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Anyonic bound states in the continuum
Weixuan Zhang 1,3, Long Qian1,3, Houjun Sun 2 & Xiangdong Zhang 1✉

Bound states in the continuum (BICs), which are spatially localized states with energies lying

in the continuum of radiating modes, are discovered both in single- and few-body systems

with suitably engineered spatial potentials and particle interactions. Here, we reveal a type of

BICs that appear in anyonic systems. It is found that a pair of non-interacting anyons can

perfectly concentrate on the boundary of a one-dimensional homogeneous lattice when the

statistical angle is beyond a threshold. Such a bound state is embedded into the continuum of

two-anyon scattering states, and is called as anyonic BICs. In contrast to conventional BICs,

our proposed anyonic BICs purely stem from the statistics-induced correlations of two

anyons, and do not need to engineer defect potentials or particle interactions. Furthermore,

by mapping eigenstates of two anyons to modes of designed circuit networks, the anyonic

BICs are experimentally simulated by measuring spatial impedance distributions and asso-

ciated frequency responses. Our results enrich the understanding of anyons and BICs, and

can inspire future studies on exploring correlated BICs with other mechanisms.
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Bound states in the continuum (BICs) were originally pro-
posed for electrons in a peculiar quantum mechanical
potential by von Neumann and Wigner in 19291, and were

later revealed to be a general phenomenon for both quantum and
classical waves2,3. As for single-particle systems and their classical
analogies, various mechanisms could be used to produce BICs.
For example, the coupling of certain resonances to radiation
modes could be forbidden by symmetry or separability, which are
called symmetry-protected BICs or separable BICs4–8. In addi-
tion, it is also possible to suppress radiations into all channels by
tuning a finite number of systematical parameters9–18. This
suppression can always be interpreted as a result of the destruc-
tive interference of multiple radiating components. Moreover,
instead of looking for the presence of BICs in a given system, we
can also inversely design a system by engineering the potential,
the hopping rate or the boundary shape of the system to construct
BICs19–21. It is found that BICs proposed in classical-wave sys-
tems could have large quality-factors and extremely enhanced
near-field concentrations. These superior properties give many
important applications based on BICs, such as the ultralow
threshold BIC-laser10,22,23. While, single-particle BICs are always
fragile objects, which appear in artificial systems with specific
designs. In this case, finding other robust ways to create BICs is of
great significance.

On the other hand, except for the widely discussed single-
particle system, many investigations have shown that the corre-
lated few-body BICs can also exist in the two-boson Hubbard
model by engineering the onsite interaction and impurity
potential at bulk or boundary site24,25. In particular, two-boson
bulk BICs could appear when the absolute value of impurity
potential on the bulk site is larger than that of the Hubbard
interaction, which is required to possess the same sign with the
impurity potential on the bulk site24. As for the correlated two-
boson model with a boundary impurity potential, it is shown that
Tamm–Hubbard BICs require an infinitesimally-small value of
the boundary impurity potential, which has the opposite sign
with respect to the Hubbard interaction25. Different from most
single-particle BICs that need specific designs in artificial systems,
the two-boson BICs always exist in a wide range of interaction
strengths and defective potentials. It can move into and out of the
continuum continuously by tuning these parameters, making
two-particle BICs become robust and tunable. Taken together, the
currently proposed single- and few-body BICs are all based on the
engineering of systematic symmetries, potential and material
distributions, or particle-particle interactions. Exploring new
mechanisms for the generation of BICs is still an important
problem in the field of physics and material sciences.

In this work, we demonstrate both theoretically and experi-
mentally that BICs can be purely induced by quantum statistics.
Such a type of BICs can exist in anyonic systems with the
statistical angle exceeding a threshold. Anyons are quantum
quasi-particles with statistics intermediate between bosons and
fermions26–40. The existence of anyons was predicted in the
1980s, and the strong experimental evidence of anyons has
emerged recently33,34. It is widely known that anyons could play
important roles in several areas of modern physics research,
such as fractional quantum Hall systems35, spin liquids36 and
topological quantum computations37. Meanwhile, some recent
investigations have shown that quantum statistics could trigger
the appearance of many interesting effects, such as anyonic
Bloch oscillations38,39 and topological transitions40. Beyond
these novel physical phenomena, here, we reveal that exotic
BICs can also exist in non-interacting anyonic systems. More-
over, using the exact mapping of two anyons in the finite one-
dimensional lattice to modes of the two-dimensional circuit,
anyonic BICs are experimentally emulated. Our work opens the

door to novel physics induced by the interplay between BICs
and anyons.

Results
The theory of anyonic bound states in the continuum. We start
by considering a pair of non-interacting anyons (marked by two
letters of ‘m’ and ‘n’) hopping on a one-dimensional (1D) chain
with open boundaries, as shown in Fig. 1a. In this case, the system
can be described by the tight-binding lattice model as:

H ¼ �J ∑
L�1

l¼1
ðâþl âlþ1 þ âþlþ1âlÞ ð1Þ

where âþl (âl) is the creation (annihilation) operator of the
anyon at the lth lattice site. L is the length of 1D lattice, and J is
the single-particle hopping rate. In the following, we always set
J= 1. The anyonic creation and annihilation operators obey
commutation relations as âþk âl � â

þ
l âke

iθsgnðl�kÞ ¼ δlk and âlâk�
âkâle

iθsgnðl�kÞ ¼ 0, where θ is the anyonic statistical angle and
sgn(x) equals to −1, 0 and 1 for x < 0, x= 0 and x > 0, respec-
tively. Based on the commutation relation, we note that two
anyons on the same lattice site behave as ordinary bosons. In this
case, anyons with θ ¼ π (always called as pseudofermions32)
could be regard as bosons when they occupy the same site
and ordinary fermions when they occupy different sites. The two-
anyon solution can be expanded in Fock space as
jψ> ¼ 1ffiffi

2
p ∑L

n;m¼1cnmâ
þ
n â

þ
mj0>, where j0> is the vacuum state and

cnm is the probability amplitude with one anyon at site m and the
other one at site n. Under the restriction of anyonic statistics, the
equality of cmn ¼ eiθsgnðn�mÞcnm is satisfied. By solving the steady-
state Schrödinger equation Hjψ> ¼ εjψ> of two anyons, the
corresponding eigenequation with respect to cnm can be described
by:

εcnm ¼ �J½eiθðδn;mþδn;m�1Þcnðm�1Þ þ e�iθðδn;mþδn;mþ1Þcnðmþ1Þþcðn�1Þm þ cðnþ1Þm�
ð2Þ

The mode coupling of two anyons determined by Eq. (2) can be
illustrated in the 2D Fock space, as shown in Fig. 1b. The site
located at (n,m) represents the two-anyon state of cnm. In this case,
the site enclosed by the black (blue) dash block corresponds to the
state with the first (second) anyon locating at n= 3 (n= 4) and the
second (first) anyon locating at m= 4 (m= 3), as presented in
Fig. 1a. Solid lines and arrows represent real-valued hopping
strengths (J) and complex-valued hopping strengths (Je±iθ),
respectively. It is shown that anyonic statistics can only introduce
complex couplings around diagonals (blue sites with n=m and
n=m± 1). Away from diagonals (black sites with |n−m | >1), the
mode couplings are real-valued.

The above eigenequation of two anyons can be solved
analytically by assuming a Bethe-type ansatz of two-anyon state
as cnmðkn; km;Ai¼1;::;8Þ24,25; which is in the form of a super-
position with eight plane waves (see Supplementary Note 1 for
details). Here, km and kn are a pair of complex wave numbers
related to two anyons, and A1 to A8 are amplitudes of eight plane
waves. We note that the eigenequation should be written in
different forms with the considered lattice site locating at
diagonals and off diagonals of the two-anyon Fock space. Hence,
we handle these two cases separately to solve the two-anyon
eigenequation.

At first, we substitute cnmðkn; km;Ai¼1;::;8Þ into the steady-state
eigenequation away from diagonals. It is found that the eigen-
energy of two distant anyons could be written as ε ¼
�2cos km

� �� 2cosðknÞ. It manifests that energies of two-anyon
scattering states are always ranging from −4 to 4. Then, we
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substitute cnmðkn; km;Ai¼1;::;8Þ into the steady-state eigenequation
at diagonals. In this case, a set of linear equations related to A1 to
A8 are obtained. These linear equations could be expressed in a
matrix form as MijAj= 0 (i, j= 1,…,8), where M is an 8 by 8
matrix (see Supplementary Note 1 for details). Through the direct
computation, we find that the determinant of matrix M satisfies
det(M)= 0. This means that the two-anyon solution is admitted
for any complex values of km and kn accompanied with suitable
values of Aj (j= 1,…,8). The only limitation on km and kn is the
non-diverge requirement of cnm ! 0 with n;m ! 1.

Based on the solvability condition for the matrix equation
MijAj= 0, we can assume the Bethe-type ansatz of two anyons in
a simple form as cnm ¼ A1 exp iknnþ ikmm

� �
with n ≥m.

Substituting this simplified two-anyon state into the steady-state
eigenequation at diagonals, two complex wave-vectors kn and km
can be expressed by the statistical angle θ as zn ¼ �ð�eiθ þ
e2iθ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�eiθ þ 3e2iθ � 3e3iθ þ e4iθ

p
Þ=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � eiθ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1 þ eiθÞeiθ

p
Þ

and zm ¼ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� eiθ

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�eiθ þ e2iθ

p
with zn ¼ expð�iknÞ and

zm ¼ expð�ikmÞ (see Supplementary Note 2 for details). We note
that the assumed two-anyon state can be re-expressed as cnm ¼
A1 exp½ikn n�mð Þ þ iðkm þ knÞm� with n ≥m. In this case, such a
two-anyon state can meet the non-diverge requirement and
become a perfect bound state if two wave-vectors satisfy relations
of Im kn

� �
>0 and Im km þ kn

� �
>0.

To get the required value of θ for the appearance of two-anyon
bound states, the variations of Im kn

� �
and Im km þ kn

� �
as a

function of the statistical angle θ are calculated, as shown in
Fig. 1c and d. We can see that a sudden change of Im km þ kn

� �

and Im kn
� �

from negative (the green region) to positive (the
purple region) appears when the statistical angle is beyond 0:6π.
This indicates that the perfect bound state only appears when the
value of statistical angle exceeds the threshold (θ ¼ 0:6π). In
addition, the effective on-site potential is uniform, and the

absolute value of the coupling strength is also fixed to a constant
in the mapped 2D lattice. Hence, eigen-energies of two-anyon
bound states should always lie into the continued energy-
spectrum of two-anyon scattering states, making perfect bound
states of two anyons become anyonic BICs (see numerical
demonstrations in the following).

An intuitive understanding for the existence of anyonic BICs
with a threshold of θ can be illustrated by the competition
between statistics-induced localizations and free hoppings of
anyons. Specifically, complex couplings induced by quantum
statistics can generate a defective potential on corners of two-
anyon Fock space. The larger the statistical angle is, the deeper
the defective potential becomes. When the strength of defective
potential can suppress the role of two-anyon free hoppings,
localized two-anyon BICs appear.

To demonstrate the above analytical prediction of anyonic
BICs, we numerically calculate the inverse participation ratio
(IPR)41, which is defined by IPR ¼ ∑m;n jCmnj4, to qualify the
localization of two-anyon eigenstates. As shown in Fig. 2a, the
variation of IPRs of all two-anyon eigenmodes as a function of the
statistical angle is calculated. The lattice length is set as L= 171. It
is seen that a large ratio of two-anyon eigenstates (black dots)
possess near-zero IPRs, corresponding to the extended two-anyon
scattering states. There are also two types of anyonic eigenstates
with relatively large IPRs, as marked by blue and red lines. But,
these two types of two-anyon states show different behaviors with
the change of θ. The mode marked by the blue line always exists
at different values of θ. While, IPRs of two-anyon modes marked
by the red line increase significantly when the value of θ exceeds
0:6π (as illustrated by the purple region). It indicates that this
type of two-anyon states exhibit the enhanced localization with θ
exceeding a threshold.

To justify whether these two types of localized anyonic modes are
perfect bound states, we calculate the evolution of IPRs as a function
of the lattice length in Fig. 2b and c with the statistical angle being

…

l=1 l=L

…

=
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l=1 l=L

…
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a b

0 0.6
-1.0

1.0

0
-1.0

1.0

+

c d
n

m

J J ±
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Anyonic BICs

Diverge and without BICs

Anyonic BICs

Diverge and without BICs

Fig. 1 Analytical results for the two-anyon bound states in the continuum (BICs). a The schematic diagram for the 1D lattice model possessing two anyons
with the statistical angle marked by θ. b The scheme of the two-anyon Fock space. Solid lines and arrows represent real-valued hopping strengths and complex-
valued hopping strengths, respectively. Two-anyon modes enclosed by black and blue dash blocks are presented in Fig. 1a. c and d The variations of Im kn

� �
and

Im km þ kn
� �

as functions of the anyonic statistical angle. Here, the two-anyon state is assumed in the form of cn;m ¼ A1 exp iknnþ ikmm
� �

with n≥m. The
purple (green) region corresponds to the range of statistical angle, where non-diverge BICs are supported (unsupported) in the two-anyon system. Here, km
and kn are a pair of complex wave numbers related to two anyons.
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θ ¼ 0:8π and θ ¼ π, respectively. It is clearly shown that IPRs of
two-anyon eigenstates marked by blue lines decrease significantly
with the lattice size being increased, indicating that those states are
leaky modes and could couple with two-anyon scattering states.
While, IPRs of anyonic modes marked by red lines are saturated with
increasing the lattice size, manifesting the perfect localization of these
eigenmodes at both statistical angles. The splitting of eigenenergies of
two-anyon bound states at θ ¼ 0:8π is due to the finite size effect,
where the two-anyon bound states at two corners (1, 1) and (L, L) are
coupled with each other. In addition, following another numerical
method on the demonstration of BICs42,43, we further calculate the
scaling of imaginary part of two-anyon eigen-energies by changing
the size of the lattice region with artificial losses. The artificial losses
are introduced by adding the non-Hermitian on-site term (0.05i) to
some lattice sites, which are inside the red area of the mapped 2D
lattice model plotted in the inset of Fig. 2d. Here, the size of lossless
region is marked by nl. Fig. 2d and 2e present numerical results on
the variation of imaginary parts of two-anyon eigen-energies as a
function of nl. Here, the statistical angles are set as θ ¼ π (in Fig. 2d)
and θ ¼ 0:8π (in Fig. 2e), respectively. The lattice length equals to
L= 171. We can see that imaginary components of eigen-energies
for anyonic BICs (corresponding to modes marked by red lines in
Fig. 2a–c) approach to zero in an exponential scaling with increasing
the size of the lossless region. This phenomenon further demon-
strates the correctness of the existence of anyonic BICs.

Furthermore, as shown in Fig. 3a–e, we calculate eigenenergies
of two anyons with θ ¼ π, 0:8π, 0:7π, 0:6π and 0:5π (L= 171),
respectively. Insets correspond to enlarged views of eigen-spectra
(enclosed by red blocks) sustaining BIC-related two-anyon states.
It is worth noting that the two-anyon eigen-spectra at different
statistical angles are all chiral symmetric. In this case, the anyonic
BICs should exist at a pair of positive and negative energies with
equal absolute values, as marked by solid and dash blocks in
Fig. 3a–e. Here, we focus on anyonic BICs with negative energies,
and positive-energy counterparts possess identical properties. In
Fig. 3f–j, we plot spatial distributions of BIC-related eigenmodes
(enclosed by green circles in insets) at different statistical angles.

It is clearly shown that two-anyon states are perfectly concen-
trated around two corners in the two-anyon Fock space with
θ>0:6π. The larger the statistical angle is, the stronger the
localization of anyonic BICs becomes. In contrast, the two-anyon
eigenstates are leaky modes with θ ≤ 0:6π. In addition, we can see
that anyonic bound states are lying in the continuum of two-
anyon scattering states with θ>0:6π. These numerical results
clearly verify that the two-anyon bound states are indeed anyonic
BICs.

It is worthy to note that the physical origin for the formation
of anyonic BICs is different from that of two-boson BICs24,25.
To construct two-body BICs without single-body analogies, the
effective two-body correlation is prerequisite. In theory, the
most common two-body correlation is resulting from the
Hubbard interaction, which could induce the formation of two-
boson BICs. On the other hand, quantum statistics can also
induce an effective correlation of two anyons, which is the
origin for the formation of anyonic BICs in our system. In
addition, we want to stress that the formation of anyonic BICs
does not need the existence of the defective potential, but two-
boson BICs induced by the Hubbard interaction must require a
suitable value of the defective potential.

The requirement of the defective potential for two-boson
boundary BICs can be analogized to Tamm surface states of
truncated crystals, where the surface potential exceeding a
threshold is required. In this case, the defective potential in two-
boson systems could be regarded as the effective surface potential of
the mapped 2D lattice. As for the two-anyon system, quantum
statistics could induce effective defects at two corners in the
mapped 2D lattice, which could trap two anyons to form anyonic
BICs. Moreover, we can also understand this phenomenon from a
mathematical viewpoint. Following the analytical method by
assuming a Bethe-type ansatz of two-anyon state, the requirement
on the existence of two-body BICs can be derived by expressing two
wave numbers (kn and km) with intrinsic parameters of the system,
including the Hubbard interaction, the defective potential and the
statistical angle. To separately express two wave numbers, two
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Fig. 2 Numerical results for the demonstration of two-anyon bound states in the continuum (BICs). a The calculated inverse participation ratios of all two-
anyon eigenstates with L= 171 at different anyonic statistical angles. Red and blue dash lines are used to mark two types of anyonic modes with large inverse
participation ratios (IPRs). b and c The evolution of IPRs for two-anyon eigenmodes as a function of the lattice length with the statistical angles being 0:8π and
π, respectively. d and e Numerical results on the variation of imaginary parts of eigen-energies as a function of the size for the lossless region, where the
statistical angles are set as θ ¼ π and θ ¼ 0:8π, respectively. The inset of (d) plots the schematic diagram for the region with artificial losses.
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different equations related to km, kn must be constructed basing on
the eigen-equation of the two-body system. As for the two-boson
system without the defective potential, only one equation can be
obtained by considering the eigenequation on the diagonal line
(m= n)24,25. In this case, to get the other equation, the defective
potential must be introduced. While, as for the case of two anyons,
two equations can be directly obtained by considering anyonic
eigenequations at m= n andm= n± 1 (see Eq. 9 in Supplementary
Materials). Hence, two wave numbers can be expressed by the
statistical angle, making the statistical angle θ solely determine the
existence of anyonic BICs.

The experimental observation of our theoretically predicted
anyonic BICs in real quantum systems is not an easy task. In the
next part, we will construct 2D circuit networks to simulate the
statistics-induced anyonic BICs

Experimental simulation of anyonic bound states in the con-
tinuum by 2D circuit networks. The 1D two-body Fock space
possesses a rigorous correspondence to that of a single particle in
the mapped 2D lattice. In this case, by mapping the low-

dimensional few-body configuration space to the high-
dimensional tight-binding lattice model, the few-body model
can be effectively simulated by the single-particle system with
high dimensions. In this case, the Fock space of two anyons
(shown in Fig. 1b) can be regarded as a two-dimensional lattice
model. Specifically, the probability amplitude for the 1D two-
anyon model with one anyon at the site n and the other at the site
m is directly mapped to the probability amplitude for the single
particle locating at the site (n, m) of the 2D lattice. In details,
lattice sites on the main diagonal (n=m), first two lateral diag-
onals (n=m± 1) and other sites (|n-m | >1) correspond to two
anyons located at the same site, two nearest-neighbor sites and
two distant sites, respectively. The hopping along a certain
direction in the mapped 2D lattice represents the hopping of one
anyon in the 1D lattice. In this case, the two-anyon eigenequation
can be interpreted as an eigenvalue problem for the mapped 2D
lattice, manifesting that the behavior of two anyons in the 1D
lattice can be effectively simulated by a single particle in the
mapped 2D lattice.
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Based on the similarity between the circuit Laplacian and the
lattice Hamiltonian44–54, electric circuits can be used as a flexible
platform to implement the mapped 2D lattice with different
statistical angles. To achieve the required complex coupling Je± iθ

around diagonals, circuit pseudospins are needed to be
constructed44,45. For this purpose, multiple circuit nodes are
used to work as a single lattice site, and real and complex hopping
rates can be realized by suitably braiding the connection pattern
between two groups of circuit nodes, as shown in Fig. 4a. Left and
right insets illustrate connection patterns for realizing real-valued
and complex-valued coupling strengths, respectively. As for the
case with θ ¼ 0, one circuit node can work as a single lattice site
to fulfill the required real-valued coupling pattern. When the
statistical angle equals to θ ¼ 0:8π (θ ¼ π), five (two) circuit
nodes, which are connected by capacitors Cin (plotted in blue),
are used to form an effective lattice site. In this case, to realize the
real-valued hopping rate, capacitors C (plotted in red) are used to
directly link adjacent nodes without a cross, as shown in the left
inset. Differently, adjacent circuit nodes are crossly connected via
C to achieve the hopping rate with a phase factor e± iθ or e ± i0:8θ ,
as presented in the right inset. In addition, each node is grounded
by an inductor Lg . Through the appropriate setting of grounding
and connecting, the circuit eigen-equation can be derived as:

ðf 02=f 2�vθCin=C � 4ÞV#;ðn;mÞ ¼ �eiθðδn;mþδn;m�1ÞV#;n m�1ð Þ

�e�iθðδn;mþδn;mþ1ÞV#;n mþ1ð Þ � V#; n�1ð Þm � V#; nþ1ð Þm
ð3Þ

where f is the eigenfrequency (f 0 ¼ 1=2π
ffiffiffiffiffiffiffiffi
CLg

p
) of the designed

circuit. V#;ðn;mÞ represents the voltage of pseudospin at the circuit
node (n, m), which obeys the statistics-dominated hopping rate.
vθ is an integer depending on the value of the statistical angle
(v0 ¼ 1; v0:8π ¼ 3:618; vπ ¼ 2). Details for the derivation of
circuit eigenequations are provided in Supplementary Note 3. It
is shown that the eigen-equation of the designed electric circuit
possesses the same form as Eq. (2). In particular, the probability

amplitude for the 1D two-anyon model cnm is mapped to the
voltage of pseudospin V#;ðn;mÞ at the circuit node (n, m). The
eigenenergy (ε) of two anyons is directly related to the
eigenfrequency (f) of the circuit as ε ¼ f 0

2=f 2 � vCin=C � 4 with
J ¼ 1.

To analyze properties of anyonic BICs in the circuit simulator,
we perform circuit simulations using the LTSpice software. Here,
the value of C, Cin and Lg are taken as 1 nF, 1 nF and 3.1 uH,
respectively. The simulated 2D circuit networks contain
171 ´ 171 node groups (corresponding to the 1D two-anyon
model with L= 171). We note that the impedance response is
related to the local density of state of the corresponding quantum
tight-binding model46,47. Hence, to test whether anyonic BICs
exist at expected eigen-energies, we calculate frequency-
dependent impedance responses of the corner node (m= 1,
n= 1) at different values of θ, as presented in Fig. 4b. Here, the
effective series resistance of inductance is set as 50mΩ. It is
clearly shown that three significant impedance peaks appear with
θ>0:6π. The frequencies of two peaks (as marked by red arrows)
are matched to positive and negative eigenenergies of two-anyon
BICs. We also note that the values (widths) of impedance peak
decrease (increase) with the statistical angle changing from π to
2π=3. This phenomenon is consistent with the theoretical
prediction, where the localization strength of anyonic BICs is
largest for two pseudofermions. And, central impedance peaks
(marked by blue arrows) correspond to two-anyon leaky modes
(marked by the blue line in Fig. 2a), which are not perfect bound
states and could couple with two-anyon scattering states. In
addition, spatial impedance distributions are further simulated at
frequencies corresponding to negative eigenenergies of anyonic
BICs with θ ¼ π (1.448 MHz) and θ ¼ 0:8π (1.224 MHz), as
shown in Fig. 4c and d. We can see that impedance profiles are
identical to that of anyonic BICs (shown in Fig. 3f and 3g),
demonstrating the correctness of our designed anyonic circuit
simulators.
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To experimentally simulate the anyonic BICs, designed 2D
circuit simulators with θ ¼ 0, θ ¼ 0:8π and θ ¼ π are fabricated,
where the corresponding parameters are the same to those used
in Fig. 4. A photograph image of the circuit sample with θ ¼ π is
presented in Fig. 5a. Here, four printed circuit boards (PCBs),
where each one contains 15 ´ 15 node pairs, are applied for the
circuit simulator. Enlarged views of the circuit around diagonals
(enclosed by red block in Fig. 5a) and far away from diagonals
(enclosed by the blue block in Fig. 5a) are plotted in Fig. 5b and c,
respectively. It is shown that two circuit nodes connected by the
capacitor Cin (plotted in pink) are considered to form an effective
lattice site. Voltages at these two nodes are defined by Vi;1 and
Vi;2, which could be suitably formulated to construct a voltage
pseudospin (V#i ¼ Vi;1 � Vi;2) for realizing required site cou-
plings. To simulate the real-valued hopping rate, two capacitors
(C) labeled by orange symbols are used to directly link adjacent
nodes without a cross. For the realization of the hopping rate with
a direction-dependent phase factor (e±iπ), two pairs of adjacent
nodes are connected crossly via the capacitor C. Each node is
grounded by an inductor Lg in the back side of the PCB. In
addition, the tolerance of the circuit element is <1% to avoid the
detuning of circuit responses. Details of the sample fabrication are
provided in Methods.

As shown by the red line in Fig. 5d, we measure the frequency-
dependent impedance response at the corner node (1,1) of the
fabricated two-pseudofermion circuit simulator. We can see that
two significant impedance peaks (marked by red arrows) appear
at 0.992MHz and 1.488MHz, being consistent to the simulation
result of anyonic BICs in Fig. 4b. The central peak (the blue
arrow) at 1.167MHz correspond to the two-anyon leaky mode
with a large IPR marked by the blue line in Fig. 2a. The larger
width of measured impedance peaks results from the loss effect in
the fabricated circuit. To fit the strength of loss in the fabricated

circuit, we calculate the frequency-dependent impedances with
different series resistances of inductors (see Supplementary
Note 4). We find that the effective series resistance of inductance
in the fabricated circuit is ~150mΩ. In addition, the spatial
impedance distribution of the circuit at 1.448MHz is further
measured, as shown in Fig. 5e. We can see that the concentrated
impedance profile is in a good consistence with the anyonic BIC
of two pseudofermions.

Then, we turn to the fabricated circuit with θ ¼ 0:8π (see
Supplementary Fig. 2 for the photograph of the sample). Here, the
fabricated circuit simulator also contains 30 ´ 30 node groups,
which are large enough to ensure the exponential localization of
anyonic BICs. The measured impedance spectrum of the circuit
node (1,1) is shown in Fig. 5d. We can see that frequencies of two
impedance peaks (0.914MHz and 1.224MHz marked by red
arrows) are matched to the positive and negative energies of
anyonic BICs with θ ¼ 0:8π. The spatial distribution of measured
impedance profile at 1.224 MHz is displayed in Fig. 5f, where a
good consistence to the profile of the anyonic BIC is also
observed. The central peak at 1.036MHz (marked by the blue
arrow) corresponds to the leaky two-anyon mode with a large
IPR.

Finally, we measure the impedance response of the circuit
simulator for two bosons. It is found that no large impedance
peak appears, indicating that the strongly localized eigenstate
does not exist for two bosons. These experimental results are
consistent with the theoretical prediction, and clearly demon-
strate the effectiveness on the simulation of statistics-induced
anyonic BICs.

Conclusion
In conclusion, we discover a mechanism to generate BICs relying
only on the quantum statistics. Based on analytical derivations and
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numerical calculations, we find that two-anyon BICs can perfectly
concentrate on the boundary of the 1D lattice without the existence
of any impurity potentials when the statistical angle of two non-
interacting anyons is beyond a threshold. By mapping eigenstates
of two anyons to modes of designed electric circuits, anyonic BICs
are effectively simulated by measuring impedance responses in
frequency and spatial domains. Specifically, we fabricate three
electric circuit networks with θ ¼ 0, θ ¼ 0:8π and θ ¼ π, and find
that the significant spatial localization of the impedance only
appears in the circuit simulators with θ ¼ 0:8π and θ ¼ π, being
consistent with the theoretical prediction that there is a threshold of
θ to trigger the formation of two-anyon BICs.

In addition, it is worth noting that our proposed anyonic BICs
may also be realized in some quantum platforms32–34,55–59. For
example, anyonic excitations can be created by bosons with
occupation-dependent hopping amplitudes, which can be realized
by assisted Raman tunneling32. Fig. 6a presents the schematic
diagram for the realization of two-body anyonic BICs, where two
87Rb atoms locate in a tilted 1D optical lattice with open bound-
aries. The energy offset4 between neighboring sites is much larger
than the lattice hopping J in the absence of tilting, making the direct
hopping in the tilted lattice become ignored. Here, we consider two
hyperfine states A> ¼j jF ¼ 1;mF ¼ �1> and B> ¼j jF ¼ 2;mF ¼
�2> of each 87Rb atom. In this case, four lasers L1,2,3,4 (L1, L4 and
L2, L3 have the linear and circular polarizations, respectively) can be
used to couple two states of 87Rb. As demonstrated by previous
work59, we can assume in a very good approximation that the state
jB> and jA> are only coupled with L1, L4 and L2, L3, respectively, as
shown in the inset of Fig. 6a.

We can use four lasers with frequencies being ω1;2;3;4 to induce
three types of Raman-assisted hoppings of two 87Rb atoms that
are required to realize anyonic BICs. The first one is the transition
(A,0)!(0,A) with an energy shift 4E ¼ �4, as shown in Fig. 6b.
Such a transition can be induced by L2 and L3 with
ω2 � ω3 ¼ �4. As shown in Fig. 6c, the second transition
(A,A)!(0,AB) with 4E ¼ �4þ UAB can be induced by L2 and
L4 with ω2 � ω4 ¼ �4þ UAB. The third one (AB,0)!(A,A)
with 4E ¼ �4� UAB shown Fig. 6d is induced by L1 and L3
with ω1 � ω3 ¼ �4� UAB. UAB characterizes the interaction
between jA> and jB> states of two atoms. It is worth noting that

the undesired Raman processes of (A,0)!(0,B), (A,A)!(0,AA)
and (AA,0)!(A,A) can be kept out of resonance by setting
UAA � W (the width of the Raman resonance). Under the above
condition, the two-atom model with each atom having two states
is reduced to a 1D single-component bosonic model. The on-site
Fock states j0>, j1> and j2> correspond to j0>, jA> and jAB>. By
setting the Rabi frequency of the laser Lj to Ωje

iΦj with Φ1 ¼ �Φ,
Φ2;3;4 ¼ 0 and Ω Ω1

�� �� Ω4

�� ��=4 ¼ Ω2

�� �� Ω3

�� ��=3 ¼ Ω1

�� �� Ω3

�� ��=2
ffiffiffi
3

p ¼
��

Ω2

�� �� Ω4

�� ��=2
ffiffiffi
3

p ¼ Ω2
1j Ω4

�� ��=4 ¼ Ω2

�� �� Ω3

�� ��=3 ¼ Ω1

�� �� Ω3

�� ��=2
ffiffiffi
3

p ¼
Ω2

�� �� Ω4

�� ��=2
ffiffiffi
3

p ¼ Ω2 59, we can obtain the effective Hamiltonian
with occupation-dependent Peierls phase as Heff ¼ �0:5JΩ2=

ð4δÞ∑
j
ðb̂þj eiΦn̂j b̂jþ1 þH:c:Þ with δ being the detuning from the

single-photon transitions (δ � UAB;4;Ω). bþj (bj) are creation

(annihilation) operators at site j, and n̂j ¼ b̂
þ
j b̂j. Based on the

fractional version of a Jordan–Wigner transformation

âj ¼ b̂je
iΦ ∑

j¼½1;j�1�
nj
, the effective Hamiltonian Heff is transformed to

the two-anyon lattice model of Eq. (1) with âj ðâþj Þ satisfying the
anyonic statistics (Φ is the anyonic statistical angle).

There are also many open questions related to anyonic BICs
remained to be solved. For example, inspired by novel properties
of three-boson states in Hubbard model60 and two-boson topo-
logical states in two dimensions61, it would be very interesting to
investigate the 1D anyonic system with three or more anyons and
two-anyon systems in two dimensions to see what novel phe-
nomena related to anyonic BICs appear. And, following a recent
experiment on the demonstration of nonlinearity-induced two-
boson topological states with microwave qubits62, the study of
influences by non-Hermitian, non-linear and topological effects
on the anyonic BICs is also very interesting. These studies will
shed more light on the novel physics of correlated BICs, and can
also suggest a useful way to construct classical BICs in high
dimensions.

Methods
Sample fabrications and circuit signal measurements. We exploit the 2D
electric circuits by using PAD program software, where the PCB composition,
stack-up layout, internal layer and grounding design are suitably engineered. Here,
the well-designed 2D PCB possesses six layers, containing the top layer, the bottom
layer, two mid-layers, and two internal planes, to suitably arrange circuit elements,
linking wires and the ground setting. It is worth noting that the ground layer
should be placed in the gap between any two layers to avoid the mutual inductance.
Moreover, all PCB traces have a relatively large width (0.75 mm) to reduce the
parasitic inductance, and the spacing between electronic devices is also large
enough (0.3–0.5 mm) to avert spurious inductive coupling. The SMP connectors
are welded on PCB nodes for the signal injection and detection. To ensure the
realization of anyonic BICs in electric circuits, both the tolerance of circuit ele-
ments and series resistance of inductors should be as low as possible. For this
purpose, we use a WK6500B impedance analyzer to select circuit elements with a
high accuracy (the averaged disorder strength is <1%) and low losses.

Circuit simulations and numerical calculations. Our analytical theory on anyonic
BICs is based on the Bethe-type ansatz of two-anyon eigenstates. Detailed deri-
vations are given in Supplementary Materials. The matrix diagonalizations, which
are used to calculate eigen-spectra and associated eigenmodes of two anyons, are
completed in MATLAB interface. The numerical accuracy is high enough to ensure
convergence. All circuit simulations are performed in LTSpice software.

Data availability
All data are displayed in the main text and Supplementary Information. The data that
support the findings of this study are available from the corresponding author upon
reasonable request.

Code availability
The code that supports the plots within this paper are available from the corresponding
author upon reasonable request.
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Fig. 6 Realization of two-body anyonic bound states in the continuum
(BICs) assisted by Raman tunneling. a The Raman scheme for the
realization of two-anyon BICs by two 87Rb atoms. b–d Raman-assisted
hoppings in the form of (A,0)!(0,A), (A,A)!(0,AB), and (AB,0)!(A,A).
Red and blue circles correspond to initial and final states of two atoms.
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