allows full con-
trollability and thus serves as a robust mechanism to obtain
direction control, consistent with the observed myosin distribu-
tion in motile cells23.

In this work we have estimated reasonable values for the
parameters c∞ and eA that enter the vdW equation of state. While
our parametrization rests mainly on observed cellular processes,
our microscopic approach also opens the perspective to make
direct contact to molecular properties, in particular for recon-
stituted systems with few components. Especially the choice of c∞
as the saturation concentration in the study of recruitment should
be reconsidered for simulations of longer activation than con-
sidered here. Activating motors until the system is thermo-
dynamically saturated leads to collapse of the model and seems
biologically unrealistic. Extending activation into the nonlinear
regime of recruitment, which goes beyond the switching scenarios
studied here, necessitates a more realistic description of the
saturation behavior and also the relaxation toward a homeostatic
contractility for long times.

Although not the main focus of this work, our model can easily
address the role of actin polymerization by implementing corre-
sponding boundary conditions24,54. However, here we demon-
strated that myosin contractility is sufficient to explain bistability
and switching as experimentally observed. Although migration
can also be reoriented by a switch of polymerization direction,
this does not fully capture the experimental observations,
underlining the importance of contraction in cellular and opto-
genetic control of motility.

Our work has its main focus on the effect of myosin con-
tractility on internal actin flows and thus does not address the
important role of cell adhesion, which is known to also be able
to establish cell polarization through contractility, namely
through rupture of adhesion sites7,17–19. This implies that our
predictions are more applicable to experiments that do not
depend on adhesion, like cells in microchannels8,49, as con-
trasted to cells on adhesive lines7. In order to combine the two
research directions in the future in one transparent and mini-
malistic active gel model, it would be appropriate to formulate a
continuum version of the stick-slip dynamics of discrete
adhesion bonds. Another direction for future improvements
would be the details of the signaling networks controling
myosin contractility and actin polymerization. Combining our
active gel model with biochemical repolarization mechanisms
on the signaling level could reveal even more modes for opto-
genetic control of cell migration55.

More biological details might be added in the future, but the
present work demonstrates that incorporating volume exclusion
and attraction in active gel theory is sufficient to identify the
fundamental physical processes underlying crawling of contractile
cells as long as adhesion is not dominant. We expect that such a
fundamental insight will also be very helpful to design synthetic
motile cells.

Methods
Numerical continuation procedure. We use AUTO07p56 for numerical con-
tinuation of steady states. To do so, Eq. (8) is transformed into an ordinary dif-
ferential equation BVP by considering a steady state with _lþ ¼ _l� ¼ V . We
introduce the auxiliary variable s= σ+ (L− 1) for which the boundary conditions
read s(0)= s(1)= 0. The trivial (nonmotile) steady state is then given by s≡ 0,
V= 0, L ¼ ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4Pp Þ=2, which we use as starting point for all continuations.
Motor conservation introduces the integral constraint ∫cL du= 1.

For Fig. 3a, this solution is continued with principal continuation parameter Pe
and branch switching at the pitchfork bifurcation. For the phase diagram (Fig. 3b),
the pitchfork and saddle-node bifurcation loci are continued in the ðA;PÞ plane for
fixed L2A. For the study on polymerization, i.e., Fig. 9a, b, first the trivial steady
state is continued in v ±

p left and right of the pitchfork bifurcation and then at the
desired v ±

p the solution is continued in Pe. Similarly the steady state with activation
is obtained, cf. Fig. S4, and the activation threshold in Fig. 6b is determined via
continuation of the corresponding saddle-node bifurcation (see Supplementary
Note 4 for details). All simulations are run with a mesh discretization into
20 subintervals with 4 Gauss collocation points each and an adaptive stepsize in the
pseudo-arclength continuation.

Finite element integration method. The full, time dependent BVP, Eq. (8), was
solved with the discontinuous Galerkin (dG) finite elements method, accounting
for the heterogeneous diffusion constant via the symmetric weighted interior
penalty scheme for the description of the diffusion term44 and for advection via
upwinding. The corresponding weak form is given in Supplementary Note 5. For
the interval, [0, 1], the mesh was chosen to discretize the interval into nmesh=
100 equally sized subintervals. The stress σ and the concentration ~c were solved
in a function space with discontinuous Galerkin basis elements of order 2. For
the fluxes in the advection-diffusion equation for ~c the derivatives ∂xσ were
projected into the function space of continuous finite elements of order 1. For
the time discretization the time step was chosen to be Δt= 10−3 (≈0.6 s in real
units) for Figs. 5 and 6; Δt= 10−4 for Figs. 4, 7–9; and Δt= 5 × 10−5 for the
curves in Fig. 8b, c for which the kymographs are plotted. In each time step first
the stress equation was solved. Then length and cell center position were inte-
grated via explicit Euler stepping. Finally, the time-dependent equation for ~c was
integrated with an implicit Euler scheme, where the advective flux was computed

Fig. 9 Switch of polymerization can lead to reorientation. Bifurcation
diagrams for different polymerization velocities at the right edge vþp with
v�p ¼ 0 (a) and at the left edge v�p for vþp ¼ 0 (b). The red circle marks the
motile steady state velocity for vþp ¼ 0:05. c Repolarization attempt with a
small polymerization velocity v�p ¼ �0:035 does not induce motility
reorientation. The myosin-enriched layer is spread but no repolarization
occurs, as visible in the kymograph of concentration c in internal
coordinates, in the velocity V and the length L. The dotted red line marks
the time at which instantaneous switching of polymerization occurs.
d Repolarization is successful for a larger v�p ¼ �0:045: the polymerization
is able to overcome the polarization from myosin motors.
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from the old stress field. The solver was implemented with FEniCS45. The full
BVP with optogenetic activation is given in Supplementary Note 3.

Data availability
All data generated for this study are publicly available at https://doi.org/10.5281/zenodo.
7967125.

Code availability
All code written to generate the data shown here is publicly available at https://doi.org/
10.5281/zenodo.7967125.
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