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Fractional magnetoresistance oscillations in
spin-triplet superconducting rings
Gábor B. Halász 1✉

Half-quantum vortices in spin-triplet superconductors are predicted to host Majorana zero

modes and may provide a viable platform for topological quantum computation. Recent works

also suggested that, in thin mesoscopic rings, the superconducting pairing symmetry can be

probed via Little-Parks-like magnetoresistance oscillations of periodicity Φ0= h/2e that

persist below the critical temperature. Here we use the London limit of Ginzburg-Landau

theory to study these magnetoresistance oscillations resulting from thermal vortex tunneling

in spin-triplet superconducting rings. For a range of temperatures in the presence of disorder,

we find magnetoresistance oscillations with an emergent fractional periodicity Φ0/n, where

the integer n≥ 3 is entirely determined by the ratio of the spin and charge superfluid den-

sities. These fractional oscillations can unambiguously confirm the spin-triplet nature of

superconductivity and directly reveal the tunneling of half-quantum vortices in real-world

candidate materials.
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F lux quantization is a defining feature of superconductivity
that directly originates from the macroscopic quantum
coherence of electron pairs. A salient manifestation of flux

quantization (or more precisely, fluxoid quantization) is the
Little-Parks effect1 wherein the resistance of a hollow super-
conducting cylinder close to its critical temperature oscillates as a
function of the magnetic flux inside with a periodicity given by
the flux quantum Φ0= h/2e. In thin mesoscopic rings where
vortex-crossing processes lead to a finite resistance even in the
superconducting state, analogous magnetoresistance oscillations
with the same periodicity are also observable much below the
critical temperature due to a periodic modulation of the vortex-
crossing rate2–5.

Recently, such magnetoresistance oscillations arising from both
the conventional Little-Parks effect6–9 and the rate of vortex
crossings10,11 have been identified as a useful tool in the ongoing
search for exotic spin-triplet superconductors12–19. In addition to
the standard quantum vortices corresponding to fluxoid quanti-
zation, these unconventional superconductors may also host half-
quantum vortices around which the fluxoid is quantized to a half-
integer multiple of Φ0. With such half-quantum vortices present,
the magnetoresistance oscillations are then expected to develop a
characteristic two-peak structure6,11,20. Importantly, half-
quantum vortices are also predicted to harbor Majorana zero
modes21,22 whose non-Abelian statistics may enable intrinsically
fault-tolerant quantum computation23,24.

In this work, we theoretically study the magnetoresistance
oscillations in thin mesoscopic rings of spin-triplet super-
conductors below the critical temperature. Focusing on the
London limit of Ginzburg-Landau theory, we adopt the form-
alism in ref. 25 to describe the available fluxoid states and
thermal vortex-crossing processes by accounting for both the
usual charge supercurrent and the spin supercurrent unique to
spin-triplet superconductors. At the lowest temperatures, we
verify that the magnetoresistance oscillates with periodicity Φ0

and has a distinctive two-peak structure6,11,20. More interest-
ingly, there is an intermediate temperature range in which
disorder leads to magnetoresistance oscillations with a frac-
tional periodicity Φ0/n, where the integer n≥3 is determined by
the ratio of the spin and charge superfluid densities26. Since
these fractional oscillations directly reflect the enlarged number
of available fluxoid states, we argue that they are defining
hallmarks of spin-triplet superconductors supporting half-
quantum vortices, much like the integer oscillations are for
conventional spin-singlet superconductors.

Results and discussion
General formalism. We consider a circular superconducting ring
of inner radius R0 and outer radius ηR0 in a perpendicular

magnetic field H
!¼ H e!z [see Fig. 1a]. We assume that the ring is

made from a superconducting film of thickness t≪ R0 and that
the superconductor has spin-triplet px+ ipy pairing with orbital
angular momentum ml=+ 1 with respect to the e!z direction. To
allow for stable half-quantum vortices in the simplest possible
setting, we also assume that spin-orbit coupling forces the spin

pairing vector d
!

into the plane perpendicular to e!z such that the
spin angular momentum is restricted to ms= ± 1. The spin-triplet
superconducting order parameter is then given by26

Δ̂ ¼ Δ"" Δ"#
Δ#" Δ##

" #
¼ Δ0e

iχ eiα 0

0 �e�iα

� �
; ð1Þ

where χ is the usual superconducting phase corresponding to the
overall charge supercurrent, while α corresponds to the difference
between the spin-up (↑↑) and spin-down (↓↓) supercurrents, i.e.,
a pure spin supercurrent. In general, the central hole of the ring
has a finite vorticity (fluxoid number) for each supercurrent such
that χ (α) winds by 2πNc (2πNs) along the inner circumference of
the ring. To understand how a vortex may travel across the ring,
we further consider a vortex at position r!0 ¼ ðr0; 0Þ inside the
ring [see Fig. 1a] around which χ (α) winds by 2πnc (2πns).
Importantly, the order parameter is only single valued if the two
numbers within each pair (Nc,Ns) and (nc, ns) are either both
integer, corresponding to a standard quantum vortex, or both half
integer, corresponding to a half-quantum vortex.

Assuming R0≪Λ with the Pearl length Λ= 2λ2/t and the
penetration depth λ, the magnetic screening inside the super-

conductor is negligible, and the magnetic field B
!

is identical to

the external field H
!25. In the London limit, corresponding to a

small coherence length ξ, the magnitude Δ0 of the order
parameter at any position r! further than ξ from r!0 is constant,
and the Ginzburg-Landau free energy is then26

F ¼ tΦ2
0

8π2μ0λ
2

Z
d2 r! j J!c j2 þ γj J!sj2

h i
ð2Þ

in terms of the effective charge and spin supercurrents

J
!

c ¼ ∇
!

χ � 2π
Φ0

A
!

; J
!

s ¼ ∇
!

α; ð3Þ

Fig. 1 General setup and definitions. a Thin-film superconducting ring with inner radius R0 and outer radius ηR0 in a perpendicular magnetic field
H
!¼ H e!z. During a snapshot of a vortex-crossing process, the central hole of the ring has charge and spin vorticities (fluxoid numbers) Nc,s, while the
vortex at radius r0 inside the ring has charge and spin vorticities nc,s. Experimentally, the resistance due to such vortex-crossing processes is found by
applying a bias current I to a short section of the ring and measuring the voltage V between the two leads. b Vortex self energy fnn(ϱ) against the vortex
position ϱ= r0/R0 for η= 1.2 without disorder (solid line) and with a single pinning site inside the ring (dashed line).
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where the vector potential A
!

satisfies ∇
!

´ A
!¼ B

!¼ H
!

, while
the ratio γ of the spin and charge superfluid densities26 is
expected to be smaller than 1 for interacting superconductors27,28.
In the absence of a bias current I [see Fig. 1a], the charge
supercurrent must satisfy the differential equations

∇
!� J

!
c ¼ 0; ∇

!
´ J
!

c ¼ 2πncδð r!� r!0Þ �
2h

R2
0

� �
e!z ð4Þ

inside the superconductor, along with the boundary conditions

e!n � J
!

c ¼ 0;
I

j r!j¼R0

d r!� J
!

c ¼ 2π Nc � h
� �

ð5Þ

at any interface with normal unit vector e!n, and along the inner
circumference of the ring, respectively, where h ¼ HR2

0π=Φ0 is a
dimensionless external field. Importantly, the spin supercurrent

J
!

s also satisfies Eqs. (4) and (5) with the substitutions nc→ ns,
Nc→Ns, and h→ 0. We further note that Eqs. (4) and (5) are
equivalent to those studied in ref. 25.

Due to the linearity of Eqs. (4) and (5), the general solutions for
the charge and spin supercurrents can be written as

J
!

c ¼ nc J
!

n þ Nc J
!

N � h J
!

h; J
!

s ¼ ns J
!

n þ Ns J
!

N ; ð6Þ

where J
!

n, J
!

N , and J
!

h are the particular solutions of Eqs. (4) and (5)
with (nc,Nc, h) being equal to (1, 0, 0), (0, 1, 0), and (0, 0,− 1),
respectively. Using polar coordinates, r!¼ ðr; ϑÞ, one readily

obtains J
!

N ¼ ð1=rÞ e!ϑ and J
!

h ¼ ðr=R2
0Þ e!ϑ, while J

!
n for a given

vortex position r0= ϱR0 was calculated in ref. 25. Substituting Eq. (6)
into Eq. (2), the free energy of the system in the pure (vortex-free)
case with nc,s= 0 is then

Fpure
Nc;Ns;h

¼ F0 f NN N2
c þ γN2

s

� �� 2f NhNchþ f hhh
2� �
; ð7Þ

while in the presence of a vortex at radius r0= ϱR0 it reads

Fvortex
Nc;Ns;nc;ns;h

ðϱÞ ¼ Fpure
Nc ;Ns;h

þ F0 f nnðϱÞ n2c þ γn2s
� ��

þ 2f nN ðϱÞ ncNc þ γnsNs

� �� 2f nhðϱÞ nch
�
;

ð8Þ
where F0 ¼ tΦ2

0 ln η=ð4πμ0λ2Þ is an overall energy scale, and f XY ¼
ð2π ln ηÞ�1 R d2 r! J

!
X � J

!
Y (X,Y= n,N, h) are dimensionless free

energies25:

f NN ¼ 1; f Nh ¼
η2 � 1
2 ln η

; f hh ¼
η4 � 1
4 ln η

;

f nN ðϱÞ ¼ 1� ln ϱ
ln η

; f nhðϱÞ ¼
η2 � ϱ2

2 ln η
;

ð9Þ

while fnn(ϱ) has the form plotted in Fig. 1b. We remark that fnn(ϱ),
corresponding to the self energy of the vortex, nominally diverges in
the London limit and must be regularized with a small but finite
coherence length ξ. We use ξ/R0 ≈ 0.02 but emphasize that its precise
value is not important as fnn(ϱ) is only logarithmically divergent.

Theory of magnetoresistance. We first assume that the super-
conducting ring in Fig. 1a is in thermal equilibrium without any
bias current I. Because of the large vortex self energy in the
London limit, there are no stable vortices inside the super-
conductor at sufficiently low temperatures. Nonetheless, at any
finite temperature T= 1/β, the fluxoid numbers Nc,s of the central
hole can thermally fluctuate, and the probability of the system to
be in the fluxoid state (Nc,Ns) is given by

PðNc;NsÞ ¼
1
Z
exp �βFpure

Nc;Ns;h

h i
; ð10Þ

where Z ¼ ∑Nc;Ns
exp½�βFpure

Nc;Ns;h
�. The thermal fluctuations

themselves happen by vortices traveling across the ring; the
fluxoid state of the system transitions from (Nc,Ns) to ðN 0

c;N
0
sÞ if

a vortex with ðnc; nsÞ ¼ κðN 0
c � Nc;N

0
s � NsÞ and κ=+ 1

(κ=− 1) crosses the ring in the inward (outward) direction. If
these two processes are thermally activated, their respective free-
energy barriers are25

Fbarrier;þ
ðNc;NsÞ!ðN 0

c;N
0
sÞ;h ¼ max

ϱ
Fvortex
Nc;Ns;N

0
c�Nc;N

0
s�Ns;h

ðϱÞ � Fpure
Nc;Ns;h

;

Fbarrier;�
ðNc;NsÞ!ðN 0

c;N
0
sÞ;h ¼max

ϱ
Fvortex
N 0

c;N
0
s;Nc�N 0

c;Ns�N 0
s;h
ðϱÞ � Fpure

Nc;Ns;h
;

ð11Þ

and the total transition rate from (Nc,Ns) to ðN 0
c;N

0
sÞ is then

ΓðNc;NsÞ!ðN 0
c;N

0
sÞ;h ¼PðNc;NsÞ AðNc;NsÞ!ðN 0

c;N
0
sÞ;h;

AðNc;NsÞ!ðN 0
c;N

0
sÞ;h / ∑

±
exp �βFbarrier; ±

ðNc;NsÞ!ðN 0
c;N

0
sÞ;h

h i
:

ð12Þ

We note that, in thermal equilibrium, detailed balance is
satisfied: ΓðNc;NsÞ!ðN 0

c;N
0
sÞ;h ¼ ΓðN 0

c;N
0
sÞ!ðNc;NsÞ;h.

Next, we assume that a bias current I is applied by attaching
two leads to the superconducting ring (see Fig. 1a). For each
vortex with a given sign of the charge vorticity nc, the bias current
exerts a force in the inward or outward direction, thus leading to
a net flow of such vortices in one of these directions by decreasing
the free-energy barrier in one direction and increasing it in the
other one. The resulting rate of phase slips then gives rise to a
finite voltage between the two leads and translates into a finite
resistance for the superconducting ring29. Without affecting our
main results, we make a simplifying assumption that the two
leads are close to each other along the ring (see Fig. 1a). In this
case, the entire bias current goes through the short section of the
ring between the two leads, and the probabilities PðNc;NsÞ of the
fluxoid states are still given by Eq. (10). However, from the
perspective of the transition rates AðNc;NsÞ!ðN 0

c;N
0
sÞ;h within the

short section, the charge fluxoid number is effectively reduced by
ε= I/I0, where I0 ¼ tΦ0 ln η=ð2πμ0λ2Þ. Hence, for a small bias
current I≪ I0, the resistance between the two leads becomes

R / ∑
Nc;Ns

PðNc;NsÞ ∑
nc;ns

nc
∂AðNc�ε;NsÞ!ð~Nc�ε;~NsÞ;h

∂ε

���
ε¼0

; ð13Þ

where ~Nc;s � Nc;s þ nc;s, while AðNc�ε;NsÞ!ð~Nc�ε;~NsÞ;h for ε ≠ 0 is
computed through Eqs. (11) and (12) by formally evaluating
Eqs. (7) and (8) at a fractional value of Nc. Finally, to obtain our
full set of main results, we assume that the short section of the
ring between the two leads contains some form of disorder. For
concreteness, we first consider a single localized “pinning site”
(e.g., defect or impurity) that renormalizes the vortex self energy
from fnn(ϱ) to f 0nnðϱÞ [see Fig. 1b], but later we also demonstrate
that our main results are not sensitive to the precise form of
disorder.

Fractional oscillations. The resistance R of the superconducting
ring is plotted in Fig. 2 against the external field H for different
values of the temperature T and the superfluid-density ratio γ. We
parameterize the external field in terms of the dimensionless flux
ϕ=Φ/Φ0, where Φ ¼ HR2

effπ is the flux inside the effective mean
radius25

Reff ¼ R0

ffiffiffiffiffiffiffiffi
f Nh
f NN

s
¼ R0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 � 1
2 ln η

s
: ð14Þ

In this parameterization, conventional magnetoresistance
oscillations in spin-singlet superconductors2–5 have unit periodi-
city Δϕ= 1 with a peak at each external field ϕ=N+ 1/2
(N 2 Z) as explicitly confirmed in Supplementary Note 1. In
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contrast, Fig. 2 shows that spin-triplet superconductors with γ < 1
possess nontrivial additional structure in their magnetoresistance
oscillations. For the lowest temperatures (T≪ F0), the periodicity
is still Δϕ= 1, but each peak at ϕ=N+ 1/2 splits into two peaks
that move further apart as γ is decreased6,11,20. For high
temperatures (T≫ F0), the oscillations are significantly more
complex with an overall periodicity Δϕ= 1 or Δϕ= 1/2. Most
interestingly, for intermediate temperatures (T ~ F0), the magne-
toresistance oscillations have an emergent fractional periodicity
Δϕ= 1/n, where the integer n is determined by the superfluid-
density ratio γ. While Fig. 2 suggests that the different integers
n≥3 correspond to specific rational values of γ, it is demonstrated
in Figs. 3 and 4 that the fractional periodicities Δϕ= 1/n persist in
finite ranges of both γ and T. In particular, the Fourier analysis of
the oscillation components in Fig. 4 reveals that the fractional
periodicities Δϕ= 1/3, Δϕ= 1/4, and Δϕ= 1/5 are observable for
0.25≲ γ≲ 0.45, 0.45≲ γ≲ 0.55, and 0.55≲ γ≲ 0.65, respectively.

To understand these fractional oscillations, we first notice that
the free energy of a pure (vortex-free) system in Eq. (7) can be
written in the new parameterization as

Fpure
Nc;Ns;ϕ

¼ F0 Nc � ϕ
� �2 þ γN2

s þ gðϕÞ
h i

: ð15Þ

For external field ϕ, the free-energy difference between two
fluxoid states (Nc,Ns) and ð~Nc; ~NsÞ ¼ ðNc þ nc;Ns þ nsÞ, con-
nected by vortices ± (nc, ns) crossing the ring, is then

Fpure
~Nc ;~Ns;ϕ

� Fpure
Nc;Ns;ϕ

¼ 2F0 nc Nc � ϕ
� �þ γnsNs

� �
þ F0 n2c þ γn2s

� �
:

ð16Þ

Moreover, if the radius ratio η of the superconducting ring is
not too large, fnN(ϱ) and fnh(ϱ) in Eq. (9) are close to linear for
1 ≤ ϱ ≤ η. Hence, taking a linear interpolation between their
values at ϱ= 1 and ϱ= η, the free energy of the system with a

single vortex (see Eq. (8)) can be approximated by

Fvortex
Nc;Ns;nc;ns;ϕ

ðϱÞ ¼ Fpure
Nc;Ns;ϕ

þ F0f
0
nnðϱÞ n2c þ γn2s

� �
þ 2F0 nc Nc � ϕ

� �þ γnsNs

� � η� ϱ

η� 1
:

ð17Þ

Importantly, if we use this approximation, the transition rates
AðNc;NsÞ!ðNcþnc;NsþnsÞ;ϕ in Eq. (12) only depend on either ϕ or Nc,s

via the combination nc(Nc− ϕ)+ γnsNs, and the resistance in Eq.
(13) thus takes the general form

R / ∑
Nc;Ns

PðNc;NsÞ ∑
nc;ns

Gnc;ns
nc Nc � ϕ
� �þ γnsNs

� �
: ð18Þ

Due to the many identical contributions Gnc ;ns
corresponding

to different Nc,s, each shifted by Nc+ γNsns/nc in the field ϕ, this
form naturally leads to periodic oscillations.

Next, we recall from Eq. (17) that the vortex self energy is
proportional to n2c þ γn2s . For any γ < 1, the dominant vortices
contributing to the resistance at sufficiently low temperatures
[T � F0 max

ϱ
f 0nnðϱÞ] are then the half-quantum vortices with

nc,s= ± 1/2. In the intermediate temperature range (T ~ F0), there
are also many fluxoid states (Nc,Ns) with sizeable probabilities
PðNc;NsÞ � 1. If we then sum over the identical contributions
G±1/2,±1/2 in Eq. (18) for all possible Nc,s, each shifted by Nc ± γNs

in the field ϕ, these identical contributions conspire to produce
fractional oscillations with periodicity Δϕ= 1/n. For a rational
value of the superfluid-density ratio, γ= p/q, with the integers
p and q being relative primes, it is shown in Supplementary
Note 2 that n= q if p and q are both odd and n= 2q otherwise.
Therefore, in accordance with Fig. 2, the fractional periodicities
are Δϕ= 1/3, Δϕ= 1/4, and Δϕ= 1/5 for γ= 1/3, γ= 1/2, and
γ= 3/5, respectively. In practice, since the summation over Nc,s is
cut off at any finite temperature T ~ F0, only the fractional
periodicities with small p and q are observable, but each
of them remains observable in a finite range around γ= p/q
(see Figs. 3 and 4). As an interesting aside, we point out that the

Fig. 2 Magnetoresistance oscillations at different temperatures. Resistance R of the superconducting ring in Fig. 1a, as calculated from Eq. (13), against
the dimensionless flux ϕ=Φ/Φ0 at low temperatures T= F0/10 (a–c), intermediate temperatures T= F0 (d–f), and high temperatures T= 5F0 (g–i) [in
terms of F0 ¼ tΦ2

0 ln η=ð4πμ0λ2Þ] for a radius ratio η= 1.2 and superfluid-density ratios γ= 1/3 (a, d, g), γ= 1/2 (b, e, h), and γ= 3/5 (c, f, i) in the
presence of a single pinning site inside the ring [see Fig. 1b].
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emergence of fractional oscillations and the intimate connection
between Δϕ and γ can also be understood from the simple
geometric picture presented in Fig. 5.

We finally remark that, as the temperature T approaches the
critical temperature of the superconductor, the effective tem-
perature T/F0 with F0 ¼ tΦ2

0 ln η=ð4πμ0λ2Þ diverges as a result of
λ→∞. Therefore, in principle, the intermediate temperatures
T ~ F0 that give rise to the fractional magnetoresistance oscilla-
tions are attainable for any ring dimensions. In practice, however,
we expect the fractional oscillations to be more observable further
away from the critical temperature, which is achieved by keeping
both the film thickness t and the radius ratio η as small as
possible.

Effect of disorder. Remarkably, the fractional magnetoresistance
oscillations only emerge if disorder is present in the super-
conductor. This property is demonstrated in Fig. 6 where the
magnetoresistance is plotted without any disorder and with dif-
ferent kinds of disorder: a single pinning site [see Fig. 1b] of two
different depths, a collection of three pinning sites, and a random
potential landscape (i.e., extended disorder). While the magne-
toresistance is completely featureless in the absence of disorder, it
exhibits fractional oscillations with the same periodicity if any
kind of disorder is included.

Indeed, even though the fractional periodicity Δϕ= 1/n is a
robust emergent feature connected to the superfluid-density ratio
γ, the corresponding oscillations are not observable if the
functions G±1/2,±1/2 are completely smooth. The crucial role of
disorder is to produce nonanalytic features in G±1/2,±1/2 that can
be replicated with periodicity Δϕ as a function of the field ϕ. In
the following, we restrict our attention to a single pinning site (see
Fig. 1b) and describe how it gives nonanalytic features (cusps) in
the transition rate A(0, 0)→(1/2, 1/2),ϕ (see Eq. (12)) and hence the
function G1/2,1/2 that manifest as sharp peaks in the
magnetoresistance.

From Eq. (12), the transition rate A(0, 0)→(1/2, 1/2),ϕ at any given
temperature only depends on the two vortex-crossing barriers
Fbarrier;±
ð0;0Þ!ð1=2;1=2Þ;ϕ. The inward vortex-crossing barrier Fbarrier;þ

ð0;0Þ!ð1=2;1=2Þ;ϕ
is plotted in Fig. 7a against the field ϕ and shows a clear cusp at a
critical field ϕþ0 . Noting that the vortex-crossing barrier
Fbarrier;þ
ð0;0Þ!ð1=2;1=2Þ;ϕ is determined by the maximum of the vortex

energy function Fvortex
0;0;1=2;1=2;ϕðϱÞ in the vortex position ϱ (see Eq.

(11)), it is then illustrated in Fig. 7b-d that the critical field ϕþ0
corresponds to a discontinuity in the vortex position ϱþ0 that
maximizes the vortex energy function Fvortex

0;0;1=2;1=2;ϕðϱÞ. Analogously,
the outward vortex-crossing barrier Fbarrier;�

ð0;0Þ!ð1=2;1=2Þ;ϕ has a cusp at
another critical field ϕ�0 corresponding to a discontinuity in the

Fig. 4 Robustness of fractional periodicities. Fourier amplitudes ~Rn /
j R 1

0 dϕ RðϕÞ e2πinϕj of the magnetoresistance components corresponding to
the fractional periodicities Δϕ= 1/n with n= 3 (dots), n= 4 (crosses), and
n= 5 (circles) against the superfluid-density ratio γ at the intermediate
temperature T= F0. For each γ, the magnetoresistance R(ϕ) of the
superconducting ring in Fig. 1a is calculated from Eq. (13) for a radius ratio
η= 1.2 in the presence of a single pinning site inside the ring [see Fig. 1b].

Fig. 3 Robustness of fractional oscillations. Magnetoresistance oscillations with fractional periodicities Δϕ= 1/3 (a–c) and Δϕ= 1/4 (d–f) in the
intermediate temperature ranges 0.3≤ T/F0≤ 1.5 and 0.6≤ T/F0≤ 1.2 for superfluid-density ratios 0.3≤ γ≤ 0.36 and 0.48≤ γ≤ 0.52, respectively. In each
case, the resistance R of the superconducting ring in Fig. 1a is calculated from Eq. (13) against the dimensionless flux ϕ=Φ/Φ0 for a radius ratio η= 1.2 in
the presence of a single pinning site inside the ring [see Fig. 1b]. The different curves are labeled by γ and are vertically shifted with respect to each other
for better visibility.
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Fig. 6 Relation between disorder and fractional oscillations. Vortex self energy fnn(ϱ) against the dimensionless vortex position ϱ (a–e) and the
corresponding resistance R of the superconducting ring in Fig. 1a against the external field (i.e., dimensionless flux) ϕ=Φ/Φ0 at the intermediate
temperature T= F0/2 (f–j) for a radius ratio η= 1.2 and a superfluid-density ratio γ= 1/3 without any disorder (a, f), with a single pinning site of a larger
depth (b, g) and a smaller depth (c, h), with a collection of three pinning sites (d, i), and with a random potential landscape (e, j).

Fig. 5 Geometric interpretation of fractional oscillations. Emergence of the fractional periodicities Δϕ= 1/3 (a), Δϕ= 1/4 (b), and Δϕ= 1/5 (c) from the
superfluid-density ratios γ= 1/3, γ= 1/2, and γ= 3/5, respectively. Within a two-dimensional plane, the black dots depict the possible fluxoid states
(Nc,Ns), while the red dot at position (ϕ, 0) represents the external field. Due to the scaling factor

ffiffiffi
γ

p
between the vertical (Ns) and horizontal (Nc)

dimensions, the energy of a given fluxoid state is proportional to the distance squared between the corresponding black dot and the red dot [see Eq. (15)].
Focusing on the half-quantum transitions nc,s=ΔNc,s= 1/2 (dotted lines), the argument (Nc+ γNs− ϕ)/2 of G1/2,1/2 in Eq. (18) corresponds to the
perpendicular projection of the red dot onto the dotted line connecting (Nc,Ns) and (Nc+ 1/2,Ns+ 1/2). Therefore, as the external field ϕ is increased, the
same feature in the magnetoresistance is periodically replicated every time the red dot at position (ϕ, 0) crosses a perpendicular bisector (dashed line).
Relevant transitions connecting fluxoid states with sizeable probabilities are within the red circle whose radius scales with the square root of the
temperature.

Fig. 7 Connection between disorder and vortex-crossing barriers. a Vortex-crossing barrier Fbarrier;þð0;0Þ!ð1=2;1=2Þ;ϕ against the external field ϕ=Φ/Φ0 for a
radius ratio η= 1.2 and a superfluid-density ratio γ= 1/3 with a single pinning site inside the ring [see Fig. 1b]. The dashed line indicates the critical field
ϕþ0 � 1=3 at which the first derivative has a discontinuity. b–d Vortex energy function Fvortex0;0;1=2;1=2;ϕðϱÞ against the dimensionless vortex position ϱ for three
different external fields: ϕ= 0 (b), ϕ= 1/3 (c), and ϕ= 2/3 (d). In each case, the dashed line marks the maximum of the vortex energy function, i.e., the
vortex-crossing barrier in subfigure a. The critical field ϕþ0 � 1=3 corresponds to a discontinuity in the vortex position ϱþ0 that maximizes the vortex energy
function.
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vortex position ϱ�0 that maximizes the vortex energy function
Fvortex
1=2;1=2;�1=2;�1=2;ϕðϱÞ (see Eq. (11)).
For the particular location of the pinning site in Fig. 1b, the two

vortex-crossing barriers have identical critical fields: ϕþ0 ¼ ϕ�0
(see Fig. 8a). If the pinning site is moved inward or outward, the
two critical fields ϕ±

0 then shift in opposite directions and are
generically different (see Fig. 8b, c). Consequently, the fractional
magnetoresistance oscillations may develop a two-peak structure
while retaining the same fractional periodicity (see Fig. 8d–f). For
more general disorder, we expect multiple features (not
necessarily peaks) in the magnetoresistance that are all replicated
with the given periodicity Δϕ. While the precise shape and
amplitude of the fractional oscillations thus depends on the
specific form of disorder, the fractional periodicity Δϕ is universal
and only depends on the superfluid-density ratio γ (see Fig. 6).

Data availability
The data that support the findings of this study are available from the author upon
reasonable request.

Code availability
The codes that support the findings of this study are available from the author upon
reasonable request.
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