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Anomalous fractal scaling in two-dimensional
electric networks
Xiao Zhang 1, Boxue Zhang 1, Haydar Sahin 2,3✉, Zhuo Bin Siu2, S. M. Rafi-Ul-Islam 2,

Jian Feng Kong 3, Bing Shen 1, Mansoor B. A. Jalil 2, Ronny Thomale 4 & Ching Hua Lee 5✉

Much of the qualitative nature of physical systems can be predicted from the way it scales

with system size. Contrary to the continuum expectation, we observe a profound deviation

from logarithmic scaling in the impedance of a two-dimensional LC circuit network. We find

this anomalous impedance contribution to sensitively depend on the number of nodes N in a

curious erratic manner and experimentally demonstrate its robustness against perturbations

from the contact and parasitic impedance of individual components. This impedance anomaly

is traced back to a generalized resonance condition reminiscent of Harper’s equation for

electronic lattice transport in a magnetic field, even though our circuit network does not

involve magnetic translation symmetry. It exhibits an emergent fractal parametric structure of

anomalous impedance peaks for different N that cannot be reconciled with a continuum

theory and does not correspond to regular waveguide resonant behavior. This anomalous

fractal scaling extends to the transport properties of generic systems described by a network

Laplacian whenever a resonance frequency scale is simultaneously present.
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From dimensional analysis to the universality of critical phase
transitions, scaling theory provides a universal paradigm for
the principal understanding of most physical

phenomena1–7. Particularly interesting are “marginal” scenarios,
where observables exhibit great freedom in their functional
dependency on the physical variables8–11. A classic example is the
electrical impedance Z of a D-dimensional sample of character-
istic length N, which scales as Z ~N2−D; in particular, for D= 2,
Z must scale slower than any power of N, most commonly
logarithmically.

Indeed, logarithmic scaling is ubiquitous in physics, appearing
in a broad range of contexts as disparate as conformal field the-
ory, disorder Green’s functions, strongly coupled quantum fields,
and graph complexity12–16. It represents the paradigmatic slower-
than-power-law behavior that appears naturally in various scale-
free scenarios. Particularly, impedance scaling in electrical cir-
cuits, as a function of circuit size, dutifully displays this scaling
behavior when the circuit is either entirely reactive or resistive.
For instance, the dimensionality of lattice models determines
whether the impedance scales linearly, logarithmically or satu-
rates to a constant impedance value. While 1D and 2D samples
exhibit these scaling characteristics such as linear or logarith-
mic scaling, the impedance in circuits with dimensionality D ≥ 3
experiences rapid saturation proportional to D. Nevertheless,
although the dimensionality of the lattice delineates the scaling
characteristics, it ceases to be the predominant determinant in
heterogeneous resonant media. In fact, the scaling profile of LC
circuits with inductance L and capacitance C relies more on the
form of the lattice array rather than the lattice dimension17,18.
This is because the impedance across two opposite farthest sites
varies due to the parameter space irrespective of the lattice
dimension. To explain this, we will conceptually elucidate and
experimentally demonstrate the resonant conditions through a
seemingly elementary physical 2D system by evaluating its
corner-to-corner impedance.

The two-point impedance and resistance problem has garnered
significant attention19–26 as it not only allows for the study of
electrical conductivity, but also serves as a means of uncovering
new physical phenomena related to lattice dimension, net-
work model, lattice uniformity, and boundary design from the
changes in the electrical characteristics in the presence of pertur-
bations or disorder27–31. The extensive research conducted in this
expansive field has enhanced our fundamental understanding of
electric circuits32–45 and has practical applications in the design of
various circuit systems, including topolectrical circuits46–52, non-
linear systems53–56, condensed matter counterparts57,58, and
metamaterials59. In addition to numerical approaches such as the
Laplacian formalism60–62, various analytical methods have been
developed for determining the two-point impedance, including the
recursion-transform method18,63–68, the lattice Green’s
function69–74, asymptotic expansion75,76, and the method of
images77,78. While each of these methods employs a distinct
approach to evaluate the impedance in both reactive and resonant
media, they all require the circuit network to possess symmetries
such as inversion and translation symmetries. The role of these
symmetries has not been thoroughly explored in the literature, but
their presence may result in anomalous behaviors that can be
uncovered through the impedance scaling in electric circuits.

In this work, we report a dramatic uniform scaling violation in
the impedance across LC circuit lattices resulting from the sup-
pression of current at the boundaries due to the circuit symme-
tries. To demonstrate this, we specifically examine a 2D square LC
circuit, wherein its reactive counterpart displays a notable loga-
rithmic scaling. Although the same qualitative picture can be
observed in circuits with different dimensions, the 2D LC circuit
allows us to investigate the origin of uniform scaling violations

using a simpler yet richer example. Naively, one would expect the
impedance of a 2D circuit to vary smoothly with the number of
unit cells from its continuum analog since the circuit lattice can
be construed as a discretization of 2D conducting plates. How-
ever, while this indeed holds for non-resonant circuits, such as
those containing capacitors or resistors exclusively, the impe-
dance behavior for resonant media, i.e., LC circuits cannot be
more different. Our theoretical and experimental investigations
reveal curious impedance enhancements of up to a few orders at
certain lattice sizes N, whose roots can be traced to a new com-
mensurability criterion associated with a Hofstadter butterfly-like
fractal structure. This challenges the applicability of a continuum
description in even the simplest of resonant media.

Results
Violation of logarithmic impedance scaling. To put our
anomalous circuit impedance scaling behavior into perspective,
we introduce the quantity β ¼ � d log jZj

d logN , which is the fractional
rate of change of the impedance Z with the system size N. It is
closely related to the β-function in renormalization group
analysis79–81, and has also been famously employed in under-
standing the conductivity localization transition15,82–86 due to
disorder scattering.

In most conductors where Z ~N2−D, we have a constant
β=D− 2, which indicates that the impedance Z increases
(decreases) with the system size in a consistent qualitative manner
for D ≤ 2 (D > 2). This is the case for purely resistive media (such as
the conducting plate depicted in Fig. 1a) for which the impedance
scales logarithmically viz. Z � logN , giving rise to β � �ðlogNÞ�1

as sketched in Fig. 1b (blue, green and dark green). However, we
unveil that this crossover to the asymptotic limit can be far from
smooth when an AC frequency scale exists in the circuit. As plotted
in Fig. 1b (red) for an illustrative 2D AC circuit lattice (detailed
later), β fluctuates erratically and dramatically as the system size N
increases. (Note that the irregular impedance scaling depicted in
red in Fig. 1b is not exclusive to a 2D sample but can occur in LC

Fig. 1 Origin of logarithmic impedance scaling in continuum media and its
violation in lattices. a In a continuous sample such as a square plate of
length N and resistivity ρ, the diagonal-to-diagonal impedance necessarily
scales like ρ logN. This is easily seen by slicing the sample into strips
perpendicular to the diagonal and noticing that each strip approximately
contributes a serial impedance that is inversely proportional to its width.
This is because each successive “shell” in the sample scales with its linear
dimension l as lD−1= l, such that the total impedance scales likeR Nl�1dl � logN. b Behavior of β ¼ � d log jZj

d logN , the fractional rate of change of
impedance Z diagonally with the system size N, across circuit lattices with
and without an AC frequency scale. While a purely resistive 2D circuit
(blue) exhibits a smoothly vanishing β consistent with the continuum
approximation in (a), our 2D LC circuit (red) with an illustrative frequency
scale of ωr= 1.95 exhibits anomalous scaling behavior with pronounced and
erratically located peaks. The dashed lines represent the constant or
saturated scaling of other dimensions derived from β of scaling theory
applicable to non-resonant reactive media.
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lattices regardless of their dimensions). In the following sections,
this anomalous scaling behavior will be revealed to be part of an
intricate fractal-like characteristic with slightly different reactance
parameters often giving rise to unpredictably distinct anomalous
impedance scaling.

RLC circuit with anomalous impedance scaling. We investigate
the discretization of the simplest 2D conducting sample, which is
an N ×N square lattice circuit array with fixed RLC components
connecting each node (Fig. 2a). For consistency, we shall always
measure the impedance across two diagonally opposite corner
nodes, even though the subsequent results remain qualitatively
valid for arbitrary impedance intervals. If every connection in the
square lattice is composed of the same element z, it can be shown
(see “Methods: Detailed derivation of the corner-to-corner
impedance”) that the corner-to-corner impedance scales like Z �
z logN (Fig. 2d). This is not surprising, since it is only natural to
expect that the square circuit lattice inherits the same logarithmic
scaling as its continuum counterpart.

Yet, we find that this usual logarithmic impedance scaling
becomes severely violated when the lattice connections z are

replaced by two different circuit components with impedances of
opposite signs, such as L and C components, which define a
frequency scale. Specifically, we built an N ×N square lattice
circuit array on circuit boards (Fig. 2b) (N= 2, . . , 7), such that
each horizontal link contains a capacitor C and each vertical link
contains an inductor L. In momentum space, the circuit Laplacian
L, which relates the voltage and input current profiles via
I ¼ LV, takes the form

Lðkx; kyÞ ¼ 2iωCð1� cos kxÞ þ
2
iωL

ð1� cos kyÞ

¼ 2iωC ð1� cos kxÞ � ω�2
r ð1� cos kyÞ

h i
;

ð1Þ

where ω denotes the AC driving frequency. Barring the 2iωC
overall prefactor, ωr ¼ ω

ffiffiffiffiffiffi
LC

p
is the only nontrivial parameter of

our circuit besides the lattice size N, neither of which constitutes
another competing length scale.

For a fixed ωr, the measured corner-to-corner impedance does
not follow a simple trend with the lattice size N but varies
erratically with abrupt and prominent peaks at certain N. As
plotted in Fig. 2c for an ideal LC circuit without any dissipation,
the impedance Z fluctuates wildly as N is increased, such that ∣Z∣

Fig. 2 Circuit description and measured anomalous impedance scaling. a Our circuit is an N ×N square lattice array with the horizontal and vertical links
being capacitors C and inductors L, respectively. The corner-to-corner impedance Z is measured by running a current between the lower left and upper
right (N-th) nodes. The scaling behavior of Z is revealed to contrast strongly with the logarithmic scaling of a similar but uniform circuit array consisting of
only one type of element, i.e., resistors (shown in the inset) or capacitors. b We implement our LC circuit arrays on circuit boards and control the lattice
size N through switches. Shown here is the 6 × 6 case—our board shown here admits up to the N= 7 case. c In principle, with purely capacitive or inductive
LC components, the corner-to-corner impedance of our circuit becomes drastically higher by a few orders at particular lattice sizes N, and depends
sensitively on ωr ¼ ω

ffiffiffiffiffi
LC

p
according to Eq. (3). d These anomalous corner-to-corner impedance peaks are attenuated in our experimental measurements

but are still robustly prominent, as shown in these plots at three illustrative AC frequencies ω. The measured (exp, red) data agrees well with the simulated
values (sim, cyan) with estimated parasitic resistances (estimated to be RpL= 3.3Ω, RpC= 4.5Ω, RpW= 0.1Ω, see “Methods: Analysis of uncertainties”),
and are captured by a complex effective ωr with Im(ωr) of the order of 10−2. This contrasts with uniformly capacitive circuits (all-cap, dark magenta), which
exhibit logarithmic scaling with no non-monotonic peaks.
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can abruptly become a few orders of magnitude larger for
particular values of N. Besides, the impedance behaves qualita-
tively differently for different ωr, even across small changes in ωr.
It is noteworthy that such “quasi-random” behavior is robustly
measurable in an actual experimental implementation with
inevitable dissipation, as reflected in our measured data (Fig. 2d),
which agrees well with the theory despite unavoidable parasite
and contact resistances as well as component disorder.

Emergent fractal resonances. The erratic, random-like behavior
of the impedance across our LC circuit suggests a hidden layer of
emergent complexity in its resonance properties. Usually, one
would expect a simple array of LC components to behave as a
waveguide with resonances that are simple enough to list down, for
instance, the vibration modes on a stretched drumskin87,88. A
complete impedance plot of our LC circuit in (N,ωr) parameter
space, however, reveals a complicated fractal-like structure that
bears resemblance to the energy bands in the Hofstadter
butterfly89–92. In Fig. 3a, we observe the following intricate hier-
archy of impedance peaks: apart from some “main” branches, there
exists a proliferation of less regular peaks that appear and disappear
with the discreteness of N, akin to the cringes on the surface of a
human palm. Additionally, these fractal patterns in our 2D LC
circuit are not confined to 2D instances, much like the Hofstadter
butterfly, which is specific to 3D and quasi-1D systems93,94.

To mathematically understand the origin of this fractal
impedance behavior, we start from the formal expression for
the impedance between two nodes i and j46,61

Zij ¼
Vi � Vj

I

¼ ½L�1I�i � ½L�1I�j
I

¼ ∑
μ≠0

jψμðiÞ � ψμðjÞj2
λμ

;

ð2Þ

where Vi and Vj are respectively the voltage potentials at the
current input sites i and j at which Il= I(δil− δjl) is nonzero. Here
ψμ and λμ are the corresponding eigenvectors and eigenvalues of
the Laplacian, whose pseudoinverse is given by
L�1 ¼ ∑μ≠0λ

�1
μ jψμihψμj, where μ ≠ 0 indicates the omission of

the uniform eigenvector corresponding to an overall voltage
offset.

Evidently, impedance peaks arise if there are eigenvalues λμ
that are almost zero (not exactly zero, as they cannot perfectly
vanish in a realistic circuit experiment). Such peaks have been
featured as “topolectrical” resonances when the circuit band
topology enforces topological zero modes57,95,96. In our context,
there is no topological mechanism, and we proceed by deriving a
compact albeit slightly complicated expression for the impedance
Z= Zij between the corner nodes i and j, as detailed in
“Methods: Detailed derivation of the corner-to-corner impe-
dance”. The idea is to first consider the circuit under a doubled
system with periodic boundaries where μ in Eq. (2) now labels
the momentum eigenmodes kx ¼ 2πm

2N , ky ¼ 2πn
2N , and next employ

the method of images to enforce the vanishing of currents across
the N ×N open boundaries. In doing so, we obtain the impedance

ZðNÞ ¼ 2
iωCN2 ∑

nþm2odd

cos nπ
2N cos

mπ
2N cos ðnþmÞπ

2N

1� cos nπN
� �� ω�2

r 1� cos mπ
N

� � : ð3Þ

The denominator in Eq. (3) resolves the origin of incommensur-
ability leading to fractal-like behavior. Analogous to the Harper
equation describing a Landau level due to a magnetic field89,97–99,
we find the relation

ω2
r ¼ ω2LC ¼ 1� cos mπ

N

1� cos nπN
ð4Þ

describing a circuit resonance. Here, ω2
r plays the analogous role

to the energy in the Hofstadter butterfly, and N plays the role of
the denominator defining a fractional flux. In our case, however,
all rational fractions with denominator N simultaneously
contribute to the impedance, and a strong resonance occurs if
there exist integers m, n of the same parity that accurately satisfy
Eq. (4).

This relation explicitly expresses the resonance strength in
terms of the commensurability properties of ω2

r and N, even
though the relation is hard to guess from intuitive reasoning.
Unlike the Hofstadter butterfly problem, which is based on
magnetic translation-symmetric Bloch states89,91, our circuit
setup contains no such symmetries. While generic LC (or likewise
RLC) circuits do possess resonances, their resonance properties
dimensionally depend on the frequency scale LC, and in general,
do not depend systematically on the system size. In our case, it is
the mirror symmetry about the boundaries that fortuitously
restores sufficient symmetry to give rise to an explicit, and hence
also measurable, commensurability relation.

Stemming from the approximate solutions to Eq. (4), the
impedance peaks are primarily manifestations of commensurate
“energetics” that lead to a vanishing ωr, rather than special spatial
mode configurations. To illustrate this point, illustrative near-
resonant and off-resonant eigenmodes of L are plotted in Fig. 3b.
Note that the near-resonant eigenmodes do not exhibit any
spatial distribution particularities that distinguish them from
ordinary eigenmodes contributing to far lower impedances.

Robustness of fractal impedance peaks and crossover from
logarithmic scaling. In actual experiments, contact and parasitic
resistances introduce inevitable dissipation and attenuate the
impedance peaks, as evident in the comparison between Fig. 2c
and d. Yet, the key anomalous fractal scaling behavior of the

Fig. 3 Fractal nature of anomalous impedance scaling. a Log-density plot
of the corner-to-corner impedance Z in the parameter space of (real) ωr

and lattice size N showing variations of Z across several orders of
magnitude in the form of fractal-like branches. The “branch” near ωr= 1.5 is
the strongest but, still, it contains strong impedance peaks only for certain
system sizes N. b Representative minimal-eigenvalue eigenstates of the
Laplacian L with N= 9 at two illustrative ωr (Eq. (4)) with very contrasting
impedances Zωr¼1:47=Zωr¼1:71 ¼ 256=4:81 � 53. Unlike the case of
waveguides, the markedly different impedances are not due to the spatial
eigenstate distributions, which are qualitatively similar, but rather the
“vanishing energetics” of ωr. c The impedance peak branches of log jZj
remain mostly robust in the presence of inevitable resistances, such as
shown here for Im(ωr)=−0.02, which is of the same order as the parasitic
resistances in our fabricated circuits. The plot legends in panels (a) and (c)
indicate that the values represented are the logarithms of the absolute
corner-to-corner impedance.
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impedance remains robust. Phenomenologically, we can repre-
sent these dissipative effects by modifying the capacitor and
inductor impedances to (iωC)−1→ (iωC)−1+ RC and iωL→
iωL+ RL, where RC and RL are real effective resistances. Incor-
porating the estimated RC and RL values from our experiments,
which add an imaginary part of order Oð10�2Þ to ωr, we find that
the fractal parameter space profile of the impedance ∣Z∣ becomes
slightly smoothed out (Fig. 3c), even though the main branches of
the fractal structure remains qualitatively unchanged. This
robustness stems from the strong impedance divergence due to
commensurability effects on a discretized conducting medium,
which holds for generic lattice discretizations, and not just for our
square lattice (Eq. (3)).

Anomalous impedance in the 2D honeycomb lattice. The
presence of anomalous impedance in LC circuits is a universal
property that arises when two distinct components with
opposing phases are present in the circuit lattice. Here, we
investigate the impedance characteristics of the two most dis-
tant nodes in a honeycomb lattice with a zigzag edge design. We
consider nodes belonging to two sublattices A and B that are
connected by an admittance za (blue lines in Fig. 4a) in a unit
cell. The nearest neighbor nodes are also connected by an
admittance zb (red lines in Fig. 4a). The resultant lattice is fully
reactive and non-resonant when za and zb have the same phases
and resonant when they have opposite phases. To investigate
the lattice size-dependent impedance characteristics, we

examine the circuit in both cases and find that there are
anomalous impedance resonances at specific circuit sizes when
the circuit parameters are fixed. Figure 4b illustrates the
impedance across circuit size behavior under two conditions:
when the entire circuit is composed of only a single type of
capacitor with a capacitance of za= zb= iωC, and when it is
composed of two distinct admittances of za= 1/(iωL) and
zb= iωC. The fractal scaling observed in the 2D LC circuit
(Fig. 2a) also arises in the 2D honeycomb lattice. Figure 4c
illustrates the impedance resonances exhibiting fractal-like
scaling with the variation of the circuit size and driving fre-
quency. Furthermore, the edge design of the lattice affects only
the form of the fractal-like branches, but the branches persist
across different edge designs. This validates the fractal-like
anomalous impedance scaling in LC circuits with different lat-
tice models.

Discussion
In this work, we theoretically and experimentally investigated the
pronounced yet seemingly random impedance scaling behavior of
RLC circuit lattice arrays. This anomalous impedance scaling
contrasts greatly with the usual logarithmic scaling expected in 2
dimensions and is rooted in the commensurability properties of
the circuit Green’s function eigenvalues, reminiscent of the
commensurability conditions pertaining to a Hofstadter lattice
with magnetic flux. This results in a curious fractal-like impe-
dance behavior in the parameter space of dimensionless fre-
quency ωr and lattice size N, whose complexity and structure
elude any simplistic waveguide analysis.

In generic circuit lattices with more complex connections, unit
cells, and feedback elements, more sophisticated fractal impe-
dance fringes would be expected due to the more complicated
commensurability conditions for the vanishing of the circuit
Laplacian eigenvalues. This points toward the hitherto unnoticed
general breakdown of a continuum description of resonant con-
ducting media, which highlights the need for more careful ana-
lysis in the discretization of device geometries in electrostatics
simulations. The discretization of continuous media involves
dividing the medium into discrete units or elements that can be
represented using discrete variables. In the context of electrical
circuits, this can involve dividing continuous electrical fields or
currents into discrete components such as resistors, capacitors,
and inductors, which can be connected in various ways to create a
circuit. Discretization allows for the use of mathematical tools
and techniques to analyze the physical phenomenon in con-
tinuum media, as in this study20,100.

More generally, the fractal anomalous scaling behavior extends
to the steady state behavior of systems governed by network
Laplacians where a resonance frequency also enters the dynamics.
This includes, for instance, directed information networks, which
are physically unrelated to electrical circuits. While we have
focused on a very regular square lattice network that should have
possessed simple logarithmic impedance scaling naively, such
fractal scaling also exists in more generic network structures,
albeit in possibly more concealed manners.

Methods
Detailed derivation of the corner-to-corner impedance. Here, we provide a
detailed pedagogical exposition of the impedance formula in Eq. (3), which has an
analytic expression thanks to the fact that the method of images can be used in
implementing the circuit boundaries. Besides our method, one can also compute
the complex equivalent resistance in finite complex lattices by using the recursion-
transform method67,68,101.

The impedance is a measure of the total resistance that a circuit offers to the
flow of alternating current. It is composed of reactance, which is the resistance of a
circuit element to AC due to its inherent capacitance or inductance, and resistance,
which is the resistance of a circuit element to AC due to its inherent properties (i.e.,

Fig. 4 Honeycomb circuit lattice and its impedance results. a Illustrative
honeycomb lattice with a zigzag edge design when N= 5. A unit cell
consists of nodes belonging to two sublattices A (black circles) and B
(black-framed white circles). The blue and red lines represent the node
links with the different admittances of za and zb, respectively. The faded
cells indicate the extension of the circuit when N= 6, as an example. b The
impedance response of the circuit in (a). The circuit is a resonant medium
when za= 1(iωL) and zb= iωC and presents sharp impedance resonances
as a function of the circuit size. The parameters used are ωC= 1 for the
uniform circuit made of only capacitors and ωC= 1, ωL= 2.21 for the LC
honeycomb circuit. c Fractal scaling of the 2D honeycomb lattice in the
circuit size and driving frequency domain when C= L= 1. The brightest and
darkest branches represent the strong anomalous impedance resonances,
which depend on the circuit size N. The legend located above the density
plot indicates the logarithm of the absolute impedance.
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impedance Z= XC+ R+ XL, where XC= 1/(iωC) and XL= iωL are the reactances
corresponding to a capacitance C and inductance L, respectively, and R is the
resistance).

Any two-point impedance can be derived from Eq. (2), which requires
determining the electric potential difference between two nodes in response to a
current I injected at node i and extracted at node j61. To derive the analytical
corner-to-corner impedance expression for a finite N ×N square circuit, we
consider an infinite circuit network built up from copies of the original N ×N
circuit (see Fig. 5). (Here, N is the circuit size in terms of the number of unit cells.)
We then label the nodes in this infinite circuit lattice such that the diagonally
opposite corner nodes of the physical single finite N ×N circuit are 1 and N, where
1= a1+ a2, N=Na1+Na2 and a1 and a2 are the unit vectors for a 2-dimensional
circuit. In such an infinite network, the current radiating from node r can be
viewed in analogy to the flow of a current density j through a material with
conductivity σ in response to the electric field E resulting in current distribution
I ¼ ∇ � ðσEÞ. Since E=−∇V where V is the electric potential, we arrive at
Poisson’s equation

∇2V ¼ �zI ; ð5Þ
where σ−1 in the continuum system is now replaced by z, the coupling
impedance between each neighbor in the circuit. To solve Eq. (5) for a single
copy of the N × N circuit array, we invoke the method of images, through which
the electric potential V in a specific region with boundaries can be obtained. In
the context of electrostatics, a classic application of the method of images is to
solve for the electric potential on a conducting plate stemming from a point
charge. To achieve this, one can replace the conducting plate with an image
charge of the opposite sign located spatially opposite to the original
charge102–105. By using the same perspective, we can regard the finite N × N
circuit as the analog of the original source and its boundaries as conducting
equipotential plates across which no current can flow77. Applying the method of
images, the N × N circuit is replicated to form a 2D infinite network with
capacitive C and inductive L couplings along the horizontal and vertical links,
respectively (refer Fig. 5). The Poisson equation in Eq. (5) is solved for this
infinite 2D network. The solution for the node potentials within the boundaries
of the source N × N plate will correspond to the node potentials of the original
finite circuit. This is because the presence of the replicas, which serve as the

analogs of the image charges, ensures that the potential differences between all
the edge nodes along the entire boundaries of the ‘source’ network and those of
its image copies are zero. Hence, no current would flow across the edges of the
N × N source network, which is the exact boundary condition for the original
finite N × N circuit. To implement the method of images in the circuit network,
we write the current distribution over the supercircuit with the period of 2N as

I ðrÞ ¼ I δðr; rinÞ � δðr; routÞ
� �

; ð6Þ
where rin= {(0a1, 0a2), (1a1, 0a2), (0a1, 1a2), (1a1, 1a2)}, rout= {(Na1,Na2),
(−(N− 1)a1, Na2), (Na1,−(N− 1)a2), (−(N− 1)a1,−(N− 1)a2)}. Here the
vector r for our 2D circuit is defined as r= na1+ma2 where (n,m) are integers
varying between −(N− 1) to N and δ represents the Kronecker delta rather than
the Dirac delta function of the continuum electrostatic model, due to the
discrete locations of the injected/extracted currents (at the circuit nodes) and
their finite magnitudes. Due to the inversion and translation symmetries of our
circuit, the potential distribution produced by the current distribution can be
obtained by translating the extracted currents by any multiple of the 2N period,
i.e., rout= {(Na1,Na2), ((N+ 1)a1, Na2), (Na1, (N+ 1)a2), ((N+ 1)a1, (N+ 1)a2)}
(see Fig. 5). Therefore, the voltage potential in Eq. (5) by means of the definition
of the Green’s function δ(r)=−∇2G(r) and by considering all the image current
injection/extraction points can be found as

VðrÞ ¼ zIðGðrÞ þ Gðrþ a1Þ þ Gðrþ a2Þ
þ Gðrþ a1 þ a2Þ � GðrþNÞ
� Gðrþ Nþ a1Þ � GðrþNþ a2Þ
� Gðrþ Nþ a1 þ a2ÞÞ:

ð7Þ

Now that we have reformulated the finite circuit problem as a problem on an
infinite 2D lattice, we can find the momentum space Green’s function by
employing the discrete Fourier transform (recalling GðkÞ ¼ L�1ðkÞ):

GðrÞ ¼ 1

ð2NÞ2 ∑k
eir:k

LðkÞ ; ð8Þ

where LðkÞ is the corresponding circuit Laplacian given in Eq. (1). Here, the
momentum space vectors for our 2D circuit are k= kxa1+ kya2 with kx= 2nπ/
2N and ky= 2mπ/2N, where n and m are integer momentum indices from 1 to
2N. Because the current is injected and extracted at opposite diagonal corners of
the circuit and considering the translational invariance of the infinite circuit
lattice, by symmetry34,70,106, V(1)=−V(N). Thus,
Z/I= V(1)− V(N)= 2V(1)=−2V(N). From the momentum space Green’s
function of Eq. (8) and making use of Eq. (7),

Vð1Þ ¼ � VðNÞ ¼ I

4N2 ∑n
∑
m

´
ð1� ð�1ÞnþmÞð1þ eiπn=N þ eiπm=N þ eiπðnþmÞ=N Þ
iωCð1� cosðnπ=NÞÞ þ 1

iωL ð1� cosðmπ=NÞÞ :

ð9Þ

Here, the summation is taken over (n+m) ∈ odd because (1− (−1)n+m) in the
numerator is zero when (n+m) is even and 2 when (n+m) is odd. Notice that
the unit impedance z between the couplings in Eq. (7) is now replaced by the
impedances iωC and 1/(iωL) in the Laplacian in the denominator of Eq. (9). We
convert the numerator of Eq. (9) to the trigonometric form by using the identity
1þ cosðAÞ þ cosðBÞ þ cosðAþ BÞ ¼ 4 cosðA=2Þ cosðB=2Þ cosððAþ BÞ=2Þ. After
the transformation, the imaginary part of the expansion (i.e., the i sinðkiÞ terms)
disappears because it cancels out. The impedance between two opposite corners
(i.e., node 1 and node N) in our 2D N × NLC circuit is then obtained as

ZðNÞ ¼ 2
iωCN2

∑
2N

n¼1
∑
2N

m¼1

� cos nπ
2N cos

mπ
2N cos ðnþmÞπ

2N

1� cos nπN
� �� ω�2

r 1� cos mπ
N

� � ; ð10Þ

where Z(N) represents the two-point impedance between the two diagonally
opposite nodes as a function of the circuit size N and ωr ¼ ω

ffiffiffiffiffiffi
LC

p
. The asterisk

indicates that the summation should be taken only over odd values of (n+m)
where (n,m) ∈ {1, 2, . . . , 2N}. Note that the summation can be performed over
2N period due to the translation invariance. The condition for a vanishing
denominator, i.e., divergent Z(N), is exactly that of the resonance condition
given by Eq. (4).

Determination of the fractal dimension. It is possible to estimate the fractal
dimension D by using the Singular Value Decomposition (SVD) method107–109. In
this method, the self-similarities110 or fractal dimension in a dataset, which is the
fractal diagram in Fig. 3a (i.e., log jZj), is given by one minus the slope of the log-
log plot of the singular values of the fractal matrix111,112. To determine the fractal
dimension of our fractal structure, we performed SVD and write the decomposed
matrices as

log jZj ¼ u σ v> ð11Þ
where (⊤) denotes the transpose operation, u and v are the left and right singular
matrices, respectively, and σ is a diagonal matrix that comprises the singular values
of the fractal. These diagonal values are nonnegative, and their squares give the

Fig. 5 Uniform infinite lattice tiling with image copies of our 2D LC
circuit. Red and black dots signify the nodes where the current is injected
and extracted, respectively. The blue dashed square represents the physical
N-unit cell 2D LC circuit, while the brown dashed square illustrates the 2N-
unit cell supercircuit, which includes the image copies of the N-unit cell
circuit along each principal direction.
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eigenvalues of the log jZj matrix107,108. We arrange the singular values in
decreasing order, such that the largest value is σ1, the second-largest is σ2, and so
on, i.e., σ1 > σ2 > σ3 >⋯ . This allows us to determine the scaling ratio, which is
defined as the ratio of the largest singular value to the fractal matrix dimension. For
example, in our case in Fig. 3a, we find that σ1= 276.71 and dim ðlog jZjÞ ¼ 388,
and thus determine the scaling ratio as ~0.7. The fractal dimension can be defined
by utilizing the slope (ms=−0.4) of the best linear fit in the log-log scale plot
(Fig. 6)113. Therefore, the fractal dimension is determined as D= 1−ms= 1.4.

Effects of inevitable parasitic resistances. Theoretically, the parasitic resis-
tances can be incorporated by introducing additional the real effective resis-
tances RC for the capacitors and RL for the inductors, as we discussed in the
main text. In Fig. 3c, we plot the fractal impedance peaks under the con-
sideration of these parasitic resistances, which contribute to the imaginary part
of the circuit resonance condition (ωr). As can be seen in comparison with
Fig. 3a, the realistic parasitic resistances only lead to a smooth shift of the
impedance peak branches while the size-dependent resonances persist without
further losses. This behavior can be understood from the admittance band
structure. Since all the information for an ideal fully resonant media is contained
within the imaginary part of its impedance, the presence of the parasitic resis-
tances makes the impedance complex. This complexity implies that the stored
energy represented by the imaginary part is dissipated due to the parasitic
resistances. However, as long as the parasitic resistances do not become domi-
nant, their presence results in a smooth shift in the frequency corresponding to
zero admittance in the admittance band structure. To show this, we plot the
admittance band structures in Fig. 7a, b for our 2D LC circuit with N= 3 by

Fig. 6 Log-log scaling plot of the singular values extracted from the
fractal diagram of our 2D circuit, obtained via Singular Value
Decomposition (SVD). The SVD is performed on the fractal matrix log jZj
displayed in Fig. 3a. The blue dots represent the singular values given by Eq.
(11), while the red solid line represents the best linear fit of the data. The
fractal dimension is calculated as one minus the slope of the linear fit,
resulting in D= 1.4 where D represents the fractal dimension.

Fig. 7 Admittance band structures of the 2D LC square circuit when
C= L= 1 and N= 3. Panels a and b show the admittance spectra under the
consideration of the parasitic series resistances when RC= RL= 0.01Ω and
RC= RL= 0.2Ω, respectively. Panels c and d display zoomed-in views of
points where two randomly chosen admittance bands, depicted in (a) and
(b) respectively, intersect the zero-admittance axis. An increase in parasitic
resistances results in a shift toward higher frequencies at the band-crossing
points.

Fig. 8 Methodology of measuring and extending the N ×N circuits. a For
the N= 3 case measurement, H2 was connected through the jumper cap to
connect the entire measurement circuit after the components were
soldered. The voltage across a standard resistor of 110Ω was then
measured by connecting the right side of the switch 3H10 (c in panel (a)).
The voltage across the entire circuit was next measured using a lock-in
amplifier by connecting the left side of the switch 3H10 with a jumper cap
(d in panel (b)). After the measurement for N= 3 was completed, all the
switches were disconnected, and the N= 4 circuit (b) was extended from
the N= 3 circuit. H3 was subsequently connected and the above steps
were repeated after the additional required components were soldered. In
addition to the measured circuit, an operational amplifier (e in panel (a))
was also added at the input end and another operational amplifier at the
output end of the signal as followers to ensure the stability of the lock-in
amplifier signal. The power supply module (f in panel (a)) supplies power to
these two operational amplifiers. c Lab setup. To effectively avoid
interference with the weak signals, we used a lock-in amplifier for
measurements. SINE OUT provides an AC voltage signal to the
measurement circuit, and SIGNAL IN measures the voltage across either a
standard resistor or the entire circuit (controlled by a switch).

Fig. 9 Comparison of theoretically simulated and experimentally
measured impedances. The simulated and experimentally measured
impedances differ slightly in both the peak positions and heights, but theese
discrepancies are fully accounted for by component uncertainty and
tolerances as detailed in Table 1.
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considering two different parasitic resistances. As evident from Fig. 7c and d,
which provide a zoomed-in view of the band-crossing points in Fig. 7a and b,
respectively, the admittance bands themselves remain qualitatively unchanged,
although there is a shift towards higher frequencies in the admittance band
structure. This is significant because impedance resonances occur in the pre-
sence of nearly zero eigenvalues, which correspond to the band-crossing points
in the Laplacian formalism. According to Eq. (2), a large impedance is obtained
when at least one of the eigenvalues (λμ) becomes nearly zero provided that the
wavefunction values at the measurement points of its corresponding eigenstate
are not zero. Figure 7 demonstrates that introducing small parasitic resistances
results in a shift in the frequencies corresponding to the zero-energy eigenvalues.
This explains the shift to the right in Fig. 3c and demonstrates the robustness of
our circuit against parasitic resistances despite the smooth shift in the resonant
frequencies.

Details of the experiment. Our experiment consists of measuring the corner-
to-corner impedance of a square lattice array of LC elements, as pictured in
Fig. 2a, b. To fit our measured impedances with the theoretical predictions,
we introduce serial resistances to the L and C components, such that the
effective ωr becomes complex. Below, we detail the procedures involved, as
well as some of the subtleties.

Measurement process. Our measurements were performed on circuit lattices of
different sizes corresponding to N= 2 to 7 (refer to Fig. 8a, b). To mitigate the
effects of component disorder, the larger lattices were built by extending the
smaller lattices, i.e., measurements are carried out on a circuit of size N before the
circuit was extended by soldering additional circuit elements to form a circuit of
size N+ 1. Based on the fractal parameter space diagram, two AC frequency ranges
of interest were determined as 115–175 kHz and 215–290 kHz. For each lattice size
N, we swept through both of these ranges with a sweep step size of 200 Hz (an
overly small step size will significantly increase the measurement time). The sweep
time interval was set to 1000 ms, which was sufficient to ensure that the voltage
reached a stable state each time the frequency ω was updated. For each (ω,N)
point, the last three (stabilized) voltages were averaged and recorded. The con-
figuration of the measurement setup is shown in Fig. 8c.

Analysis of uncertainties. There are two main types of discrepancies between the
theoretically predicted (Eq. (3)) and experimentally measured impedances.
The first is the discrepancy between the predicted and measured resonant
frequencies f0 where the impedance peaks, and the second is the discrepancy
between the predicted and measured impedance values at f0. The first

discrepancy can mainly be attributed to the uncertainties in the component
values. The components we used are rated at C= 4.7 nF ± 1%, L= 1 mH ± 5%.
Employing the frequency scale ω/ωr = (LC)−1/2 as a value estimator, we find
that the discrepancy of f0 presented in Fig. 9 is within a reasonable range, as
further tabulated in Table 1.

The second type of discrepancy, i.e., the impedance peak heights, is greatly affected
by the parasitic resistance in addition to the component uncertainties. The parasitic
resistances effectively suppress the peak of the measured impedance. This is reflected
in the impedance-frequency curve in which the decrease in the peak value is
accompanied by an increase in the FWHM (full width at half maximum)., makes it
difficult to distinguish between the curves of different system sizes if the
parasitic resistances were too large (fortunately, they were not). There may be several
sources that contribute to parasitic effects, such as parasitic resistances, capacitances,
and inductances. However, through numerous simulation studies, we found that
the parasitic resistances are the most significant contributors that affect the
measured impedance resonances. Using the estimated serial parasitic resistances of
RpL= 3.3Ω, RpC= 4.5Ω, and RpW= 0.1Ω for the inductors, capacitors, and solder
contacts respectively, we find that the experimental and simulation results match
reasonably, as shown in Tables 1 and 2, and plotted in Fig. 2d of the main text.

Reducing the influence of parasitic resistances. Parasitic resistance has a strong
impact on the experiment. The most direct way to reduce its impact is to increase
the inductances L while decreasing the capacitances C since doing so does not
necessitate a proportional increase in the parasitic resistances. However, the
inductance value should not be too large in order to keep RpL within a reasonable
range. At the same time, if the capacitance value is too small, the equivalent series
resistance of the capacitors becomes dominant and the frequency f0 increases
which may increase the uncertainty in the measurement. In order to strike a
balance, we chose C= 4.7 nF, L= 1 mH.

Determination of ωr for experimental setups. Here, we provide details on how
resistive contributions from L and C components (not necessarily parasitic) affect
ωr, which is the most important dimensionless parameter in our setup. The
addition of serial resistances to each capacitor and inductor modifies their
admittance contributions to the circuit Laplacian as follows:

iωC ! iωC
1þ iωCRC

ð12Þ

1
iωL

! 1
RL þ iωL

ð13Þ
The Laplacian from Eq. (1) of the main text is hence modified to

Lðkx ; kyÞ ¼
2iωC

1þ iωCRC
ð1� cos kxÞ þ

2
RL þ iωL

ð1� cos kyÞ

¼ 2iωC
1þ iωCRC

ð1� cos kxÞ �
L
C � RCRL þ iωLRC þ iRL

ωC

R2
L þ ω2L2

ð1� cos kyÞ
" #

¼ 2iωC
1þ iωCRC

ð1� cos kxÞ � ω�2
r ð1� cos kyÞ

h i
ð14Þ

with the important parameter ω�2
r modified to

ω�2
r ¼

L
C � RCRL

R2
L þ ω2L2

þ ωLRC þ RL
ωC

R2
L þ ω2L2

i: ð15Þ

Substituting the measured parasitic resistances for our fabricated circuits via
RC= RpC+ 2RpW, RL= RpL+ 2RpW, and ωr into the simulations, we find an
excellent fit to the measured circuit impedances and their peaks (Fig. 2d of the
main text). Their corresponding ωr are given in Table 2. Note that an imaginary
part Imωr of ~0.02 to ~0.06 was acquired due to these resistances. Since the

Table 1 Comparison of theoretical simulation results with given component error tolerances against experimental results.

Sim. with C= 4.7 nF ± 1%,
L= 1 mH ± 5%

Sim. with C= 4.7 nF,
L= 1 mH

Exp. Error

Range of f0 (kHz) Range of Z (kΩ) f0 (kHz) Z (kΩ) f0 (kHz) Z (kΩ) f0 Z

3 123.4–131.0 3.9–4.2 127.0 4.06 130.2 4.01 2.52% −1.23%
4 131.7–139.8 7.6–8.2 135.6 7.96 139.4 7.59 2.80% −4.65%
5 135.5–144.0 9.9–10.7 139.6 10.32 144.0 9.31 3.15% −9.79%
6 236.8–251.4 1.8–1.9 243.8 1.86 250.4 1.95 2.71% 4.84%
7 248.9–264.2 2.4–2.6 256.3 2.48 263.8 2.62 2.93% 5.65%

The given inductive (L) and capacitive (C) components are rated at L= 1 mH ± 5% and C= 4.7 nF ± 1%. Z and f0 are the peak impedance and the frequency at which it occurs. The experimentally
measured (exp.) values are indeed within the theoretically predicted ranges (sim.) corresponding to the error tolerances. The full exp. and sim. impedance curves are given in Fig. 9.

Table 2 The effective ωr for various experimental data
points and their simulated values (from Fig. 2d of the main
text).

Z max at sim. exp.

N= f0 (kHz) ωr f0 (kHz) ωr

3 127.0 1.7297− 0.0190i 130.2 1.7733− 0.0198i
4 135.6 1.8468− 0.0211i 139.4 1.8986− 0.0222i
5 139.6 1.9013− 0.0222i 144.0 1.9612− 0.0234i
6 243.8 3.3195− 0.0600i 250.4 3.4092− 0.0630i
7 256.3 3.4895− 0.0658i 263.8 3.9515− 0.0695i

Due to parasitic resistances, ωr acquires a small imaginary part on the order 10−2.
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components used were not of particularly high quality, Im(ωr) can potentially be
reduced by one or more orders if necessary—in our case, they already suffice for
demonstrating the anomalous impedance scaling.

Data availability
All data can be acquired from the corresponding authors upon a reasonable request.

Code availability
All codes can be requested from the corresponding authors upon a reasonable request.
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