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Compressing network populations with modal
networks reveal structural diversity
Alec Kirkley 1,2,3✉, Alexis Rojas 4, Martin Rosvall5 & Jean-Gabriel Young 6,7

Analyzing relational data consisting of multiple samples or layers involves critical challenges:

How many networks are required to capture the variety of structures in the data? And what

are the structures of these representative networks? We describe efficient nonparametric

methods derived from the minimum description length principle to construct the network

representations automatically. The methods input a population of networks or a multilayer

network measured on a fixed set of nodes and output a small set of representative networks

together with an assignment of each network sample or layer to one of the representative

networks. We identify the representative networks and assign network samples to them with

an efficient Monte Carlo scheme that minimizes our description length objective. For tem-

porally ordered networks, we use a polynomial time dynamic programming approach that

restricts the clusters of network layers to be temporally contiguous. These methods recover

planted heterogeneity in synthetic network populations and identify essential structural

heterogeneities in global trade and fossil record networks. Our methods are principled,

scalable, parameter-free, and accommodate a wide range of data, providing a unified lens for

exploratory analyses and preprocessing large sets of network samples.
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A common way to measure a network is to gather multiple
observations of the connectivity of the same nodes.
Examples include the mobility patterns of a particular

group of students encoded as a longitudinal set of co-location
networks1,2, measurements of connectivity among the same brain
regions for different individuals3, or the observation of protein-
protein relationships through a variety of different interaction
mechanisms4. These measurements can be viewed as a multilayer
network5 consisting of one layer for each measurement of all links
between the nodes. For generality, we consider them as a popu-
lation of networks—a set of independent network measurements
on the same set of nodes, either over time or across systems with
consistent, aligned node labels. There often are regularities among
such collections of measurements, but each sample may differ
substantially from the next. Summarizing these measurements
with robust statistical analyses can separate regularities from
noise and simplify downstream analyses such as network visua-
lization or regression6–15.

Most statistical methods for summarizing populations of net-
works share a similar approach. They model all the members of a
population as realizations of a single representative
network6,9,13,16–18, which can be retrieved by fitting the model in
question to the observed population. However, the strong
assumption that a single “modal” network best explains the
observed populations can lead to a poor representation of the
data at hand19,20. For instance, accurately modeling a population
of networks recording face-to-face interactions between elemen-
tary school pupils requires at least two representative networks if
the data include networks observed during class and recess21.
Modeling the measurements with a single network will most
likely neglect essential variations in the pupil’s face-to-face
interactions, leading to similar oversights from summarizing a
multimodal probability distribution with only its mean.

Recent research has examined related problems and led to, for
example, methods for detecting abrupt regime changes in tem-
poral series of networks22,23, pooling information across subsets
of layers of multiplex networks24 and embedding nodes in
common subspaces across network layers11,25,26. Several recent
contributions have addressed the problem of summarizing
populations of networks when multiple distinct underlying net-
work representations are needed, using mixtures of parametric
models20,27–30, latent space models31, or generative models based
on ad hoc graph distance measures19.

These methods cluster network populations with good perfor-
mance but have some significant drawbacks. None of the methods
discussed, except ref. 19, outputs a single sparse representative
network for each cluster but requires handling ensembles of net-
work structures, making downstream applications such as network
visualization or regression cumbersome. Most of these methods
also require potentially unrealistic modeling assumptions about the
structure of the clusters. For example, that stochastic block models
or random dot product graphs can model all network structures in
the clusters. Specifying a generative model for the modal structures
also has the downside of often requiring complex and time-
consuming methods to perform the within-cluster estimation.
Perhaps most critically, existing approaches require either speci-
fying the number of modes ahead of time or resorting to regular-
ization with ad hoc penalties20,24,29,31 not motivated directly by the
clustering objective or approximative information criteria19,28,30

poorly adapted to network problems. Overall, current approaches
for clustering network populations do not provide a principled
solution for model selection and often demand extensive tuning
and significant computational overhead from fitting the model to
several choices of the number of clusters.

Here we introduce nonparametric inference methods which
overcome these obstacles and provide a coherent framework

through which to approach the problem of clustering network
populations or multiplex network layers while extracting a repre-
sentative modal network to summarize each cluster. Our solution
employs the minimum description length principle, which allows
us to derive an objective function that favors parsimonious repre-
sentations in an information-theoretic sense and selects the num-
ber and composition of representative modal networks
automatically from first principles. We first develop a fast Monte
Carlo scheme for identifying the configuration of measurement
clusters and modal networks that minimizes our description length
objective. We then extend our framework to account for special
cases of interest: bipartite/directed networks and contiguous clus-
ters containing all ordered networks from the earliest to the latest.
We show how to solve the latter problem in polynomial run time
with a dynamic program32. We demonstrate our methods in
applications involving synthetic and real network data, finding that
they can effectively recover planted network modes and clusters
even with considerable noise. Our methods also provide a concise
and meaningful summary of real network populations from
applications in global trade and macroevolutionary research.

Results
We test our methods on a range of real and synthetic example
network populations. First, we show that our algorithms can
recover synthetically generated clusters and modes with high
accuracy despite considerable noise levels. Applied to worldwide
networks of food imports and exports, we find a strong com-
pression that uses the difference between categories of products
and the locations in which they are produced. We then apply our
method for contiguous clustering of ordered network populations
to a set of networks representing the fossil record from ordered
geological stages in the last 500 million years33. We examine
bipartite and unipartite representations of these systems and find
close alignment between our inferred clusters and known global
biotic transitions, including those triggered by mass extinction
events.

Reconstruction of synthetic network populations. To demon-
strate that our algorithms (presented in “Methods”) can effec-
tively identify modes and clusters in network populations, we test
their ability to recover the underlying modes and clusters gen-
erated from the heterogeneous population model introduced in
ref. 20. We examine the robustness of these methods under
varying noise levels that influence the similarity of the generated
networks with the cluster’s mode.

The generative model in ref. 20 supposes (using different
notation) that we are given K modes A as well as the cluster
assignments C of the networks D. Each network s∈ Ck is
generated by first taking each edge (i, j)∈A(k) independently and
adding it to D(s) with probability αk (the true-positive rate). Then,
each of M�

k possible edges absent from A(k) is added to D(s) with
probability βk (the false-positive rate). After performing this
procedure for all clusters, the end result is a heterogeneous
population of networks D with K underlying modes, with noise in
the networks Ck surrounding each mode A(k) determined by the
rates αk and βk. The higher the true-positive rate αk and the lower
the false-positive rate βk, the closer the networks in cluster Ck

resemble their corresponding mode A(k).
Employing Bayesian inference of the modes and cluster

assignments as in ref. 20 involves adding prior probability
distributions over the modes A and cluster assignments C to
the heterogeneous network model20. With a specific choice of
priors on the modes and cluster sizes, Eq. (15) is precisely the
equation giving us the Maximum A Posteriori (MAP) estimators
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of A and C in this model. We defer the details of this
correspondence to Supplementary Note 1.

For our experiments, we use two modes, mode 1 and mode 3
from the diagram in “Methods”, as the planted modesAtrue we aim
to recover. To provide a single intuitive parameter quantifying the
noise level in the generative model, we choose the true- and false-
positive rates to satisfy p= β1= β3= 1− α1= 1− α3 for each run.
Viewing the networks as binary adjacency matrices, the parameter
p corresponds to the probability of flipping entries of the matrix
from 0 to 1 and vice-versa when constructing a network from its
assigned cluster. We denote the parameter p as the “flip
probability” to emphasize this interpretation (same formulation
as in ref. 20). A flip probability p= 0 corresponds to clusters of
networks identical to the cluster modes, and a flip probability of
p= 0.5 corresponds to completely random networks with no
clustering in the population. We thus expect it to be easy to recover
the planted modes Atrue and clusters Ctrue for p= 0, and the
problem becomes more and more difficult as we approach p= 0.5.

We run three separate recovery experiments to test both the
unconstrained and contiguous description length objectives in Eq.
(15) and Eq. (19), respectively. For the unconstrained objective, in
each run, we generate a population of S networks from the model
described above, with each network generated from either mode 1
or mode 3 at random with equal probability. We then identify the
modes AMDL and clusters CMDL that minimize the objective in Eq.
(15) using the merge-split algorithm detailed in “Methods” and
Supplementary Note 2. For the recovery of contiguous clusters, in
one experiment we generate S/2 consecutive networks from each
mode so that the population consists of K= 2 adjacent
contiguous clusters. And in another experiment, we generate S/
4 networks from mode 1, S/4 networks from mode 3, and repeat
this so that there are K= 4 adjacent contiguous clusters of the S
networks generated from the two distinct modes. For these two
experiments, we run the dynamic programming algorithm
detailed in “Methods” to identify the modes AMDL and clusters
CMDL that minimize the objective in Eq. (19). In all three
experiments, we generate a population of S= 100 networks, each
constructed from its corresponding mode using the single flip
probability p to introduce true- and false-positive edges.

To quantify the mode recovery error, we use the network distance
quantified by the average Hamming distance between the inferred
modes A and the planted modes Atrue. As both of our algorithms
automatically select the optimal number of clusters K, the number
of modes we infer can differ from the true number (K= 2 or K= 4,
depending on the experiment). In each experiment, we therefore
choose the K inferred modes in A with the largest corresponding
clusters and compute the average Hamming distance between these
and the true modes in Atrue. (Since there are K! ways to choose the
inferred mode labels, we choose the labeling that produces the
smallest Hamming distance.) To measure the error between our
inferred clusters C and the planted clusters Ctrue (the “partition
distance”), we use one minus the normalized mutual information34.
We also compute the inverse compression ratio (Eq. (17)) to
measure how well the network population can be compressed. We
pick a range of values of p to tune the noise level in the populations,
and at each value of p we average these three quantities over 200
realizations of the model to smooth out noise due to randomness in
the synthetic network populations. We choose K0= 1 for these
experiments, but this choice has little to no effect on the results (see
Supplementary Note 3).

Figure 1 shows the results of our first reconstruction
experiment. The reconstruction performance gradually worsens
as p increases due to the increasing noise level in the sampled
networks relative to their corresponding modes (Fig. 1a). In all
experiments, the network distance reaches that expected for a

completely random guess of the mode networks—a 50/50 coin
flip to determine the existence of each edge, denoted by the
dashed black line—when p= 0.5. The results in Fig. 1a indicate
that in both the unconstrained and contiguous cases, our
algorithms are capable of recovering the modes underlying these
synthetic network populations with high accuracy, even for
substantial levels of noise (up to p ≈ 0.3, corresponding to an
average of 30% of the edges/non-edges differing between each
mode and networks in its cluster).

The partition distance shows similar gradual performance
degradation, with substantial increases in the distance beginning
at p ≈ 0.3 for the contiguous experiments and p ≈ 0.15 for the

Fig. 1 Recovery of planted modes and their clusters in synthetic network
populations. Various aspects of the recovery performance are plotted for
the three experiments described in “Results”. a Network distance, as
quantified by the average Hamming distance between the true and inferred
and modes (example modes 1 and 3 in “Methods”), for various flip
probabilities p. b Partition distance, given by the one minus the normalized
mutual information between the true and inferred clusterings of the
network population. c Inverse compression ratio, given in Eq. (17). Each
data point is an average over 200 realizations of the population for the
corresponding value of the flip probability, and error bars correspond to
three standard errors in the mean.
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unconstrained experiment (Fig. 1b). The partition distance levels
off at different values across the three experiments, with the
unconstrained case exhibiting significantly worse performance
than the contiguous cases. We expect this result since contiguity
simplifies the reconstruction problem by reducing the space of
possible clusterings. Because information-based measures account
for the entire space of possible clusterings instead of the highly
constrained set produced by contiguous partitions, they over-
estimate the similarity of partitions in this constrained set. This
overestimation intensifies with more clusters35.

The inverse compression ratio (Eq. (17)) for these experiments
gradually approaches 1 (no compression relative to transmitting
each network individually, denoted by the dashed black line) as the
noise level p increases (Fig. 1c). This result is consistent with the
intuition that noisier data will be harder to compress, while data
with strong internal regularity will be much easier to compress, as
the homogeneities can be exploited for shorter encodings. When p
is small, we can achieve up to 10 times compression over the naive
baseline by using the inferred underlying modes and clusters to
transmit these network populations.

The results in Fig. 1 indicate that our algorithms can recover
the underlying modes and their clusters in synthetic network
populations. However, these results also depend on how
distinguishable the underlying modes are. For identical modes,
A(1)= A(2), it is impossible to recover the cluster labels of the
individual network samples D(s). To investigate the dependence
of the recovery performance on the modes themselves, we repeat
the experiment in Fig. 1, except this time we systematically vary
the mode networks A for each trial to achieve various levels of
distinguishability. In each trial, we set A(1) equal to mode 1 from
“Methods” (as before), but then generate the edges in A(2) from
A(1) using the flip probability γ, which we call the “mode
separation”. For mode separations γ ≈ 0, it is challenging to
recover the correct cluster labels of the individual sample
networks because A(2) will closely resemble A(1). On the other
hand, for mode separations γ ≈ 0.5, the modes will typically be
easily distinguished since A(2) will have many edges/non-edges
that have flipped relative to A(1).

Figure 2 shows the results of this second experiment. The panels
show the partition distance between the true and inferred cluster
labels for a range of mode separations γ. In all experiments, the
recovery becomes worse for lower values of the separation γ, but
the algorithm still recovers a significant amount of cluster
information even for relatively low γ. As in the previous set of
experiments, the recovery performance is substantially worse for
the discontiguous case compared with the contiguous cases, again
due to the highly constrained ensemble of possible partitions
considered by the partition distance in the contiguous cases.

In Supplementary Note 3, we show the recovery performance
results for the network distance between the true and inferred
modes as we vary the mode separation γ. For the mode recovery,
the results are even more robust to the changes in mode
separation. This result is consistent with the recovery perfor-
mance in Fig. 1, where the recovery performance of the partitions
starts to worsen at lower noise levels than the recovery of the
modes. Thus, small perturbations in the inferred clusters may not
affect the inferred modes much, since misclassified networks
likely have little in common with the rest of their cluster.

Unordered network population representing global trade
relationships. For our first example with empirical network data,
we study a collection of worldwide import/export networks. The
nodes represent countries and the edges encode trading rela-
tionships. The Food and Agriculture Organization of the United
Nations (FAO) aggregates these data, and we use the trades made

in 2010, as in ref. 24. Each network in the collection corresponds
to a category of products, for example, bread, meat, or cigars. We
ignore information about the intensity of trades and merely
record the presence or absence of a trading relationship for each
category of products. The resulting collection comprises 364
networks (layers) on the same set of 214 nodes with 874.6 edges
(average degree of 8.2) on average, with some sparse networks
having as little as one edge and the densest containing 6529 edges.
These networks are unordered, so we employ the discontiguous
clustering method described in “Methods”. We run the algorithm
multiple times with a varying initial number of clusters K0 to find
the best optima, although as with the synthetic reconstruction
examples the choice of K0 has little impact on compression. The

Fig. 2 Cluster recovery for different mode separations. Partition distance
between true and inferred clusters for a unconstrained clustering,
b contiguous clustering with K= 2, and c contiguous clustering with K= 4
for various values of the mode separation γ. Each data point is an average
over 200 realizations of the population for the corresponding value of the
flip probability, and error bars correspond to three standard errors in the
mean.
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best compression we find results in eight modes and achieves a
compression ratio of ηðDÞ ¼ 0:562, indicating that it is nearly
twice as efficient to communicate the data when we use the modal
networks and their clusters. In contrast, in ref. 24 a clustering
analysis of the same network layers using structural reducibility—
a measure of how many layers can be aggregated to reduce
pairwise information redundancies among the layers—yielded
182 final aggregated layers, which would poorly compress the
data under our scheme and not provide a significant benefit in
downstream analyses due to the large final number of clusters.
Key properties of the configuration of modes and clusters inferred
by our algorithm are illustrated in Fig. 3.

In Fig. 3a we show the number of edges in each inferred mode,
which indicates that these modes vary substantially in density to
reflect the key underlying structures in networks within their
corresponding clusters. The sizes of the clusters, shown in Fig. 3b,
also vary substantially, with the most populated cluster (cluster 4)
containing nearly 7 times as many networks as the least populated
cluster (cluster 6). Some striking geographical commonalities and
differences in the structure of the modes can be seen due to the
varying composition of their corresponding clusters of networks.
Figure 3c, d shows the differences and similarities respectively
between the structure of the modes for clusters 5 and 7, which are
chosen as example modes because of their modest densities and
distinct distributions of product types (Fig. 3e). Edges that are in
mode 7 but not in mode 5 are highlighted in blue, while edges in
mode 5 but not in mode 7 are highlighted in red. Meanwhile, the
shared edges common to both networks are shown in Fig. 3d in
black. Mode 5, which contains a diversity of product types and a
relatively large portion of grain and protein products, has a large
number of edges connecting the Americas to Europe that are not
present in mode 7. On the other hand, mode 7, which is primarily
composed of networks representing the trade of fruits and
vegetables, has many edges in the global south that are not
present in mode 5. However, both modes share a common
backbone of edges that are distributed globally.

We categorized the 364 products (the network layers being
clustered) into 12 broader categories of product types, plotting
their distributions within each cluster in Fig. 3e. There are a few
interesting observations we can make about this figure. Nearly all
of the dairy products are traded within networks in a single
cluster (cluster 3), indicating a high degree of similarity in the
trade patterns for dairy products across countries. A similar
observation can be made for live animals, which are primarily
traded in cluster 4. On the other hand, many of the other
products (grains, proteins, sweets, fruits, vegetables, and drinks)
are traded in reasonable proportion in all clusters, which may
reflect the diversity of these products as well as their geographical
sources, which can give rise to heterogeneous trading structures.
The densities of the modes and the sizes of the clusters do not
have a clear relationship, with cluster 6 containing the smallest
number of networks but the densest mode, and clusters 4 and 5
having sparser modes and much larger clusters. This reflects a
higher level of heterogeneity in the structure of the trading
relationships captured in cluster 6, which requires a denser
mode for optimal compression, while the converse is true for
clusters 4 and 5.

We also identify substantial structural differences in the
inferred modes. In Supplementary Note 4, we compute summary
statistics (average degree, transitivity, and average betweenness)
for the modes output in this experiment and the network layers in
their corresponding clusters. The statistics vary much more across
clusters than within the clusters, suggesting that the MDL optimal
mode configuration exemplifies distinct network structures
within the dataset. Because the within-cluster average value of
each statistic and the corresponding value for the mode network

are similar, our method provides an effective preprocessing step
for network-level regression tasks.

Ordered network population representing the fossil record. We
conclude our analysis with a study of a set of networks repre-
senting global marine fauna over the past 500 million years. We
aggregate fossil occurrences of the shelled marine animals,
including bryozoans, corals, brachiopods, mollusks, arthropods,
and echinoderms, into a regular grid covering the Earth’s
surface33. From these data, we construct unweighted bipartite
networks representing 90 ordered time intervals in Earth’s history
(geological stages): An edge between a genus and a grid cell
indicates that the genus was observed in the grid cell during the
network’s corresponding geological stage. We also construct the
unipartite projections of these networks: An edge from one genus
to another indicates that these two genera were present in the
same grid cell during the stage corresponding to the network. In
total, there were 18,297 genus nodes, 664 grid cell nodes, 67,371.5
edges on average for the 90 unipartite graphs (average degree of
7.4), and 1462.2 edges on average for the bipartite graphs (average
degree of 0.08, corresponding to an average of roughly 10 percent
of genera being present at each layer).

In Fig. 4, we show the results of applying our clustering method
for contiguous network populations (see “Methods”) to both the
unipartite and bipartite populations representing the post-
Cambrian fossil record. We find clusters that capture the known
large-scale organization of marine diversity. Major groups of
marine animals archived in the fossil record are organized into
global-scale assemblages that sequentially dominated oceans and
shifted across major biotic transitions. Overall, the bipartite and
unipartite fossil record network representations both result in
transitions concurrent with the major known geological pertur-
bations in Earth’s history, including the so-called mass extinction
events. However, differences in the clusters retrieved from the
unipartite and bipartite representations of the underlying
paleontological data highlight the impact of this choice on the
observed macroevolutionary pattern36.

We also use our methodology to assess the extent to which the
standard division of the post-Cambrian rock record in the geological
time scale and the well-known mass extinction events compress the
assembled networks. Specifically, we evaluate the inverse compres-
sion ratio in Eq. (17) on three different partitions of the fossil record
networks that are defined by clustering the assembled networks into
geological eras (Paleozoic, Mesozoic, and Cenozoic), geological
periods (Ordovician to Quaternary), and six time intervals between
the fivemass extinctions in Fig. 4, with plantedmodes constructed by
placing the networks into each cluster and applying the greedy
algorithm described in “Methods” and Supplementary Note 2.

Table 1 shows the results of these experiments. All three
partitions compress the fossil record networks almost as much as
the optimal partition, which represents a natural division based
on major regularities. Accordingly, the planted partition based on
mass extinctions is almost as good as this optimal partition
because mass extinctions are concurrent with the major
geological events shaping the history of marine life. In contrast,
partitions based either on standard geological eras or periods are
less optimal, likely because they represent, to some extent,
arbitrary divisions that are maintained for historical reasons. Our
results here provide a complementary perspective to the work in
ref. 33, where a multilayer network clustering algorithm was
employed that clusters nodes within and across layers to reveal
three major biotic transitions from the fossil data. In Supple-
mentary Note 5 we review this and other existing multiplex and
network population-clustering techniques, discussing the simila-
rities and differences with our proposed methods.
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Conclusion
We have used the minimum description length principle to
develop efficient parameter-free methods for summarizing
populations of networks using a small set of representative modal
networks that succinctly describe the variation across the

population. For clustering network populations with no ordering,
we have developed a fast merge-split Monte Carlo procedure that
performs a series of moves to refine a partition of the networks.
For clustering ordered networks into contiguous clusters, we
employ a time and memory-efficient dynamic programming

Fig. 3 Discontiguous networks of imports and exports. We apply our algorithm for clustering discontiguous populations (see “Methods”) to a collection
of trade networks24 described in “Results” to identify similar networks of products. a Number of edges in each cluster’s mode. b Number of networks in
each cluster. c Edges in mode 7 but not mode 5 are colored in blue, while edges in mode 5 but not in mode 7 are colored in red, highlighting the differences
between these two modes. d The shared backbone of edges common to both modes 5 and 7. e Distribution of product types across the networks in each
cluster.
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approach. These algorithms can accurately reconstruct modes
and associated clusters in synthetic datasets and identify sig-
nificant heterogeneities in real network datasets derived from
trading relationships and fossil records. Our methods are prin-
cipled, nonparametric, and efficient in summarizing complex sets
of independent network measurements, providing an essential
tool for exploratory and visual analyses of network data and
preprocessing large sets of network measurements for down-
stream applications.

This information-theoretic framework for representing net-
work populations with modal networks can be extended in sev-
eral ways. For example, a multi-step encoding that allows for
hierarchical partitions of network populations would capture
multiple levels of heterogeneity in the data. More complex
encodings that exploit structural regularities within the networks
would allow for simultaneous inference of mesoscale structures—
such as communities, core-periphery divisions, or specific infor-
mative subgraphs37—along with the modes and clusters. The
encodings can also be adapted to capture weighted networks with
multi-edges by altering the combinatorial expressions for the
number of allowable edge configurations.

Methods
Minimum description length objective. For our clustering method, we rely on the
minimum description length (MDL) principle: the best model among a set of
candidate models is the one that permits the greatest compression—or shortest

description—of a dataset38. The MDL principle provides a principled criterion for
statistical model selection and has consequently been employed in various appli-
cations ranging from regression to time series analysis to clustering39. A large body
of research uses the MDL principle for clustering data, including studies on MDL-
based methods for mixture models that accommodate continuous40,41 and cate-
gorical data42, as well as methods that are based on more general probabilistic
generative models43. The MDL approach has also been applied to complex network
data, most notably for community detection algorithms to cluster nodes within a
network35,44,45 and for decomposing graphs into subgraphs46–50, but also for
clustering entire partitions of networks51. Our methods are similar in spirit to the
one presented in ref. 51 for identifying representative community divisions among a
set of plausible network partitions. Both approaches involve transmitting first a set
of representatives and then the dataset itself by describing how each partition or
network differs from its corresponding representative. However, the methods differ
substantially in their details since they address fundamentally different questions.

We consider an experiment in which the initial data are a population of
networks consisting of S undirected, unweighted networks D ¼ fDð1Þ; :::;DðSÞg on a
set of N labeled nodes. The networks record, for instance, the co-location patterns
among kids in a class of N students over S class periods.

We aim to summarize these data with K modal networks A ¼ fAð1Þ; :::;AðKÞg
(also undirected and unweighted) on the same set of nodes, with associated clusters
of networks C ¼ fC1; :::;CKg, where Ck comprises networks that are similar to the
mode A(k). This summary would allow researchers to, for instance, perform all
downstream network analyses on a small set of representative networks—the
modes—instead of a large set of networks likely to include measurement errors and
from which it is difficult to draw valid conclusions.

We assume for simplicity of presentation that all networks D and A have no
self- or multi-edges, although we can account for them straightforwardly. While K
can be fixed if desired, we assume that it is unknown and must be determined from
regularities in the data.

To select among all the possible modes and assignments of networks to clusters,
we employ information theory and construct an objective function that quantifies
how much information is needed to communicate the structure of the network
population D to a receiver. Clustering networks in groups of mostly similar
instances allows us to communicate the population D efficiently in three steps: first
the modes, then the clusters, and finally the networks D themselves as a series of
small modifications to the modes A. The MDL principle tells us that any
compression achieved in this way reveals modes and clusters that are genuine
regularities of the population rather than noise38.

We first establish a baseline for the code length: the number of bits needed to
communicate D without using any regularities. One way to do this is to first
communicate the parameters of the population at a negligible information cost
(size S, number of nodes N, and the total number of edges E in all networks of D)

and then transmit the population D directly. There are
N
2

� �
possible edge

positions in each of the S undirected networks in D, or S
N
2

� �
possible edge

positions for the whole population. So these networks can be configured in

S
N
2

� �

E

0
@

1
A ways. It thus takes approximately

L0ðDÞ ¼ log
S

N

2

� �

E

0
@

1
A ð1Þ

bits to transmit these networks to a receiver. (We use the convention log � log2 for
brevity.) Applying Stirling’s approximation log x! � x log x � x= lnð2Þ, we obtain

L0ðDÞ � S
N

2

� �
Hb

E

S
N

2

� �
0
BBB@

1
CCCA ð2Þ

written in terms of the binary Shannon entropy

HbðpÞ ¼ �p log p� ð1� pÞ logð1� pÞ: ð3Þ
In practice, we expect to need many fewer bits than L0 to communicate D,

because the population of networks will often have regularities. We propose a
multi-part encoding that identifies such regularities by grouping similar networks
in clusters C with modes A, which proceeds as follows. First, we send a small
number of modes A in their entirety, which ideally captures most of the
heterogeneity in the population D. This step is costly but will save us information
later. We then send the network clusters C by transmitting the cluster label of each
network s 2 D. Finally, we transmit the edges of networks in each cluster, using the
already transmitted modes as a starting point to compress this part of the encoding
significantly. The expected code length can be quantified using simple
combinatorial expressions, and the configuration of modes A and clusters C that
minimizes the total expected code length—the MDL configuration—provides a
succinct summary of the data D. Figure 5 summarizes the transmission process and
the individual description length contributions.

Fig. 4 Contiguous clusters of network representing the post-Cambrian
fossil record. We apply the dynamic programming algorithm of “Methods”
to the unipartite genus-genus network population (lower bar) and the
bipartite genus-location network population (upper bar) described in
“Results” to identify key time intervals with distinct fossil assemblages. The
clusters inferred by the algorithm are represented with distinct colors, and
the networks, one per each post-Cambrian geological stage, are separated
by white lines. Boundaries between geological periods, i.e., larger scale rock
units55, are indicated by dashed vertical black lines. The five major mass
extinction events56 are shown in dotted vertical red lines.

Table 1 Compression results for different partitions of the
fossil record.

Eras Extinction
events

Periods MDL
optimal

KðDuniÞ 3 6 11 17
KðDbiÞ 3 6 11 10
ηðDuniÞ 0.814 0.805 0.810 0.796
ηðDbiÞ 0.842 0.838 0.850 0.833

Duni denotes the set of fossil record networks in the unipartite genus-genus representation, and
Dbi denotes the same networks in the bipartite genus-location representation.
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The expected length of this multi-part encoding is the sum of the description
length of each part of the code that has significant communication costs. The
modes are the first objects that incur such costs. Following the same reasoning as
before, we denote the number of edges in mode k as Mk and conclude that we can
transmit the positions of the occupied edges in mode A(k) using approximately

LðAðkÞÞ ¼ log

N

2

� �

Mk

0
@

1
A � N

2

� �
Hb

Mk

N

2

� �
0
BBB@

1
CCCA ð4Þ

bits, where the second expression results from a Stirling approximation as in Eq.
(2). We can therefore transmit all the modes with a total code length of

LðAÞ ¼ ∑
K

k¼1
LðAðkÞÞ ð5Þ

bits.
The next step is to transmit the cluster label k of each network in D. For this

part of the code, we first send the number of networks Sk in each cluster
k= 1, . . . , K at a negligible cost and then specify a particular clustering compatible

with these constraints. The multinomial coefficient
S

S1 S2 � � � Sk

� �
gives the total

number of possible combinations of these cluster labels. The information content
of this step is thus

LðCÞ ¼ log
S

S1 S2 � � � Sk

� �
� SH fSk=Sg

� �
; ð6Þ

where we again use the Stirling approximation and where

H fqkg
� � ¼ � ∑

K

k¼1
qk log qk ð7Þ

is the Shannon entropy of a distribution {qk}.
Finally, we transmit the network population D by sending the differences

between the networks in each cluster and their associated mode. To calculate the

length of this part of the code, we focus on a particular cluster Ck and count the
number of times we will have to remove an edge from the mode A(k) when
specifying the structure of networks in its cluster using A(k) as a reference. We call
these edges false negatives and count them as

nk ¼ ∑
s2Ck

AðkÞ n DðsÞ�� ��; ð8Þ

where we interpret D(s) and A(k) as sets of edges, so the summand is the number of
edges in mode k that are not in the network s. Similarly, we also require the number
of edges that occur in the networks of cluster k but not in the mode—the number
of false positives,

pk ¼ ∑
s2Ck

DðsÞ n AðkÞ�� ��: ð9Þ

Like the cluster sizes Sk and edge counts per cluster Mk, the pairs (nk, pk) can be
communicated to the receiver at a comparatively negligible cost, and we ignore
them in our calculations.

To estimate the information content of this part of the transmission, we count
the number of configurations of false-negative and false-positive edges in Ck.
Focusing first on the false negatives—the edges that must be deleted—we count
that of the SkMk edges in the Sk copies of the mode of cluster k, nk will be false-

negative edges that can be configured in
SkMk
nk

� �
ways. Similarly, using the

shorthand M�
k ¼

N
2

� �
�Mk to denote the unoccupied pairs of nodes in the

mode k, there are SkM
�
k locations in which we must place pk false-positive edges, for

a total of
SkM

�
k

pk

� �
possible configurations of false-positive edges. The total

information content required for transmitting the locations of the false-negative
and false-positive edges of every network in cluster k is thus

‘k :¼ LðfDðsÞjs 2 CkgjAðkÞÞ

¼ log
SkMk

nk

� �
þ log

SkM
�
k

pk

� �
;

ð10Þ

which we approximate as

‘k � SkMkHb
nk

SkMk

� �
þ SkM

�
kHb

pk
SkM

�
k

� �
: ð11Þ

Summing over all clusters,

LðDjA; CÞ ¼ ∑
K

k¼1
‘k; ð12Þ

we obtain the total information content of the final step in the transmission
process.

We obtain the total description length LðDÞ by adding the contributions of Eqs.
(5), (6), and (12), as

LðDÞ ¼ LðAÞ þ LðCÞ þ LðDjA; CÞ: ð13Þ
This objective function allows for efficient optimization because we can express it
as a sum of the cluster-level description lengths

LkðAðkÞ;CkÞ ¼ LðAðkÞÞ þ S log
S
Sk

� �
þ ‘k; ð14Þ

giving

LðDÞ ¼ ∑
K

k¼1
LkðAðkÞ;CkÞ: ð15Þ

Equations (4) and (10) provide explicit expressions for LðAðkÞÞ and ℓk.
Equation (15) gives the total description length of the data D under our multi-

part transmission scheme. By minimizing this objective function we identify the
best configurations of modes A and clusters C. A good configuration fA; Cg will
allow us to transmit a large portion of the information in D through the modes
alone. If we use too many modes, the description length will increase as these are
costly to communicate in full. And if we use too few, the description length will
also increase because we will have to send lengthy messages describing how
mismatched networks and modes differ. Hence, through the principle of
parsimony, Eq. (15) favors descriptions with the number of clusters K as small as
possible but not smaller.

This framework can be modified to accommodate populations of bipartite or

directed networks. For the bipartite case, we make the transformations
N
2

� �
!

N1N2 and M�
k ! N1N2 �Mk , where N1 and N2 are the numbers of nodes in each

of the two groups. This modification reduces the number of available positions for
potential edges. Similarly, for the directed case, we can make the transformations
N
2

� �
! NðN � 1Þ and M�

k ! NðN � 1Þ �Mk , which increases the number of

available edge positions.

(a)

(b)

Fig. 5 Information transmission scheme. a Example population of
networks D, with S= 9 networks of N= 8 nodes each. b Representative
modes {A(k)} with their corresponding clusters of networks {Ck}. First, each
mode network is transmitted individually in its entirety, with information
content LðAðkÞÞ given by Eq. (4). Then, networks in the population are
assigned to disjoint clusters surrounding each mode, requiring information
content given by Eq. (6). Finally, all the networks D(s) in each cluster Ck are
transmitted, given the number of false-negative and false-positive edges nk
and pk in the cluster (represented with dotted red and solid blue lines,
respectively). The information content of this step is given by ℓk in Eq. (10).
Different choices of clusters and modes lead to different total information
content, and the aim is to identify the clusters and modes that minimize this
information content.
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Optimization and model selection. Since Eq. (15) has large support, is not
convex, and has many local optima, a stochastic optimization method is a natural
choice for finding reasonable solutions rapidly. We exploit the objective function’s
decoupling into a sum over clusters k and implement an efficient merge-split
Monte Carlo method for the search51,52. The method greedily optimizes LðDÞ
using moves that involve merging and splitting clusters of networks DðsÞ 2 D.

Our merge-split algorithm minimizes the description length in Eq. (15) by
performing one of the following moves selected uniformly at random and
accepting the move as long as it results in a reduction of the description length (15):

1. Reassignment: Pick a network s at random and move it from its current
cluster Ck to the cluster Ck0 that results in the greatest decrease in the
description length. Compute the modes A(k) and Aðk0 Þ that minimize the
cluster-level description lengths LkðAðkÞ;CkÞ and Lk0 ðAðk0 Þ;Ck0 Þ using Eq.
(14) and the procedure described below, conditioned on the networks in Ck

and Ck0 .
2. Merge: Pick two clusters Ck0 and Ck00 at random and merge them into a

single cluster Ck. Compute the mode A(k) that minimizes the cluster-level
description length LkðAðkÞ;CkÞ using Eq. (14) and the procedure described
below, conditioned on the networks in Ck. Finally, compute the change in
the description length that results from this merge.

3. Split: Pick a cluster Ck at random and split it into two clusters Ck0 and Ck00

using the following 2-means algorithm. First assign every network in Ck to
the cluster Ck0 or Ck00 at random. Refine the assignments by successively
moving every network to the cluster Ck0 or Ck00 that results in a greater
decrease in the description length and compute the modes Aðk0 Þ and Aðk00 Þ

that minimize the cluster-level description lengths Lk0 ðAðk0 Þ;Ck0 Þ and
Lk00 ðAðk00 Þ;Ck00 Þ, conditioned on the networks now in Ck0 and Ck0 . After
convergence of the 2-means style algorithm, compute the change in the
description length that results from this split of cluster Ck.

4. Merge-split: Pick two clusters at random, merge them as in move 2, then
perform move 3 on this merged cluster. These two moves in direct
succession help reassign multiple networks simultaneously; their addition to
the move set improves the algorithm’s performance.

Since these moves modify only one or two clusters, the change in the global
description length LðDÞ can be recomputed quickly as updates to the cluster-level
description lengths in Eq. (14). Every time a mode is needed for these calculations,
we use the mode that minimizes the cluster-level description length LkðAðkÞ;CkÞ in
Eq. (14). To find this optimal mode efficiently, we start with the “complete” mode

AðkÞ
comp ¼

[
s2Ck

DðsÞ; ð16Þ

with an edge between nodes i and j if at least one network in the cluster contains
the edge. We then greedily remove edges from AðkÞ

comp in increasing order of
occurrence in the networks of Ck—starting first with edges only found in a single
network and going up from there—and update the cluster-level description length
as we go. After removing all edges from AðkÞ

comp, the mode giving the lowest cluster-
level description length is chosen as the mode for the cluster. This approach is
locally optimal under a few assumptions about the sparsity of the networks and the
composition of edges in the clusters (see Supplementary Note 2 for details).

We run the algorithm by starting with K0 initial clusters (this choice has a
negligible effect on the results, see Supplementary Note 3) and stop when a
specified number of consecutive moves all result in rejections, indicating that the
algorithm has likely converged. The worst-case complexity of this algorithm is
roughly O(NS) (the worst case is a split move right at the start). Supplementary
Note 2 details the entire algorithm, and Supplementary Note 3 provides additional
tests of the algorithm, such as its robustness for different choices of K0.

To diagnose the quality of a solution, we compute the inverse compression ratio

ηðDÞ ¼ LMDLðDÞ=L0ðDÞ; ð17Þ
where LMDLðDÞ is the minimum value of LðDÞ over all configurations of A; C,
given by the algorithm after termination, and L0 is given in Eq. (2). Equation (17)
tells us how much better we can compress the network population D by using our
multi-step encoding than by using the naïve fixed-length code to transmit all
networks individually. If ηðDÞ<1, our model compresses the data D, and if ηðDÞ>1,
it does not because we waste too much information in the initial transmission steps.

Contiguous clusters. In the previous section, we described a merge-split Monte
Carlo algorithm to identify the clusters C and modes A that minimize the
description length in Eq. (15). This algorithm samples the space of unconstrained
partitions C of the network population D. However, in many applications, parti-
cularly in longitudinal studies, we may only be interested in constructing con-
tiguous clusters, where each cluster is now a set of networks where adjacent indexes
s∈ {1, . . . , S} indicate contiguity of some form (temporal, spatial, or otherwise).
Such constraints reduce the space of possible clusterings C drastically, and we can
minimize the description length exactly (up to the greedy heuristic for the mode
construction) using a dynamic program32,53,54.

Before we introduce an optimization for this problem, we require a small
modification to Eq. (14) for the cluster-level description length to accurately reflect

the constrained space of ordered partitions C that we are considering. In our
derivation of the description length, we assumed that the receiver knows the sizes
{Sk} of the clusters in C. If we transmit these sizes in the order of the clusters they
describe, the receiver will also know the exact clusters C, since knowing the sizes
{Sk} is equivalent to knowing the cluster boundaries in this contiguous case. We can
therefore ignore the term S logðS=SkÞ in Eq. (14) that tells us how much
information is required to transmit the exact cluster configuration. This
modification results in a new, shorter description length

LðcontÞ
k ðAðkÞ;CkÞ ¼ LðAðkÞÞ þ ‘k ð18Þ

and a new global objective

LcontðDÞ ¼ ∑
k
LðcontÞ
k ðAðkÞ;CkÞ: ð19Þ

Since the objective in Eq. (19) is a sum of independent cluster-level terms,
minimizing this description length for contiguous clusters admits a dynamic
programming algorithm solution32,53,54 that can identify the true optima in
polynomial time.

The algorithm is constructed by recursing on LðiÞ
MDL, the minimum description

length of the first i networks in D according to Eq. (19). Since the objective
function decomposes as a sum over clusters, for any j∈ [1, S], the MDL can be
calculated as

LðjÞ
MDL ¼ min

i2½1;j�
Lði�1Þ
MDL þ LðcontÞ

k ð½i; j�Þ
n o

; ð20Þ

where we set the base case to Lð0Þ
MDL ¼ 0 and define LðcontÞ

k ð½i; j�Þ as the description
length of the cluster of networks with indices {i, . . . , j}, according to Eq. (18) with
the mode computed with the greedy procedure described in the previous section.
Once we recurse to LðSÞ

MDL, we have found the MDL of our complete dataset, and
keeping tab of the minimizing i in Eq. (20) for every j allows us to reconstruct the
clusters.

In practice, the recursion can be implemented from the bottom up, starting with

Lð1Þ
MDL, then Lð2Þ

MDL, and so on. The computational bottleneck for calculating LðjÞ
MDL is

finding the modes of a cluster j times for each evaluation of Eq. (20) (once for each
i= 1, . . . , j), leading to an overall complexity OðjN logNÞ for this step. Summing
over j∈ [1, S ], the overall time complexity of the dynamic programming algorithm
is OðS2N logNÞ, which we verify numerically in Supplementary Note 3.

Data availability
The datasets used in this paper are available at https://github.com/aleckirkley/MDL-
network-population-clustering.

Code availability
The algorithm presented in this paper is available at https://github.com/aleckirkley/
MDL-network-population-clustering.
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