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Two-dimensional non-linear hydrodynamics and
nanofluidics
Maxim Trushin 1,2,3✉, Alexandra Carvalho1,2✉ & A. H. Castro Neto 1,2,3

A water monolayer squeezed between two solid planes experiences strong out-of-plane

confinement effects while expanding freely within the plane. As a consequence, the transport

of such two-dimensional water combines hydrodynamic and nanofluidic features, intimately

linked with each other. In this paper, we propose and explicitly solve a non-linear hydro-

dynamic equation describing two-dimensional water flow with viscosity parameters deduced

from molecular dynamic simulations. We demonstrate that the very ability of two-

dimensional water to flow in short channels is governed by the second (dilatational) viscosity

coefficient, leading to flow compression and velocity saturation in the high-pressure limit. The

viscosity parameter values depend strongly on whether graphene or hexoganal boron nitride

layers are used to confine 2D water that offers an interesting opportunity to obtain various

nanofluids out of the same water molecules just by using alternate materials to fabricate the

2D channels.
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Water is the most important substance for life on Earth
and has remained in the scientific focus for centuries,
if not for millennia. Despite (or due to) its simple

chemical composition, the structure of water often causes scien-
tific controversies such as polywater1, memory effect2, chain-like
formation of water molecules3, to mention a few. The most
controversial claims regarding non-orthodoxal properties of bulk
water have been debunked by subsequent comprehensive
experiments1–3. It may nevertheless be possible to find some
evidence of unconventional phenomena in two-dimensional (2D)
water—a-few-angstrom thick water monolayer squeezed between
two solid planes4.

What makes water so special as compared with most other
liquids are the relatively strong hydrogen bonds5. In particular,
the hydrogen bonds are believed to be responsible for the rather
high melting and boiling points of water, as well as for the
expansion upon freezing. In general, reducing dimensionality of
any interacting physical system (for instance, squeezing it into a
plane) amplifies interaction effects. The same happens in 2D
water: The hydrogen bonds may become stable enough to bring
water molecules into an ordered state making water behave like a
solid in some aspects. 2D water locked between two graphene
sheets has been recently found in such a structured state6.
Molecular dynamics (MD)7–12 and ab-initio simulations12–17

suggest that 2D water can transit into various structured states
with distinctive molecular arrangements18. Recent progress in
machine learning has made it possible to overcome some lim-
itations of ab-initio and force field methods16,19–21. Nonetheless,
hydrodynamics of truly 2D water remains an open question22.

Until recently, the fundamental research on strongly confined
water has mostly focused on carbon nanotubes23–25 with a dia-
meter of less than 1 nm—a characteristic length scale below
which any continuum (hydrodynamic) description generally
fails26. At such a small scale the finite-size effects associated with
molecule geometry and channel diameter become crucial and
must be probed using nanofluidic methods, such as MD
simulations27–29. In 2D water, the in-plane flow remains essen-
tially unrestricted, hence, it should follow the laws of hydro-
dynamics, in which the finite size of molecules never enters
explicitly. At the same time, the out-of-plane molecular motion is
strongly restricted and falls into the realm of nanofluidics. 2D
water can therefore be seen as a hybrid system having hydro-
dynamic features in the in-plane directions and nanofluidic fea-
tures along the out-of-plane direction, which can affect each other
in some ways not known so far.

An attempt to understand such a hybridisation has been
recently made using a Poiseuille-like model with the viscosity
coefficients taken from MD simulations30. Although a certain
consistency between the continuum model and MD simulations
has been reached, the very applicability of the Poiseuille equation
to a monolayer remains questionable. Indeed, what is usually
considered as a confined 2D water flow is in fact a quasi 2D one,
where no water monolayer is formed, Fig. 1a. The flow is
assumed to be laminar, and the outer layers being in contact with
the walls travel at a slower velocity than the inner layers,
resulting in an out-of-plane velocity profile, vx(z), absent in the
truly 2D limit. The profile determines the slip length, ls, which
could also be defined as a ratio between the bulk shear viscosity
and interfacial friction coefficients31–33 so that it characterises
the relative contributions of the bulk and interface frictions into
energy dissipation34. Obviously, it is not possible to distinguish
between the bulk and interface in a 2D limit, and the shear
viscosity and interfacial friction coefficient either lose any sense
or must be redefined. Hence, a proper continuum model for 2D
water cannot be directly deduced from the conventional models
used so far.

We offer an alternative to the Poiseuille formula, also relating
driving pressure, flow velocity, and viscosity coefficients, but
suitable for truly 2D water (Fig. 1b). It is given by an explicit
solution of the non-linear hydrodynamic equation written as

η
∂2v
∂x2

þ v0ρ0
c20
v2

� 1

� �
∂v
∂x

¼ 0; ð1Þ

where v is the flow velocity along the coordinate x, η= 4η1/3+ η2
is the total viscosity with η1,2 being the viscosity coefficients
discussed below, c0 is the sound velocity, v0 and ρ0 are the flow
velocity and density at x= 0, respectively. Equation (1) is derived
in this paper from the 2D Navier-Stokes and continuity equations
assuming a well-structured flow (i.e., no vorticity, rot v= 0) with
a certain compressibility (div v≠0) in short channels, where
conventional hydrodynamic friction effects can be neglected.

In Eq. (1), η1 does not represent conventional (intrinsic) shear
viscosity, as the absence of vorticity implies that 2D water is a
solid rather than a liquid so that the intrinsic shear viscosity
coefficient would formally be infinite (or demonstrate tens of
orders of magnitude increase, as compared to a liquid state35),
and it is known that conventional shear viscosity of water
increases by orders of magnitude when approaching a monolayer
limit36. In our model, η1 has the meaning of interfacial viscosity,
i.e., it is determined by interactions between water and the solid
layers forming the 2D channel. The second viscosity coefficient η2
is associated with the energy loss caused by compression or
expansion of the water monolayer and referred here to as dila-
tational viscosity, η2. In contrast to the conventional bulk
viscosity37–39, the dilatational viscosity is of utmost importance
for 2D water flow because the water molecules confined in 2D

Fig. 1 Hydrodynamic and molecular dynamic (MD) setups for two-
dimensional (2D) water. a Difference between quasi 2D water, described
in terms of the slip length ls, and 2D water studied here: The former has a
well-defined out-of-plane velocity profile vx(z), whereas the latter does not.
Formally speaking, the slip length is infinite for 2D water and therefore
unsuitable for the characterisation of a truly 2D flow. b Our MD setup for
testing solution of Eq. (1): A microscopic piston of height H pushes water
through a 2D channel of length L at a constant pressure p0. Here, the
structure is made of carbon but we also consider hexagonal boron nitride as
an option. The channel height (carbon-carbon interlayer distance, d) is
chosen to be small enough (6 or 7Å) to squeeze water down to a
monolayer. The hydrodynamic channel height h= d− 2δvdW takes into
account the van der Waals off-set δvdW= 1.67 Å from each side of the
channel not accessible for water molecules. The piston cross-section is
assumed to be substantially larger than that of the channel (H ~ 30 Å). The
exit of the channel is assumed to be always opened so that the boundary
conditions are imposed at x= 0. An animated version of our setup is
available as Supplementary Movie 1.
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tend to have a denser hydrogen bonding network under stronger
interaction with the solid surface40–42, and the resulting density
may also vary under the stress43 and structural changes11,36.
Hence, neither of η1,2 is intrinsic, and their values depend on the
material the channel is made of. Both coefficients appear as a
linear combination in Eq. (1) but they enter the boundary con-
ditions separately.

In this work, Eq. (1) is explicitly solved in the limit v(x)≪ c0
under the boundary conditions at x= 0 for v(x) and ∂xv(x)
determined by a driving pressure. Using MD simulations, we
show that our solution represents a realistic model for the 2D
water flow confined by carbon or boron nitride planes in the
channels of up to 10 nm length. We also show that the interfacial
and dilatational viscosity parameters η1 and η2 are not intrinsic to
2D water but strongly affected by the material the 2D channel is
made of. The interplay between hydrodynamic and nanofluidic
mechanisms leading to the non-linear dependence of the 2D
water flow velocity on driving pressure and the viscosity para-
meters is the main focus of this research.

Results
Model setup. To test our equation (1) by means of MD simu-
lations we consider a channel of height h formed by two parallel
solid planes of length L. The 2D water flowing in this region will
be the object of this study. However, in practice the 2D water flow
has to be fed by a source. In the molecular dynamics simulations,
the channel connects two reservoirs: one is always full of water,
and another is almost empty. A piston of height H is moving to
maintain a constant driving pressure p0. The piston and channel
have the same width w (w≫ h,H), with cross-sections are wH
and wh, respectively. The problem is effectively one-dimensional
with the coordinate x directed along the flow and origin x= 0
defined to be at the entrance of the channel, see Fig. 1b. Note that
the hydrodynamic height h is smaller than the actual MD inter-
layer distance d measured from the middle of the upper solid
layer to the middle of the lower one, due to the fact that the
electronic orbitals on both sides narrow the hydrodynamic
channel. We estimate this narrowing to be by 1.67 Å from each
side (half the graphite or h-BN interlayer distance).

A steady-state fluid flow velocity is described by a second-order
differential equation, the Navier-Stokes equation (see “Non-linear
hydrodynamics in a 2D channel” in Methods), and its solution
requires two boundary conditions. Physically, the boundary
conditions take into account the feeding reservoir, which is out of
scope of our 2D hydrodynamic theory, but must be retained in
our MD simulations. Hence, the choice of v0 is specific to the
particular MD simulation setup we are currently utilising. Testing
a few reasonable relations between driving pressure and v0 we
have found the best fit is given by the simplest Bernoulli’s
equation as p0 ¼ ρv2=2jx¼0� assuming ρx¼0� ¼ ρx¼0 ¼ ρ0. The
flow velocity is then higher at the entrance point (x= 0) than in
the left reservoir (x < 0) because of the mass conservation
equation given by wHρ0vjx¼0� ¼ whρ0vjx¼0. Hence, we have

vjx¼0 � v0 ¼
H
h

ffiffiffiffiffiffiffi
2p0
ρ0

s
: ð2Þ

Equation (2) could be modified by means of the
Darcy–Weisbach relation44 with a phenomenological friction
factor. Technically, the friction factor could be absorbed into the
effective hydrodynamic channel height h. Note, that the
Darcy–Weisbach equation also suggests quadratic relation
between pressure and average flow velocity, so that the functional
dependence would be the same as in Eq. (2). We shall see later
that the average 2D flow velocity obtained from our MD
simulations indeed tends to follow a square-root dependence on

the driving pressure as soon as the channel height becomes larger
than the hydrodynamic limit of about 1 nm. In that way,
applicability of Eq. (2) is justified, and its simplicity can be
explained by the peculiarities of our MD setup, where the piston
has no walls along the flow, as we apply periodic boundary
conditions in y and z directions at x < 0. Hence, there is no energy
loss associated with the walls. The energy loss due to water
compression at the entrance (x= 0) is taken into account by the
second boundary condition, as follows.

The second boundary condition applies to the divergence of
the flow velocity, div v. If div v≠0, then the continuity equation
immediately suggests that grad ρ≠0 requiring 2D water to be able
to shrink and expand. It is the second (dilatational) viscosity45

that relates the pressure difference and div v in a steady-state limit
as p0 ¼ �η2div v. Our p0 is not to confuse with the equilibrium
pressure also denoted by p0 in45. The latter is nearly zero in our
case because the right volume in Fig. 1b, is very large and almost
empty. For our effectively one-dimensional problem the second
boundary condition can be written as

∂v
∂x

����
x¼0

¼ � p0
η2

: ð3Þ

This expression relates the compressibility of the fluid to an
external perturbation (driving pressure) via a material parameter
(dilatational viscosity) and in that way describes viscous entrance
effects. Since η2 > 0 and p0 > 0 the flow must slow down when
propagating through at least the starting section of the channel.
Hence, the flow density must increase with x. The limit of η2→∞
corresponds to an ideal solid state, when the ice layer never
deforms regardless of the stress applied. The flow velocity then
does not change within the channel limits. The opposite limit of
η2→ 0 corresponds to an ideal gas state with an absolute
compressibility resulting in a vanishing flow velocity right at the
entrance of the channel. Eq. (3) also suggests that such a low
dilatational viscosity coefficient leads to a high responsivity to
driving pressure anticipating non-linear effects. The 2D water
flow characteristics are supposed to lie between these two limits
depending on the interactions within the channel. We emphasise
that the non-linear effects are intrinsic to our model regardless of
the boundary conditions.

Right after entering the 2D channel the water flow becomes
strongly confined in z-direction with both density and velocity
being dependent on x. Indeed, the statistical analysis of our MD
simulation data (Supplementary Figs. 1–4) indicates that (i) the
averaged 〈vx〉 is substantially higher than 〈vz〉; (ii) the averaged
exit velocity 〈vx=L〉 is somewhat lower than the averaged entry
velocity, 〈vx=0〉; (iii) increasing d to 1 nm makes the averaged flow
velocity 〈v(x)〉L equal to v0 indicating transition to the
conventional regime at d > 1 nm; (iv) the flow velocity out-of-
plane profile is rectangular rather than parabolic prohibiting
description in terms of the slip length ls. Note that the left
reservoir having H > 1 nm is always in the conventional
(Bernoulli’s) regime, except when the piston approaches x= 0.

To relate the changes of pressure and density we introduce the
speed of sound defined as c0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
∂p=∂ρ

p
. Here, c0 is assumed to

be a constant with the conventional value 1.5 ⋅ 103 m/s. In the
channel, the speed of sound and viscosity coefficients may depend
on x, but we assume constant values in order to keep the
hydrodynamic model analytically tractable. As we shall see below,
the qualitative outcomes are not sensitive to this assumption.

The structure of 2D water. In this section, we consider the
structure adopted by water when confined in the channel, in the
stationary flow regime. Figure 2 suggests that 2D water rapidly
develops a multicrystalline structure when entering the channel.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01274-1 ARTICLE

COMMUNICATIONS PHYSICS |           (2023) 6:162 | https://doi.org/10.1038/s42005-023-01274-1 | www.nature.com/commsphys 3

www.nature.com/commsphys
www.nature.com/commsphys


A solid phase of 2D water is expected at room temperature, as it
has been shown that for water confined by graphene, there is
a solid-liquid phase transition at an interlayer distance of about
7.5 Å, for a density of about 12 molecules/nm2 7. We have
observed a similar phase transition for stationary 2D water MD
models, confirming that this is not a problem of the thermo-
stating such as the ‘flying-ice-cube’ problem discussed
previously46. We have observed regions of the square phase and
rhombic polar phase for graphene confinement, and rhombic
polar and square polar for boron nitride confinement (for
nomenclature please refer to ref. 47), consistent with previous
works7,12–17,48, in agreement with the experimental observation
of ‘square ice’ for monolayer water confined by graphene at room
temperature6. The hydrogen atoms are less ordered than the
oxygen atoms, as typical of other ice phases, in 3D.

The most striking difference between carbon and BN channels is
the domain size of the 2D ice crystal regions. The domains tend to be
larger in BN channels, hence, 2D water appears to be more structured
by BN walls than by carbon ones. To quantify the crystallinity and
long-range order we have calculated the radial distribution function
(rdf, see Methods). For bulk liquid water, the (3D) radial distribution
function shows a sharp peak at 2.8Å, corresponding to the nearest-
neighbour distance, and decays fast, showing still two more peaks at
approximately 4.4 and 6.7Å, see Fig. 3. In contrast, the rdf for 2D
water shows multiple peaks as a function of r in both h-BN and
carbon channels clearly indicating long-range order. The peak
corresponding to the nearest-neighbour shell coincides for the cases
of graphene and h-BN channels and is located at 2.6Å. In the case of
graphene, there is a smaller feature at about 4.4Å. This is too low to
correspond to the second nearest-neighbour shell for a perfect square
lattice, but it is very close to the value expected for a 60∘-rhombus,ffiffiffi
3

p
´ 2:6Å. The other peaks are comparatively more pronounced in

the case of h-BN channels, as expected for the more structured
molecular arrangements (compare with graphene in Fig. 2). Hence,
graphene and h-BN interact with water differently, which should
result in different interfacial and dilatational viscosity coefficients.

2D hydrodynamics. We expect 2D water and bulk liquid water to
flow differently. Our MD simulations suggest that 2D water
maintains its ordered state when moving in the channel, and
interfacial viscosity due to interactions with the channel’s walls
can be stronger than interactions between adjacent layers in the
laminar flow of bulk water. Hence, the interfacial viscosity coef-
ficient, η1, is expected to be somewhat larger than the bulk water
viscosity of about 1 mPa ⋅ s39. In contrast, the dilatational visc-
osity coefficient, η2, should be much lower because of the stronger
compressibility of 2D water. The in-plane compressibility and the

Fig. 2 Molecular dynamic (MD) top-view snapshots showing different two-dimensional (2D) water structures developing along graphene and
hexagonal boron nitride (h-BN) channels. All water molecules are placed into the left reservoir at t= 0. The snapshots are made at the indicated time
points. The typical patterns are highlighted. Note that the crystalline regions move with the flow, and different grain patterns appear at different timesteps.
The channel height is d= 6 Å, and the atoms other than H (white) and O (red) are removed for clarity. The water molecules appear to be more ordered in
h-BN than in graphene channels. An animated version of 2D water flow in a graphene channel is available as Supplementary Movie 2.

Fig. 3 The O–O radial distribution function (rdf) for two-dimensional
(2D) water. The water layer is confined between graphene or h-BN planes
at a pressure of 5.2 atm. The O–O radial distribution function for static bulk
liquid water is given as well, for comparison. The rdf2D is computed for the
water confined to the area of the 2D channel, averaged over time, see
“Molecular dynamics simulations” in Methods. The rdf3D for 3D water is
calculated using the regular 3D expression, for a cube of water of 35.6Å
side.
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absence of laminar structure can be formalised by means of the
Navier-Stokes equation, see “Non-linear hydrodynamics in a 2D
channel” in Methods. To our best knowledge, the resulting Eq. (1)
has never occurred in the literature despite having some distant
formal similarities with Chaplygin’s equation45 describing a
steady-state potential flow of a 2D compressible gas. In Methods,
we show that the solution of Eq. (1) can be parameterised in
terms of γ and τ given by

γ ¼
η2
η ρ0c

2
0

p0 þ η2
η ρ0c

2
0
; ð4Þ

and

τ ¼ η2
p0 þ η2

η ρ0c
2
0
: ð5Þ

It is the parameter γ that is responsible for the non-linear
effects. If γ= 1, then v= v0, and the water layer neither shrinks
nor expands when propagating through the channel, which
corresponds to an infinitesimally small driving pressure or
infinitely high dilatational viscosity. If γ > 1, then the water flow
velocity increases with x. Equation (4) suggests that such a regime
is obviously impossible. If γ < 1, then the water flow slows down
in the channel. Having in mind that ρ0c

2
0 � 2:2 � 104 atm the

realistic values of γ are just slightly below 1 at any reasonable
driving pressure and viscosity coefficients.

It is easy to understand the physical meaning of η1,2 by
considering the limiting cases. If η1→∞ but η2 remains finite,
then the water layer cannot slide, and the flow is stuck (γ→ 0).
One can imagine that the interfacial viscosity is so high as if the
water layer and the channel’s walls are glued together. If η2→ 0
but η1 remains finite, then the water layer cannot resist
compression, and the flow is stuck again (γ→ 0). The density
would then formally diverge at the entrance of the channel.
Physically, the flow would be jammed. In this limiting case, 2D
water layer behaves like a soft rubber band pushed through a
narrow channel: it obviously crumples and cannot get through.
The coefficients η1,2 describe the two mechanisms potentially
limiting 2D water transport.

Figure 4 shows that v(x) drops down with increasing x, and
ρ(x) steps up accordingly. The local pressure also increases with x
but the global pressure difference between the left and right
reservoirs remains positive providing continuous flow. The
velocity maximum is at x= 0, as v(0)= v0, and the velocity
minimum can be seen as v(∞)= v0γ. The higher driving pressure
results in the larger difference v(0)− v(∞). Figure 4a suggests that
the water density ρ(x) changes just by about 1% at η1 ~ η2 within
the channel length even though driving pressure up to 100 atm is
applied. The compression is facilitated when η1 increases and η2
decreases, see Fig. 4b.

Another parameter to discuss is the length v0τ with τ given by
Eq. (5). This is the characteristic distance, measured from the
channel’s entrance, within which both flow velocity and density
are approximately saturated at their respective values, v0γ and ρ0/
γ. The length is determined by the driving pressure as well as by
dilatational viscosity. If η1,2 ~ 1 mPa ⋅ s, then τ ~ 1 ps at low
pressure, and assuming v of a few Å/ps we obtain the
characteristic length of a few Å. The length considerably increases
with pressure. It increases even further if η1 and η2 become
unequal, reaching several nm in Fig. 4b. It is important to
emphasise that 1/τ is not the strain rate, which can be estimated
in our case as ðρðx ! 1Þ�1 � ρ�1

0 Þ=ðτρ�1
0 Þ ¼ ð1� γÞ=τ, hence,

being two orders of magnitude lower than 1/τ.
The intimate relation between the dilatational and interfacial

viscosity coefficients determines the very ability of 2D water to

flow. This is the most non-trivial finding of this work. We
confirm this finding by means of MD simulations in what follows.

Discussion
We compare the velocity averaged over the length of the channel
obtained from the hydrodynamics model with that obtained from
molecular dynamics simulations. The error bars of the simulated
velocity v(x), given by the standard deviation of the velocities of
the molecules and intrinsic to the atomistic description, are too
large to allow us to analyse the velocity profile. Instead, we
consider the velocity averaged over the length of the channel,
〈v(x)〉L, see Methods. We plot the simulated and predicted 〈v(x)〉L
as a function of driving pressure for different channel lengths and
materials the 2D channel can be fabricated from, see Fig. 5. Note
that we are not able to distinguish between the interfacial and
dilatational effects within our non-equilibrium MD simulations.
Instead, we fit the MD data by adjusting η and η2. The ratio η2/η
determines the sensitivity of 〈v(x)〉L to L. If η2/η ~ 1, then the
curves 〈v(x)〉L plotted for different channel length L are indis-
tinguishable at reasonable pressures. Since our MD data suggests
a certain dependence of 〈v(x)〉L on L we use the ratio η2/η to fit
the difference between the curves for the shortest and longest

Fig. 4 Density and velocity of two-dimensional (2D) water flow within
our hydrodynamic model. The flow velocity saturates when moving along
the channel as described by Eq. (1) with its solution given in terms of the
Lambert functions, see “Non-linear hydrodynamics in a 2D channel” in
Methods. The saturated values, v0γ and ρ0/γ, depend on the viscosity
parameters. a The interfacial and dilatational viscosity coefficients are
equal: η1,2 ~ 1 mPa ⋅ s. b The viscosity coefficients are unequal: η1= 5
mPa ⋅ s, η2= 0.5 mPa ⋅ s. The remaining parameters are ρ0= 1 ⋅ 103 kg/m3,
c0= 1.5 ⋅ 103 m/s. Note that a certain change of ρ0c

2
0 can be compensated

by adjusting the ratio η2/η to obtain the same value for γ, if necessary. The
driving pressure is shown in the figure.
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channels. The absolute values of the viscosity coefficients are
chosen to fit the dependence on driving pressure.

It is instructive to have a simple algebraic expression for 〈v(x)〉L
to understand its qualitative dependence on the length of the
channel and on the driving pressure. Assuming high pressure and
large length we obtain

hvðxÞiL �
η2
η v0ρ0c

2
0

p0 þ η2
η ρ0c

2
0

1þ v0t0
2L

� �
; ð6Þ

where t0 ¼ τ=γ � η=ρ0c
2
0. The dashed curves in Fig. 5 show that

the approximation works reasonably well for longer channels in
the region of relevant pressures. Equation (6) and Fig. 5 suggest
that the L-dependence can be neglected if it is longer than ~
100 Å. The dependence of 〈v(x)〉L on driving pressure is less
trivial. The high-pressure limit should be considered with great
care because it may obviously result in a high flow velocity
v(x) > c0 making our explicit solution of Eq. (1) inapplicable, see
Methods. Nevertheless, the pressure dependence is non-linear
even if the velocity is relatively low. Initially, 〈v(x)〉L increases
with the driving pressure but eventually reaches the maximum

and either drops back to zero in formally infinite channels or
saturates in the finite channels. We are not able to deal with
sufficiently long channels within our MD framework, let alone
the infinite ones, hence, the flow velocity decrease is not visible
in Fig. 5. The saturation is however obvious.

The physical reason of such a non-linear behaviour is the
unavoidable compression of 2D water upon its propagation
through the channel. The higher driving pressure results in
stronger compression, more intensive energy dissipation, and
higher resistivity against the water flow. The effect strongly
depends on the channel height and material, see Fig. 6. The
general rule we find is as follows: The more ordered the water
structure is, the lower viscosity coefficients are required to fit the
simulated water flow velocity profile. However, the model
involves two viscosity coefficients describing two different dis-
sipation mechanisms.

In wider channels (d= 7 Å), the 2D water structure experi-
ences strong out-of-plane staggering, see the side-view snapshots
in Fig. 6. The staggered structure leads to stronger interactions
between the water layer and the channel walls, increasing the
interfacial viscosity coefficient η1. The effect turns out to be about

Fig. 5 Hydrodynamic and molecular dynamic (MD) simulation results combined. The solid curves represent the exact solution in terms of the Lambert
functions (see “Non-linear hydrodynamics in a 2D channel” in Methods), the dashed curves are given by Eq. (6), and the thick green curve is the initial
velocity v0 given by Eq. (2) as an eye-guide. The averaged flow velocity is calculated from our MD data and fitted by the non-linear hydrodynamic model.
a Narrow graphene channel (h= 2.66 Å), MD data fitted with η= 6.5 mPa ⋅ s, η2= 0.028 mPa ⋅ s. b Wider graphene channel (h= 3.66 Å) requires higher
viscosity values η= 10 mPa ⋅ s, η2= 0.1 mPa ⋅ s to fit MD data. c Narrow h-BN channel (h= 2.66 Å), MD data fitted with η= 3.9 mPa ⋅ s, η2= 0.020
mPa ⋅ s, which are smaller than the values required to fit the data for graphene channel of the same height. d Wider h-BN channel (h= 3.66 Å), MD data
fitted with η= 35 mPa ⋅ s, η2= 0.1 mPa ⋅ s. The remaining parameters are the same in all panels: ρ0= 1 ⋅ 103 kg ⋅m−3, c0= 1.5 ⋅ 103 m ⋅ s−1, H= 30 Å, which
result in a Reynolds number Re= ρ0v0h/η of the order of 0.001. The colour curves approach the green one at larger d indicating a gradual transition to the
conventional regime with the flow rate described by the Bernoulli relation (2). The error bars represent the standard deviation.
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3 times stronger on h-BN than graphene, which agrees with the
Green-Kubo estimations of the friction coefficients for bulk liquid
water49. The dilatational viscosity coefficient η2 remains the same
( ~ 0.1 mPa ⋅ s) in wider channels no matter which material is
chosen. It is interesting to note that the value ~ 0.1 mPa ⋅ s equals
the viscosity minimum deduced from the fundamental
constants50.

In narrower channels (d= 6 Å), the water molecules are well
aligned in the plane, Fig. 6. The interfacial viscosity coefficient is
therefore strongly reduced, up to one order of magnitude in h-BN
channels. The dilatational viscosity is also reduced by a factor of
five, which suggests higher compressibility of truly 2D water. We
therefore conclude that while the interfacial viscosity is associated
with the out-of-plane staggering of 2D water layer, the dilata-
tional viscosity is mostly related to its in-plane structure. Note
that the in-plane structure is also determined by the out-of-plane
interactions with the channel walls, so that the two effects cannot
be fully separated.

An increase of the channel height d > 7Å allows for even more
disordered out-of-plane motion developing a second water layer
at d ~ 1 nm, see Supplementary Movie 3. The resulting viscosity
exhibits large oscillations as a function of d originating from
commensurability between the channel height and the size of
water molecules36. We emphasise, however, that it is the dilata-
tional viscosity η2, rather than the interfacial one, that
is responsible for the non-linear hydrodynamic features we
found.

We note that h-BN is a polar crystal, in contrast to graphene.
Nitrogen accumulates excess electron charge leaving boron
positively charged. The resulting electrical polarisation creates an
electric field that may influence the orientation of a water
molecule nearby and potentially alter viscosity parameters. The
interaction of this polarisation with the water dipoles is one of the
reasons for the different structures of water observed. However, B
and N atoms are stacked on top of each other in the AA0 h-BN
double-layers we consider here, except for the edge atoms, so that
the in-plane electric field of each of these B-N pairs is compen-
sated in the middle plane of the channel, and there is only a
smoothly varying electric field due to the edges. Such is not the
case for AA-stacked h-BN double-layers, where the in-plane
component of the electric field oscillates. We performed similar
MD simulations for AA-stacked h-BN double-layers, Supple-
mentary Fig. 5, and observed expected deviations from our
hydrodynamic predictions because of the electric field fluctua-
tions in the channel. We have also considered hybrid channels

made of h-BN and graphene, where the dipole fields are also not
compensated in the middle plane of the channel, Supplementary
Fig. 6. The deviations from our hydrodynamic predictions
became much weaker but remain visible. The dipole configura-
tions are illustrated in Supplementary Fig. 7.

Finally, we comment on possible experimental verification of
our theory. The 2D channels can be now fabricated through van
der Waals assembly51, with atomically flat sheets at the top and
bottom52. The driving pressure of tens of atm can be created by
an osmotic effect filling the left and right reservoirs with pure
water and strong sucrose solution, respectively53. Water flows
have already been measured in graphene and BN nanocapillaries
with spacing allowing for at least two water layers54, and a similar
method could be used to measure the viscosities of monolayer
water. Note that different materials will result in different struc-
tures of 2D water and different η1,2. This is an interesting
opportunity to obtain various nanofluids out of the same water
molecules just by using alternate materials to fabricate the 2D
channels. It is worth emphasising that the viscosity coefficients
describing 2D water do not have the same meaning as for
bulk39,49 and a-few-layer54 water.

A big open question is whether it is possible to reproduce the
high selectivity and high permeability of natural aquaporins55 by
means of nanotubes24,56. MD simulations suggest the so-called
single-file one-dimensional structure is formed by water mole-
cules in carbon nanotubes with a diameter of less than 1 nm27–29

potentially facilitating permeability. At the same time, the
quantum mechanical charge fluctuation model57 suggests that the
friction coefficient is strongly reduced in narrow carbon nano-
tubes, as compared to graphite. The natural channels are also
short so that the major energy dissipation may occur right next to
the channel entrance58, similar to our theory. Further on, the
natural channels combine hydrophobic pores with specific
hydrophilic sites. Such a structure is difficult to fabricate out of
carbon nanotubes but the hydrophilic/hydrophobic Janus-type
2D channels can probably be tailored out of two different 2D
materials in a much simpler way. We, therefore, see 2D channels
as potentially simpler structures to mimic biological functional-
ities of aquaporins.

Methods
We apply a hydrodynamic description to the in-plane flow of 2D water, where the
basic hydrodynamic principles derived from the conservation of mass and
momentum remain valid, and take into account the nanofluidic effects by means of
the viscosity parameters deduced from our MD simulations.

Fig. 6 Viscosity parameter values for two-dimensional (2D) water confined by different materials. Changing the channel’s height and material strongly
influences the interfacial and dilatational viscosity coefficients for 2D water. The snapshots on the right show that while all oxygen atoms are nearly aligned
in one plane in narrow channels (6 Å), they acquire an out-of-plane staggering pattern in wider channels (7 Å) leading to stronger interactions with the
channel walls. The pattern is more pronounced in the hexagonal boron nitride (h-BN) channel, which is reflected in the higher interfacial viscosity
coefficient. O, H, C, B and N atoms are represented in red, white, grey, green and blue, respectively.
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Non-linear hydrodynamics in a 2D channel. The Navier-Stokes equation can be
written as45

ρ
∂vi
∂t

þ∑
k
vk

∂vi
∂xk

� �
¼ � ∂p

∂xi
þ∑

k

∂σ 0ik
∂xk

; ð7Þ

where the viscous stress tensor is given by45

σ 0ik ¼ δik η1
∂vi
∂xk

þ ∂vk
∂xi

� 2
3
∑
l

∂vl
∂xl

� �
þ η2 ∑

l

∂vl
∂xl

� 	

þ ð1� δikÞξ
∂vi
∂xk

þ ∂vk
∂xi

� �
:

ð8Þ

Here, t is the time, i= {x, y, z} (as well as k and l) are the coordinate indexes,
and δik is the Kronecker delta. We have introduced the first and second viscosity
coefficients η1,2 in the standard way so that the sum σ 0xx þ σ 0yy þ σ 0zz does not
depend on the first coefficient η145. Besides, we single out the off-diagonal terms of
σ 0ik by introducing the shear viscosity ξ used to define the Navier partial slip
boundary condition given by26

± ξ
∂vx
∂z

����
x¼0;h

¼ λvx þ o2ðvxÞ; ð9Þ

where λ is the friction coefficient.
The flow density and velocity must also obey the continuity equation given by45

∂ρ

∂t
þ∑

k

∂vk
∂xk

¼ 0: ð10Þ
In what follows, the pressure gradient is applied along the x-direction, hence,

vy= 0, vz= 0. We are interested in a steady-state flow, hence, ∂vx/∂t= 0 and ∂ρ/
∂t= 0. The Navier-Stokes equation then reads

ρvx
∂vx
∂x

¼ � ∂p
∂x

þ 4
3
η1 þ η2

� �
∂2vx
∂x2

þ ξ
∂2vx
∂y2

þ ∂2vx
∂z2

� �
: ð11Þ

As 2D water maintains its in-plane structure we assume that vx does not depend
on y (the no-vorticity condition, rot v= 0 within the water layer). To eliminate the
z-coordinate (hence, to approach the 2D limit) we average the shear viscosity term
as

1
h

Zh

0

dzξ
∂2vx
∂z2

¼ � 2λ
h
vx : ð12Þ

Finally, we denote vx= v, and Eqs. (11), (10)) then read

4
3
η1 þ η2

� �
∂2v
∂x2

� ρv
∂v
∂x

� 2λ
h
v � ∂p

∂x
¼ 0; ð13Þ

ρ
∂v
∂x

þ v
∂ρ

∂x
¼ 0: ð14Þ

Note that Eq. (13) does not depend on ξ explicitly because no intrinsic shear is
assumed in structured 2D water. The coefficients η1,2 are retained in the 2D limit
but they are not intrinsic anymore; different from ξ, which reflects the interaction
between water layers in bulk water, η1,2 depend on the interaction between the
water monolayer and the walls. Thus, their values differ from those of shear and
bulk viscosities in bulk water and in confined multi-layer water.

From Eq. (14) we have ρ(x)= ρ0v0/v(x). Using ∂p=∂x ¼ c20∂ρ=∂x we obtain

∂p
∂x

¼ � c20v0ρ0
v2

∂v
∂x

; ð15Þ

and Eq. (13) then reads

4
3
η1 þ η2

� �
∂2v
∂x2

þ v0ρ0
c20
v2

� 1

� �
∂v
∂x

� 2λ
h
v ¼ 0: ð16Þ

If the channel is short and the fluid is compressible, then the friction term can
be neglected, i. e. the last term in Eq. (16) is substantially smaller than the first two.
To validate this assumption for 2D water we introduce the critical channel length,
Lc, and estimate the first and second velocity derivatives as ∂v/∂x ~ v/Lc and
∂2v=∂x2 � v=L2c , respectively. Estimating Lc by order of magnitude from Eq. (16)
we set v ~ v0, assume η1≫ η2, and neglect the multipliers of the order of 1. The
result reads

η1
L2c

þ ρ0v0
Lc

c20
v20

� 1

� �
� λ

h
¼ 0; ð17Þ

which is a simple quadratic equation with respect to Lc. The solution reads

Lc ¼
ρ0h c20 � v20


 �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4hv20η1λþ h2ρ20 c20 � v20


 �2q
2v0λ

: ð18Þ

If the actual channel length, L, is much larger than Lc, then the friction term
dominates. In the opposite limit of short channels, L≪ Lc, the friction term can be
neglected. The critical length decreases when v0 increases approaching c0 so that
Lc>

ffiffiffiffiffiffiffiffiffiffiffiffi
hη1=λ

p
at v0 < c0. The hydrodynamic friction on graphene and h-BN is

governed by classical mechanisms with negligible quantum corrections57 resulting

in a maximum λmax ¼ 3 � 103 N ⋅ s/m3. Having in mind our channels with h ≈ 3Å
and η1 ~ 10 mPa ⋅ s we obtain

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hη1=λ

max
p

� 30 nm setting the lowest possible Lc in
the channels like ours. Hence, considering 2D channels shorter than 100Å we can
neglect the friction term in Eq. (16) and arrive at Eq. (1)—an intrinsically non-
linear differential equation for compressible 2D water in short channels.

It is important that the non-linearity survives even in the limit c20=v
2 � 1 when

the equation takes the form

η
∂2v
∂x2

þ v0ρ0c
2
0

v2
∂v
∂x

¼ 0; ð19Þ

where η= 4η1/3+ η2. Solution of Eq. (19) can be explicitly written through the
Lambert function W0(x) satisfying the following relation

d
dz

W0ðxÞ ¼
1
z

W0ðzÞ
1þW0ðzÞ

:

Imposing the boundary conditions (2) and (3) we obtain

vðxÞ ¼ v0γ 1þW0 � γ� 1
γ

exp �
γ� 1þ x

v0τ

γ

� �� 	� 
; ð20Þ

where γ and τ are given by Eqs. (4) and (5).
To compare our non-linear hydrodynamic model with our nanofluidic MD

simulations we consider the averaged velocity

hvðxÞiL ¼ 1
L

ZL

0

dxvðxÞ ¼ v0τ
2Lt20

2Lt0 þ v0τ
2 t0

τ
� 1�W0

t0 � τ

τ
e
t0�τ
τ � Lt0

v0 τ
2

� �� 	�

´ 1þ t0
τ
þW0

t0 � τ

τ
e
t0�τ
τ � Lt0

v0 τ
2

� �� 	
;

ð21Þ
where t0 ¼ τ=γ � η=ρ0c

2
0.

Note that in the formally supersonic limit, c20=v
2 � 1, we arrive at the linear

differential equation given by

η
∂2v
∂x2

� v0ρ0
∂v
∂x

¼ 0; ð22Þ

with the trivial solution

vðxÞ ¼ v0 þ
p0
v0ρ0

η

η2
1� e

v0 ρ0
η x

� �
; v0 � c0; ð23Þ

satisfying the boundary conditions (2) and (3). As v0ρ0/η > c0ρ0/η ~ 109 m−1, the
velocity v(x) drops exponentially within much less than 1 nm, and the flow should
be described by Eq. (19) again. Hence, the model tends to be in the low-v but
intrinsically non-linear regime even though we start from an unrealistically high
pressure making the flow formally supersonic.

Molecular dynamics simulations. We modelled the flow of monolayer water
using classical molecular dynamics. The system consists of a periodic 3D simula-
tion box with cross-section 32 × 30 Å2 and length between 150 and 230 Å. On the
left, a mobile graphene piston of section 32 × 30 Å2 is used to push the water
through a graphene channel with length L. We have considered interlayer distances
d of 6 and 7Å, and channel lengths L= 41, 62, 84, 105Å. The top and down
graphene layers have Bernal stacking. We performed similar simulations for a
channel of AA0-stacked BN, with length and cross-section adjusted for the dif-
ference in lattice parameters (L= 44, 65, 87 and 108Å).

The edges of the BN layers at x= 0 were nitrogen-terminated, whereas the
edges at x= L were boron-terminated. The polarity of the BN contributes to the
ordering of the water layer47.

The simulations were performed using the LAMMPS (Large-scale Atomic/
Molecular Massively Parallel Simulator) code59. The water molecules were
modelled using the reparameterised simple point charge model (SPC/E)
model60–62. One of the considerations leading to the choice of this water model was
the availability of both water-carbon and water-BN interaction parameters. We
have previously tested four water models and two models for water-BN
interactions47. The relative energy of different water clusters is found to be within
12 meV/molecule of the DFT (density-functional theory) values. This is
comparable to the error of the machine learning model recently reported (10 meV/
molecule)16. The shear and bulk viscosity values for SPC/E water are 0.67 and
1.56 mPa ⋅ s, respectively39. The stacking of water layers was not considered,
because we focused on monolayer ice17.

The water-carbon interaction was modelled by a Lennard-Jones potential
between oxygen and carbon atoms, with parameters ϵOC= 0.114 kcal/mol and
σOC= 3.28Å63. The calculated water contact angle (WCA) for this parameter
combination is 80∘, see Supplementary Note 1 and Supplementary Figs. 8–9. We
observed the square and rhombic phases for monolayer water confined by
graphene, consistent with the experimental observation of the square phase by
electron microscopy6.

The water-BN interaction parameters were adopted from a recent study64, for
which we obtained a contact angle of 73∘, see Supplementary Note 1 and
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Supplementary Figs. 10–11. We have previously compared the phase diagram of
water obtained with different BN-water potentials47.

Long-range Coulomb forces were computed using the particle-particle particle-
mesh (PPPM) method. Water molecules were kept at a constant temperature of
300 K using a Nosé-Hoover thermostat with a damping constant of 10 fs (100
timesteps). We have neglected the streaming velocity in the temperature
calculation, which we show to be a good approximation by carrying out further
calculations with a PUT (Profile Unbiased Thermostat)65, see see Supplementary
Note 2 and Supplementary Fig. 12). The graphene was kept static except for the
piston. The piston is not coupled to a thermostat when integrating its equation of
motion. A timestep of 0.1 fs was used.

The stationary flow velocity was calculated by averaging the velocity of the
water molecules in the channel region after the first molecules have reached the end
of the channel and a stationary flow has been established. Note that both in the
beginning of the flow and at the end of the flow, when water is running out in the
left reservoir, there are transient regimes, where the equations for stationary flow
presented here do not apply. Notably, at the end of the simulation, when the piston
becomes very close to the reservoir walls, 2D water is naturally formed in the
reservoir as well. However such transient regimes are not studied in the present
work. Stationary velocities have been obtained by averaging the velocity over a
window of 5 ps at the start of the stationary regime. The pressure in the left
reservoir was estimated from the constant total force applied to the piston atoms,
while the pressure in the right reservoir is considered to be approximately zero in
the beginning of the flow. We confirmed that there was no vorticity in the flow
(Supplementary Fig. 13).

We do not consider the channels higher than 7 Å in the main text because water
deviates from a monolayer structure above ~8Å 7. The channels lower than 6 Å are
not considered also because water molecules do not enter such channels at
moderate pressures. The graphene/boron nitride planes were kept immobile, as in
this study we intend to focus on the water dynamics. If the graphene/boron nitride
planes would have been allowed to relax, the interlayer distance, and, therefore, the
water confinement potential, would not have been constant over the channel
length.

The radial distribution function for 2D is defined as

rdf 2D ¼ 1
N
∑
i

hnðri; rÞi
Ωrdrρ2D

; ð24Þ

where n(ri, r) is the number of oxygen atoms at distance r from oxygen atom i, and
ρ2D is the average 2D density, and N is the total number of atoms, and Ω= 2π. The
rdf was calculated for each snapshot of the molecules in the 2D region of the
capillary (L= 105 or 108Å), and averaged over the stationary flow time window.
Since the system has no translation symmetry along the x direction, in order to
minimise the error at the edges, if the distance di between atom i and the edge was
less than r, we used instead the edge-corrected expression with
Ω ¼ π 1þ 2 arcsinðdi=rÞ


 �
.

Trajectory animations were created using visual molecular dynamics (VMD)66.

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper and its supplementary information files (Supplementary Figs. 1–13,
Supplementary Notes 1–2, and Supplementary Movies 1– 3).
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